Coefficient estimates for a class of bi-univalent functions associated with quasi-subordination

H. Orhan, N. Magesh and J. Yamini

ABSTRACT. In the present work, we define a new class associated with quasi-subordination and investigate the estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Some interesting applications of the results presented here are also discussed.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S} we denote the family of all functions in \mathcal{A} which are univalent in \mathbb{U}. Let $h(z)$ be an analytic function in \mathbb{U} and $|h(z)| \leq 1$, such that

$$
\begin{equation*}
h(z)=A_{0}+A_{1} z+A_{2} z^{2}+A_{3} z^{3}+\cdots, \tag{1.2}
\end{equation*}
$$

where all coefficients are real. Also, let φ be an analytic and univalent function with positive real part in \mathbb{U} with $\varphi(0)=1, \varphi^{\prime}(0)>0$ and φ maps the unit disk \mathbb{U} onto a region starlike with respect to 1 , and symmetric with respect to the real axis. The Taylor's series expansion of such function is of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, \tag{1.3}
\end{equation*}
$$

where all coefficients are real and $B_{1}>0$. Throughout this paper we assume that the functions h and φ satisfy the above conditions one or otherwise stated.

For two functions f and g, analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function w, analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U}) .
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

[^0]For analytic functions f and g, the function f is quasi-subordinate to g in the open unit disc \mathbb{U}, if there exist analytic functions h and w, with $|h(z)| \leq 1, w(0)=0$ and $|w(z)|<1$, such that $\frac{f(z)}{h(z)}$ is analytic in \mathbb{U} and written as

$$
\frac{f(z)}{h(z)} \prec g(z) \quad(z \in \mathbb{U}) .
$$

We also denote the above expression by

$$
f(z) \prec_{q} g(z) \quad(z \in \mathbb{U})
$$

and this is equivalent to

$$
f(z)=h(z) g(w(z)) \quad(z \in \mathbb{U})
$$

Observe that if $h(z) \equiv 1$, then $f(z)=g(w(z))$, so that $f(z) \prec g(z)$ in \mathbb{U}. Also notice that if $w(z)=z$, then $f(z)=h(z) g(z)$ and it is said that f is majorized by g and written $f(z) \ll g(z)$ in \mathbb{U}. Hence it is obvious that quasi - subordination is a generalization of subordination as well as majorization (see [16]).

In [10] Ma and Minda, introduced the unified classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ given below:

$$
\begin{equation*}
\mathcal{S}^{*}(\varphi):=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z) ; \quad z \in \mathbb{U}\right\} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}(\varphi):=\left\{f: f \in \mathcal{A} \text { and } \quad 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z) ; \quad z \in \mathbb{U}\right\} . \tag{1.5}
\end{equation*}
$$

For the choice

$$
\begin{equation*}
\varphi(z)=\frac{1+(1-2 \alpha) z}{1-z} \quad(0 \leq \alpha<1) \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\beta} \quad(0<\beta \leq 1) \tag{1.7}
\end{equation*}
$$

the classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ consist of functions known as the starlike (respectively convex) functions of order α or strongly starlike (respectively convex) functions of order β respectively. Further, analogous to Ma-Minda starlike and convex classes, Mohd and Darus [12] considered the notion of the quasi - subordination and introduced the classes $\mathcal{S}_{q}^{*}(\varphi)$ and $\mathcal{K}_{q}(\varphi)$ given below:

$$
\begin{equation*}
\mathcal{S}_{q}^{*}(\varphi):=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \frac{z f^{\prime}(z)}{f(z)}-1 \prec_{q} \varphi(z)-1 ; \quad z \in \mathbb{U}\right\} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}_{q}(\varphi):=\left\{f: f \in \mathcal{A} \text { and } \quad \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec_{q} \varphi(z)-1 ; \quad z \in \mathbb{U}\right\} . \tag{1.9}
\end{equation*}
$$

Following, Mohd and Darus [12], many researchers used the notion of the quasi - subordination to introduce several classes one could refer $[6,8,11]$ and the references therein.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; \quad r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.10}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U}, if both f and f^{-1} are univalent in \mathbb{U}. Let σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). For a brief history and interesting examples of functions which are in (or which are not in) the class σ, together with various other properties of the bi-univalent function class σ one can refer the work of Srivastava et al. [18] and references therein. Recently, various subclasses of the bi-univalent function class σ were introduced and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1.1) were found in several recent investigations (see, for example, $[1,2,3,4,11,13,17,19]$). However, not much was known about the bounds of the general coefficients $a_{n} ; n \geq 4$ for functions $f \in \sigma$ up until the work by Jahangiri and Hamidi [9]. They obtained bounds for the n-th coefficients $a_{n} ; n \geq 3$ of certain subclasses of bi-univalent functions using the Faber polynomial series expansions subject to a given gap series condition. But, the problem to find the coefficient bounds on $\left|a_{n}\right|(n=3,4, \ldots)$ for functions $f \in \sigma$ is still an open problem.

In this paper we define the following subclass of the function class σ :
A function $f \in \sigma$ given by (1.1) is said to be in the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$ if the following quasi - subordination conditions are satisfied:

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}-1 \prec_{q} \varphi(z)-1 \quad(\lambda \geq 1, \mu \geq 0, z \in \mathbb{U}) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}-1 \prec_{q} \varphi(w)-1 \quad(\lambda \geq 1, \mu \geq 0, w \in \mathbb{U}) \tag{1.12}
\end{equation*}
$$

where $g=f^{-1}$.
Remark 1.1. From among the many choices of μ, λ and the function φ which would provide the following new and known subclasses:
(1) $\mathcal{N}_{q, \sigma}^{1, \lambda}(\varphi)=\mathcal{R}_{q, \sigma}(\lambda, \varphi)(\lambda \geq 0)$ [5]
(2) $\mathcal{N}_{q, \sigma}^{\mu, 1}(\varphi)=\mathcal{F}_{q, \sigma}^{\mu}(\varphi)(\mu \geq 0)$ [7]
(3) $\mathcal{N}_{q, \sigma}^{0,1}(\varphi)=\mathcal{S}_{q, \sigma}^{*}(\varphi)$
(4) $\mathcal{N}_{q, \sigma}^{1,1}(\varphi)=\mathcal{H}_{q, \sigma}^{\varphi}$.

For $h(z) \equiv 1$ the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi):=\mathcal{N}_{\sigma}^{\mu, \lambda}(\varphi)$ was considered by Tang et al. [19] and Orhan et al. $[13,14]$ to obtain bounds on initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Further, for φ given by (1.6) in the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$ with $h(z) \equiv 1$ and for φ given by (1.7) in the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$ with $h(z) \equiv 1$ were considered by Çağlar et al. [2]. Also, the class was generalized by Srivastava et al. [17]. Motivated in this line we define the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$ and obtain the estimates on initial coefficients of normalized analytic function f in the open unit disk with f and its inverse $g=f^{-1}$ satisfying the conditions given in (1.11) and (1.12) are both quasi-subordinate to a univalent function whose range is symmetric with respect to the real axis. In order to derive our results, we need the following lemma.

Lemma 1.1. (see [15]) If $p \in \mathcal{P}$, then $\left|p_{i}\right| \leq 2$ for each i, where \mathcal{P} is the family of all functions p, analytic in \mathbb{U}, for which

$$
\Re\{p(z)\}>0 \quad(z \in \mathbb{U})
$$

where

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

2. Initial coefficient estimates for the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$

Theorem 2.1. Let f of the form (1.1) be in $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|A_{0}\right| B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|A_{0} B_{1}^{2}(2 \lambda+\mu)(1+\mu)-2\left(B_{2}-B_{1}\right)(\lambda+\mu)^{2}\right|}} \tag{2.13}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{\left|A_{1}\right| B_{1}}{2 \lambda+\mu}+\frac{2\left|A_{0}\right|\left[B_{1}+\left|B_{2}-B_{1}\right|\right]}{2 \lambda+\mu(1+\mu)}, & 0 \leq \mu<1 \tag{2.14}\\ \frac{\left|A_{1}\right| B_{1}}{2 \lambda+\mu}+\frac{\left|A_{0}\right| B_{1}}{2 \lambda+\mu}+\frac{2\left|A_{0}\right|\left|B_{2}-B_{1}\right|}{(2 \lambda+\mu)(1+\mu)}, & \mu \geq 1 .\end{cases}
$$

Proof. Since $f \in \mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$, there exists two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0$ and $s(0)=0$, such that

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}-1=h(z)(\varphi(r(z))-1) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}-1=h(w)(\varphi(s(w))-1) \tag{2.16}
\end{equation*}
$$

Define the functions u and v by

$$
\begin{equation*}
u(z)=\frac{1+r(z)}{1-r(z)}=1+u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\cdots \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{1+s(z)}{1-s(z)}=1+v_{1} z+v_{2} z^{2}+v_{3} z^{3}+\cdots \tag{2.18}
\end{equation*}
$$

or equivalently,

$$
\begin{align*}
r(z)= & \frac{u(z)-1}{u(z)+1}=\frac{1}{2}\left(u_{1} z+\left(u_{2}-\frac{u_{1}^{2}}{2}\right) z^{2}\right. \\
& \left.+\left(u_{3}+\frac{u_{1}}{2}\left(\frac{u_{1}^{2}}{2}-u_{2}\right)-\frac{u_{1} u_{2}}{2}\right) z^{3}+\cdots\right) \tag{2.19}
\end{align*}
$$

and

$$
\begin{align*}
s(z)= & \frac{v(z)-1}{v(z)+1}=\frac{1}{2}\left(v_{1} z+\left(v_{2}-\frac{v_{1}^{2}}{2}\right) z^{2}\right. \\
& \left.+\left(v_{3}+\frac{v_{1}}{2}\left(\frac{v_{1}^{2}}{2}-v_{2}\right)-\frac{v_{1} v_{2}}{2}\right) z^{3}+\cdots\right) . \tag{2.20}
\end{align*}
$$

Using (2.19) and (2.20) in (2.15) and (2.16), we have

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}-1=h(z)\left[\varphi\left(\frac{u(z)-1}{u(z)+1}\right)-1\right] \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}-1=h(w)\left[\varphi\left(\frac{q(w)-1}{q(w)+1}\right)-1\right] \tag{2.22}
\end{equation*}
$$

Again using (2.19) and (2.20) along with (1.3), it is evident that

$$
\begin{align*}
h(z) & {\left[\varphi\left(\frac{u(z)-1}{u(z)+1}\right)-1\right] } \tag{2.23}\\
& =\frac{1}{2} A_{0} B_{1} u_{1} z+\left(\frac{1}{2} A_{1} B_{1} u_{1}+\frac{1}{2} A_{0} B_{1}\left(u_{2}-\frac{1}{2} u_{1}^{2}\right)+\frac{1}{4} A_{0} B_{2} u_{1}^{2}\right) z^{2}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
h(w) & {\left[\varphi\left(\frac{q(w)-1}{q(w)+1}\right)-1\right] } \tag{2.24}\\
& =\frac{1}{2} A_{0} B_{1} v_{1} w+\left(\frac{1}{2} A_{1} B_{1} v_{1}+\frac{1}{2} A_{0} B_{1}\left(v_{2}-\frac{1}{2} v_{1}^{2}\right)+\frac{1}{4} A_{0} B_{2} v_{1}^{2}\right) w^{2}+\cdots
\end{align*}
$$

It follows from (2.21), (2.22), (2.23) and (2.24) that

$$
\begin{align*}
(\lambda+\mu) a_{2} & =\frac{1}{2} A_{0} B_{1} u_{1} \tag{2.25}\\
(2 \lambda+\mu)\left[a_{3}+\frac{a_{2}^{2}}{2}(\mu-1)\right]= & \frac{1}{2} A_{1} B_{1} u_{1}+\frac{1}{2} A_{0} B_{1}\left(u_{2}-\frac{1}{2} u_{1}^{2}\right)+\frac{1}{4} A_{0} B_{2} u_{1}^{2} \tag{2.26}\\
& -(\lambda+\mu) a_{2} \tag{2.27}
\end{align*}=\frac{1}{2} A_{0} B_{1} v_{1} .
$$

and

$$
\begin{equation*}
(2 \lambda+\mu)\left[\frac{a_{2}^{2}}{2}(\mu+3)-a_{3}\right]=\frac{1}{2} A_{1} B_{1} v_{1}+\frac{1}{2} A_{0} B_{1}\left(v_{2}-\frac{1}{2} v_{1}^{2}\right)+\frac{1}{4} A_{0} B_{2} v_{1}^{2} \tag{2.28}
\end{equation*}
$$

From (2.25) and (2.27), we find that

$$
\begin{equation*}
a_{2}=\frac{A_{0} B_{1} u_{1}}{2(\lambda+\mu)}=\frac{-A_{0} B_{1} v_{1}}{2(\lambda+\mu)} \tag{2.29}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
u_{1}=-v_{1} \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
8(\lambda+\mu)^{2} a_{2}^{2}=A_{0}^{2} B_{1}^{2}\left(u_{1}^{2}+v_{1}^{2}\right) . \tag{2.31}
\end{equation*}
$$

Adding (2.26) and (2.28), we have

$$
\begin{equation*}
a_{2}^{2}(2 \lambda+\mu)(\mu+1)=\frac{A_{0} B_{1}}{2}\left(u_{2}+v_{2}\right)+\frac{A_{0}\left(B_{2}-B_{1}\right)}{4}\left(u_{1}^{2}+v_{1}^{2}\right) . \tag{2.32}
\end{equation*}
$$

Substituting (2.29) and (2.30) into (2.32), we get,

$$
\begin{equation*}
u_{1}^{2}=\frac{2 B_{1}(\lambda+\mu)^{2}\left(u_{2}+v_{2}\right)}{A_{0} B_{1}^{2}(2 \lambda+\mu)(\mu+1)-2\left(B_{2}-B_{1}\right)(\lambda+\mu)^{2}} \tag{2.33}
\end{equation*}
$$

Now (2.29) and (2.33) yield

$$
\begin{equation*}
a_{2}^{2}=\frac{A_{0}^{2} B_{1}^{3}\left(u_{2}+v_{2}\right)}{2\left[A_{0} B_{1}^{2}(2 \lambda+\mu)(\mu+1)-2\left(B_{2}-B_{1}\right)(\lambda+\mu)^{2}\right]} . \tag{2.34}
\end{equation*}
$$

Applying Lemma 1.1 in (2.34), we get desired inequality (2.13). By subtracting (2.26) from (2.28) and a computation using (2.30) finally lead to

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{A_{1} B_{1} u_{1}}{2(2 \lambda+\mu)}+\frac{A_{0} B_{1}\left(u_{2}-v_{2}\right)}{8 \lambda+4 \mu} . \tag{2.35}
\end{equation*}
$$

Again applying Lemma 1.1, the equation (2.35) yields desired inequality (2.14). This completes the proof of Theorem 2.1.
Corollary 2.1. If $f \in \mathcal{S}_{q, \sigma}^{*}(\varphi)$, then

$$
\left|a_{2}\right| \leq \frac{\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|A_{0} B_{1}^{2}-B_{2}+B_{1}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\left|A_{1}\right| B_{1}}{2}+\left|A_{0}\right|\left[B_{1}+2\left|B_{2}-B_{1}\right|\right] .
$$

Remark 2.2. Corollary 2.1 reduces to [7, Corollary 2.3, p.82].
Corollary 2.2. If $f \in \mathcal{R}_{q, \sigma}(\lambda, \varphi)$, then

$$
\left|a_{2}\right| \leq \frac{\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|A_{0} B_{1}^{2}(2 \lambda+1)-\left(B_{2}-B_{1}\right)(\lambda+1)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\left|A_{1}\right| B_{1}+\left|A_{0}\right|\left[B_{1}+\left|B_{2}-B_{1}\right|\right]}{2 \lambda+1}
$$

Corollary 2.3. If $f \in \mathcal{F}_{q, \sigma}^{\mu}(\varphi)$, then

$$
\left|a_{2}\right| \leq \frac{\left|A_{0}\right| B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|A_{0} B_{1}^{2}(2+\mu)(1+\mu)-2\left(B_{2}-B_{1}\right)(1+\mu)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{\left|A_{1}\right| B_{1}}{2+\mu}+\frac{2\left|A_{0}\right|\left[B_{1}+\left|B_{2}-B_{1}\right|\right]}{(2+\mu)(1+\mu)}, & 0 \leq \mu<1 \\ \frac{\left|A_{1}\right| B_{1}}{2+\mu}+\frac{\left.\left|A_{0}\right| B_{1}\right)\left(\frac{2\left|A_{0}\right|\left|B_{2}-B_{1}\right|}{2+\mu}+\frac{1+\mu)(1+\mu)}{(2+\mu},\right.}{}, \mu \geq 1\end{cases}
$$

Remark 2.3. The inequalities discussed in Corollary 2.3 improve the results obtained in [7, Theorem 2.1, p.80].
Corollary 2.4. If $f \in \mathcal{H}_{q, \sigma}(\varphi)$, then

$$
\left|a_{2}\right| \leq \frac{\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|3 A_{0} B_{1}^{2}-4\left(B_{2}-B_{1}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{1}{3}\left[\left|A_{1}\right| B_{1}+\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)\right] .
$$

Remark 2.4. The estimate $\left|a_{2}\right|$ obtained in Corollary 2.4 coincides with the estimate of [7, Corollary 2.6, p.84].

Remark 2.5. For f given by (1.1) in the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$ with $h(z) \equiv 1$, the inequalities (2.13) and (2.14) reduce to the result in [19]. Further, for φ given by (1.6) in the class $\mathcal{N}_{q, \sigma}^{\mu, \lambda}(\varphi)$ with $h(z) \equiv 1$, the inequalities (2.13) and (2.14) reduce to the result in [2] and for $h(z) \equiv 1$, and φ given by (1.7) the inequalities (2.13) and (2.14) reduce to the result in [2].

Acknowledgements. The third author would also like to acknowledge the support provided by the UGC for funding through the project F.MRP - 1397 / 14-15 / KABA084 / UGC - SWRO.

References

[1] Ali, R. M., Lee, S. K., Ravichandran, V. and Supramanian, S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), No. 3, 344-351
[2] Çağlar, M., Orhan, H. and Yağmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), No. 7, 1165-1171
[3] Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), No. 1, 49-60
[4] Frasin, B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), No. 9, 1569-1573
[5] Goyal, S. P. and Kumar, R., Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Math. Slovaca, 65 (2015), No. 3, 533-544
[6] Goyal, S. P. and Singh, O., Fekete-Szegö problems and coefficient estimates of quasi - subordination classes, J. Rajasthan Acad. Phys. Sci., 13 (2014), No. 2, 133-142
[7] Goyal, S. P., Singh, O. and Mukherjee, R., Certain results on a subclass of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination, Palestine J. Math., 5 (2016), No. 1, 79-85
[8] Gurusamy, P., Sokół, J. and Sivasubramanian, S., The Fekete-Szegö functional associated with k-th root transformation using quasi-subordination, C. R. Math. Acad. Sci. Paris, 353 (2015), No. 7, 617-622
[9] Jahangiri, J. M. and Hamidi, S. G., Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560, 1-4
[10] Ma, W. C. and Minda, D., A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, Conf. Proc. Lecture Notes Anal. I, pp. 157-169. Int. Press, Cambridge (1994)
[11] Magesh, N., Balaji, V. K. and Yamini, J., Certain subclasses of bistarlike and biconvex functions based on quasisubordination, Abstr. Appl. Anal., 2016, Art. ID 3102960, 1-6
[12] Mohd, M. H. and Darus, M., Fekete-Szegö problems for quasi-subordination classes, Abstr. Appl. Anal., 2012, Art. ID 192956, 14 pp.
[13] Orhan, H., Magesh, N. and Balaji, V. K., Initial coefficient bounds for a general class of bi-univalent functions, Filomat, 29 (2015), No. 6, 1259-1267
[14] Orhan, H., Magesh, N. and Balaji, V. K., Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat., 27 (2016) No. 5-6, 1-11
[15] Pommerenke, C., Univalent functions, Vandenhoeck \& Ruprecht, Göttingen, 1975
[16] Robertson, M. S., Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1-9
[17] Srivastava, H. M., Bulut, S., Çağlar, M., and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), No. 5, 831-842
[18] Srivastava, H. M. and Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), No. 10, 1188-1192
[19] Tang, H., Deng, G.-T. and Li, S.-H., Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., 2013, 2013:317, 10 pp.

Department of Mathematics
Faculty of Science, Ataturk University
25240 ErZurum, Turkey
Email address: orhanhalit607@gmail.com

Post-Graduate and Research Department of Mathematics
Government Arts College for Men
Krishnagiri 635001 Tamilnadu, India
Email address: nmagi_2000@yahoo.co.in
Department of Mathematics
Govt First Grade College
Vijayanagar, Bangalore- 560104 Karnataka, India
Email address: yaminibalaji@gmail.com

[^0]: Received: 06.12.2016. In revised form: 01.03.2017. Accepted: 17.03.2017
 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Bi-univalent functions, Bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type, subordination, quasi-subordination.

 Corresponding author: H. Orhan; orhanhalit607@gmail.com

