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Stability of nonlinear Volterra-Fredholm integro
differential equation: A fixed point approach

YUNUS ATALAN and VATAN KARAKAYA

ABSTRACT. The objective of the present work is to analyze stability in the sense of Hyers-Ulam and Hyers-
Ulam-Rassias for nonlinear Volterra Fredholm integro-differential equation by using fixed point approach.

1. INTRODUCTION

The beginning of the stability theory is based on the following problem that Ulam pre-
sented in [25]:
Let θ1 be a group and let θ2 be a metric group with the metric σ. Given ε > 0, does there
exist a δ > 0 such that if a mapping u : θ1 → θ2 satisfies the inequality

σ(u(xy), u(x)u(y)) < δ

for all x, y ∈ θ1, then there exists a homomorphism P : θ1 → θ2 such that σ(u(x), P (x)) < ε
for all x ∈ θ1?
In 1941, Hyers [9] answered Ulam’s question for the approximately additive functions in
Banach spaces. In 1978, Rassias [19] generalized Hyers’s result by taking Cauchy differ-
ence as unbounded. Since then, a lot of researchers have studied Hyers-Ulam stabilitiy
for a wide range of equations and have obtained several important results (see [3], [4], [6],
[10], [18]). The use of differential and integral equations instead of functional equations
in Ulam’s problem has created a new field of study which has a rich literature (for more
detail see [1], [7], [8], [12], [20], [23]). The first authors who investigated Hyers-Ulam sta-
bility of a differential equation are Alsina and Ger (see [2]). Miura, Miyajima and Takahasi
(see [16], [17], [24]) extended the result of Alsina and Ger to the Hyers-Ulam stability of
the first order linear differential equation. Furthermore S.-M. Jung ([13], [14], [15]) showed
the stability of linear differential equations by developing the results of Takahasi, Takagi
and Miura. I. A. Rus showed the stability of differential and integral equations using
Gronwall lemma and weakly Picard operator technique (see [21], [22]).

The objective of the present work is to analyze stability in the sense of Hyers-Ulam and
Hyers-Ulam-Rassias for the following nonlinear Volterra Fredholm integro-differential
equation (VFIDE) by using fixed point approach: x

′
(t) = f(t, x(t)) + λ1

t∫
a

k1(t, s, x(s))ds+ λ2
b∫
a

k2(t, s, x(s))ds

x(0) = α, t, s ∈ I = [a, b]

(1.1)

where α ∈ R and given function f : I × R → R and the kernels k1, k2 : I2 × R → R are
assumed to be continuous functions satisfying the following Lipschitz conditions: there
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exist Lf , Lk1
, Lk2

≥ 0 such that

|f(t, x)− f(t, y)| ≤ Lf |x− y| (1.2)

|k1(t, s, x)− k1(t, s, y)| ≤ Lk1
|x− y| (1.3)

|k2(t, s, x)− k2(t, s, y)| ≤ Lk2
|x− y| (1.4)

for t, s ∈ I and for x, y ∈ R.
If k1(t, s, x(s)) = 0 in (1.1), the equation reduces to a nonlinear Volterra integro-differential

equation; if k2(t, s, x(s)) = 0, it becomes a nonlinear Fredholm integro-differential equa-
tion. It is clear that, if k1(t, s, x(s)) = k2(t, s, x(s)) = 0 in (1.1) then the equation is trans-
formed into an ordinary differential equation.

Definition 1.1. The equation (1.1) is said to be stable in the sense of Hyers-Ulam if, for all
ε > 0 and all continuously differentiable function x(t) satisfying the inequality∣∣∣∣∣∣x′

(t)− f(t, x(t))− λ1

t∫
a

k1(t, s, x(s))ds− λ2

b∫
a

k2(t, s, x(s))ds

∣∣∣∣∣∣ ≤ ε, ∀t ∈ I,
there exists a solution x0(t) of the equation (1.1) and a constant C > 0 with

|x(t)− x0(t)| ≤ Cε,

for all t, where C is independet of x(t) and x0(t). If the above inequality is also valid
when ε = φ(t), where φ : I → (0,∞) is independet of x(t) and x0(t), then it is said that
the equation (1.1) has Hyers-Ulam Rassias stability.

2. BASIC CONCEPTS

In this section we give the definiton of the generalized metric space and one of the
fundamental results of fixed point theory which extremely important in obtaining our
main results:

Definition 2.2. [11] Let σ : B × B → [0,+∞] be a function. If σ satisfies the following
conditions, then it is called a generalized metric on B :

(D1) σ(b1, b2) = 0 if and only if b1 = b2,
(D2) σ(b1, b2)= σ(b2, b1) for all b1, b2 ∈ B,
(D3) σ(b1, b3) ≤ σ(b1, b2) + σ(b2, b3) for all b1, b2, b3 ∈ B.

Theorem 2.1. [5] Let (B, σ) be a generalized complete metric space. Suppose that Γ : B → B a
strictly contractive operator with the Lipschitz constant δ < 1. If there is a nonnegative integer m
such that σ(Γm+1u,Γmu) <∞ for some u ∈ B, then the followings are true:

(a) the sequence {Γnu} converges to a fixed point p of Γ;
(b) p is the unique fixed point of Γ in

V = {v ∈ B : σ(Γmu, v) <∞};

(c) If v ∈ V, then

σ(v, p) ≤ 1

1− δ
σ(Γv, v).
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3. HYERS-ULAM STABILITY

Now, we show the Hyers-Ulam stability of the nonlinear VFIDE (1.1) under some ap-
propriate conditions:

Theorem 3.2. Let a and b be real numbers such that a < b and set I = [a, b]. Let λ1, λ2, Lf , Lk1

and Lk2 be positive constants with 0 < Lf (b− a) + λ1Lk1

(b−a)2

2 + λ2Lk2(b− a)2 < 1. Suppose
that f : I × R → R is a continuous function which satisfies a Lipschitz condition (1.2) and the
kernels k1, k2 : I2 × R→ R are two continuous functions which satisfy Lipschitz condition (1.3)
and (1.4), respectively. If for ε ≥ 0 and ∀t ∈ I, continuously differentiable function x : I → R
satisfies ∣∣∣∣∣∣x′

(t)− f(t, x(t))− λ1

t∫
a

k1(t, s, x(s))ds− λ2

b∫
a

k2(t, s, x(s))ds

∣∣∣∣∣∣ ≤ ε, (3.5)

then there is only one continuous function x0 : I → R such that

x0(t) = α+

t∫
a

f(u, x(u))du+ λ1

t∫
a

u∫
a

k1(u, s, x(s))dsdu

+λ2

t∫
a

b∫
a

k2(u, s, x(s))dsdu (3.6)

and

|x(t)− x0(t)| ≤ (b− a)ε

1− [Lf (b− a) + λ1Lk1

(b−a)2

2 + λ2Lk2
(b− a)2]

Proof. Let B := C(I,R) be the set of all continuous functions from I to R. For v, w ∈ B,
we set

d(v, w) : inf{C ∈ [0,∞] : |v(t)− w(t)| ≤ C,∀t ∈ I}.

It can easily be seen that (B, d) is a complete generalized metric space (see [11]).
For ∀t ∈ I , Γ : B → B be defined as follows,

(Γv)(t) = α+

t∫
a

f(ς, v(ς))dς + λ1

t∫
a

u∫
a

k1(t, ς, v(ς))dςdu

+λ2

t∫
a

b∫
a

k2(t, ς, v(ς))dςdu (3.7)

We shall show Γ is strictly contractive on the space B. For any v, w ∈ B, let C(v, w) ∈
[0,∞] be an arbitrary constant such that d(v, w) ≤ C(v, w). From (3.7), we get

|v(t)− w(t)| ≤ C(v, w),∀t ∈ I.
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For any t ∈ I, we have

|(Γv)(t)− (Γw)(t)| ≤
t∫

a

|f(ς, v(ς))− f(ς, w(ς))| dς

+λ1

t∫
a

u∫
a

|k1(t, ς, v(ς)− k1(t, ς, w(ς)| dςdu

+λ2

t∫
a

b∫
a

|k2(t, ς, v(ς)− k2(t, ς, w(ς)| dςdu

≤ Lf

t∫
a

|v(ς)− w(ς)| dς + λ1Lk1

t∫
a

u∫
a

|v(ς)− w(ς)| dςdu (3.8)

+λ2Lk2

t∫
a

b∫
a

|v(ς)− w(ς)| dςdu

≤ LfC(v, w)(t− a)

+λ1Lk1
C(v, w)

(t− a)2

2
+λ2Lk2

C(v, w)(b− a)(t− a)

Since a ≤ t ≤ b, from (3.8) we obtain

|(Γv)(t)− (Γw)(t)| ≤ LfC(v, w)(b− a)

+λ1Lk1
C(v, w)

(b− a)2

2

+λ2Lk2
C(v, w)(b− a)2,

that is,

d(Γv,Γw) ≤ C(v, w)[Lf (b− a) + λ1Lk1

(b− a)2

2
+ λ2Lk2

(b− a)2].

We conclude that

d(Γv,Γw) ≤ [Lf (b− a) + λ1Lk1

(b− a)2

2
+ λ2Lk2

(b− a)2]d(v, w),

for any v, w ∈ B. Since by assumption, we have

Lf (b− a) + λ1Lk1

(b− a)2

2
+ λ2Lk2

(b− a)2 < 1,

then Γ is strictly contractive. Let w0 be an arbitrary element in B. Then there exists a
constant C ∈ (0,∞) for all t ∈ I such that

|(Γw0)(t)− w0(t)| =

∣∣∣∣∣∣α+

t∫
a

f(ς, w0(ς))dς + λ1

t∫
a

u∫
a

k1(t, ς, w0(ς))dςdu

+λ2

t∫
a

b∫
a

k2(t, ς, w0v(ς))dςdu− w0(t)

∣∣∣∣∣∣
≤ C.
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We deduce that
d(Γw0, w0) <∞.

Then by Theorem 2.1, there exists a continuous function x0 : I → R such that (Γnw0)
converges to x0 and Γx0 = x0, that is x0 is a solution to the equation (VFIDE).

Because of d is a metric, x0 : I → R is the unique continuous function such that

x0(t) = α+

t∫
a

f(u, x(u))du+ λ1

t∫
a

u∫
a

k1(u, s, x(s))dsdu+ λ2

t∫
a

b∫
a

k2(u, s, x(s))dsdu.

By assumption (3.5), for ∀t ∈ I we get

−ε ≤ x
′
(t)− f(t, x(t))− λ1

t∫
a

k1(t, s, x(s))ds− λ2

b∫
a

k2(t, s, x(s))ds ≤ ε,

If each term of the above inequality is integrated, then∣∣∣∣x(t)− α−
t∫
a

f(u, x(u))du− λ1
t∫
a

u∫
a

k1(u, s, x(s))dsdu

−λ2
t∫
a

b∫
a

k2(u, s, x(s))dsdu

∣∣∣∣∣
≤ ε(b− a).

That is we obtain
d(x,Γx) ≤ ε(b− a). (3.9)

By using Theorem 2.1 (c) and (3.9), we conclude that

d(x, x0) ≤ 1

1− [Lf (b− a) + λ1Lk1

(b−a)2

2 + λ2Lk2(b− a)2
d(x,Γx)

≤ (b− a)

1− [Lf (b− a) + λ1Lk1

(b−a)2

2 + λ2Lk2
(b− a)2]

ε.

�

4. HYERS-ULAM-RASSIAS STABILITY

Finally, we show the Hyers-Ulam-Rassias stability of the nonlinear VFIDE (1.1).

Theorem 4.3. Let a and b be real numbers such that a < b and set I = [a, b]. Let V, λ1, λ2, Lf , Lk1

and Lk2
be positive constants with 0 < LfV + λ1Lk1

V 2 + λ2Lk2
V 2 < 1. Let φ : I → (0,∞) be

a continuous function which takes minumum value at b such that
t∫

a

φ(ς)dς ≤ V φ(t) (4.10)

for each t ∈ I . Suppose that f : I × R → R is a continuous function which satisfies a Lipschitz
condition (1.2) and the kernels k1, k2 : I2 × R → R are two continuous functions which satisfy
Lipschitz condition (1.3) and (1.4), respectively. If for each t ∈ I , a continuously differentiable
function x : I → R satisfies∣∣∣∣∣∣x′

(t)− f(t, x(t))− λ1

t∫
a

k1(t, s, x(s))ds− λ2

b∫
a

k2(t, s, x(s))ds

∣∣∣∣∣∣ ≤ φ(t), (4.11)
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then there is only one continuous function x0 : I → R satisfying (3.6) and

|x(t)− x0(t)| ≤ V

1− [LfV + λ1Lk1
V 2 + λ2Lk2

V 2]
φ(t)

Proof. Let B := C(I,R) be the set of all continuous functions from I to R. For v, w ∈ B,
we set

d(v, w) : inf{C ∈ [0,∞] : |v(t)− w(t)| ≤ Cφ(t),∀t ∈ I}.
It can easily be seen that (B, d) is a complete generalized metric space (see [11]). For
∀t ∈ I , Γ : B → B be defined as follows

(Γv)(t) = α+

t∫
a

f(ς, v(ς))dς + λ1

t∫
a

u∫
a

k1(t, ς, v(ς))dςdu

+λ2

t∫
a

b∫
a

k2(t, ς, v(ς))dςdu (4.12)

We shall show Γ is strictly contractive on the space B. For any v, w ∈ B, let C(v, w) ∈
[0,∞] be an arbitrary constant such that d(v, w) ≤ C(v, w). From (4.12), we get

|v(t)− w(t)| ≤ C(v, w)φ(t),∀t ∈ I.

For any t ∈ I, we have

|(Γv)(t)− (Γw)(t)| ≤
t∫

a

|f(ς, v(ς))− f(ς, w(ς))| dς

+λ1

t∫
a

u∫
a

|k1(t, ς, v(ς)− k1(t, ς, w(ς)| dςdu

+λ2

t∫
a

b∫
a

|k2(t, ς, v(ς)− k2(t, ς, w(ς)| dςdu

≤ Lf

t∫
a

|v(ς)− w(ς)| dς + λ1Lk1

t∫
a

u∫
a

|v(ς)− w(ς)| dςdu

+λ2Lk2

t∫
a

b∫
a

|v(ς)− w(ς)| dςdu

≤ LfC(v, w)

t∫
a

φ(ς)dς + λ1Lk1
C(v, w)

t∫
a

u∫
a

φ(ς)dςdu

+λ2Lk2
C(v, w)

t∫
a

b∫
a

φ(ς)dςdu

≤ LfC(v, w)V φ(t) + λ1Lk1
C(v, w)V 2φ(t)

+λ2Lk2
C(v, w)V 2φ(t)

= C(v, w)φ(t)[LfV + λ1Lk1V
2 + λ2Lk2V

2]
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that is,
d(Γv,Γw) ≤ C(v, w)φ(t)[LfV + λ1Lk1

V 2 + λ2Lk2
V 2].

We conclude that

d(Γv,Γw) ≤ [LfV + λ1Lk1
V 2 + λ2Lk2

V 2]d(v, w),

for any v, w ∈ B. Since by assumption, we have

[LfV + λ1Lk1
V 2 + λ2Lk2

V 2] < 1,

then Γ is strictly contractive. Let w0 be an arbitrary element in B. Then there is a constant
C ∈ (0,∞) such that

|(Γw0)(t)− w0(t)| =

∣∣∣∣∣∣α+

t∫
a

f(ς, w0(ς))dς + λ1

t∫
a

u∫
a

k1(t, ς, w0(ς))dςdu

+λ2

t∫
a

b∫
a

k2(t, ς, w0v(ς))dςdu− w0(t)

∣∣∣∣∣∣
≤ Cφ(t), for all t ∈ I.

We observe that
d(Γw0, w0) <∞.

Then by Theorem 2.1, there is a continuous function x0 : I → R such that (Γnw0) con-
verges to x0 and Γx0 = x0, that is x0 is a solution to the equation (VFIDE). Because of
d is a metric x0 : I → R is the unique continuous function which is satisfies (3.6). By
assumption (4.11), for ∀t ∈ I , we get

−φ(t) ≤ x
′
(t)− f(t, x(t))− λ1

t∫
a

k1(t, s, x(s))ds− λ2

b∫
a

k2(t, s, x(s))ds ≤ φ(t),

If each term of the above inequality is integrated, then∣∣∣∣∣∣x(t)− α−
t∫

a

f(u, x(u))du− λ1

t∫
a

u∫
a

k1(u, s, x(s))dsdu

−λ2

t∫
a

b∫
a

k2(u, s, x(s))dsdu

∣∣∣∣∣∣
≤

t∫
a

φ(ς)dς.

From (4.10) and (4.12), for all t ∈ I , we have |x(t)− (Γx)(t)| ≤
t∫
a

φ(ς)dς ≤ V φ(t), which

implies that
d(x,Γx) ≤ V φ(t). (4.13)

By using Theorem 2.1 (c) and (4.13), we conclude that

d(x, x0) ≤ 1

1 − [LfV + λ1Lk1V
2 + λ2Lk2V

2]
d(x,Γx)

≤ V

1 − [LfV + λ1Lk1V
2 + λ2Lk2V

2]
φ(t) .

�
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