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Dynamic response of a pre-stressed bi-layered plate-strip
subjected to an arbitrary inclined time-harmonic force

AHMET DAŞDEMİR

ABSTRACT. Within the scope of the piecewise homogeneous body model with utilizing of the three dimen-
sional linearized theory of elastic waves in initially stressed bodies the dynamical stress field problem in a
bi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on
a rigid foundation is investigated. The concrete materials such as a pair of Aluminum and Steel are selected. It
is assumed that there exists a complete contact interaction between the layers. The mathematical modeling of
the problem under consideration is carved out, and the governing system of the partial differential equations
of motion is approximately solved by employing Finite Element Method. The numerical results related to the
influence of certain parameters on the dynamic response of the plate-strip are presented.

1. INTRODUCTION

Recently, multi-layered materials have considerably under dense study by a great num-
ber of researchers since they are extensively encountered in daily life. Especially, the in-
vestigations on the wave propagations in elastic bodies have been studied. For example,
the case such that propagation of shock waves in solids, dynamic stress concentrations,
and wave propagations in inhomogeneous and anisotropic materials is encouraged in
many problems. To investigate the corresponding problems, many systematic theories
have been developed due the fact that different situations require different approaches.

Note that the influence of the initial stresses cannot be investigated within the classi-
cal linear theory of elasticity due to the fact that the influence is non-linear. According
to the well-known mechanical consideration, when the amplitudes of the deformations
subjected to the pre-stressed body are significantly smaller than the magnitudes of the
initial deformations, the corresponding investigations can be made within the scope of
the three-dimensional linearized theory of elastic waves in initially stressed bodies (TL-
TEWISB). The mentioned theory has been developed within the scope of elastodynamics.
For more details, the monographs [6, 7] can be investigated. In addition, it is assumed
that the pre-stressed state (or initial stress-state) is exactly homogeneous and static in this
theory.

According to the fundamental principle of TLTEWISB and its other version, certain in-
teresting problems have been investigated. Emiroglu et. all develop an approach to inves-
tigating the Lamb problem for a half-space covered with a layer subject to a normal point
force changing harmonically with time [5]. Akbarov and Guler investigate the stress field
in a half-plane covered by the pre-stretched layer under the action of the inclined linearly
located time-harmonic forces [1]. Cilli and Ozturk present an analysis for the propaga-
tion of torsional waves in multilayered compound cylinders [3]. Kepceler investigates the
torsional wave propagation in the bi-material compounded cylinder with an imperfect
interface in the absence of initial stresses [9]. Zamanov and Agasiyev study the problem

Received: 30.09.2016. In revised form: 06.03.2017. Accepted: 13.03.2017
2010 Mathematics Subject Classification. 74A40, 74H45.
Key words and phrases. Plate-strip, initial stress, dimensionless frequency, forced vibration, time-harmonic force.

255



256 Ahmet Daşdemir

on the propagation of Lamb waves in a three-layer plate made from compressible ma-
terials with finite initial deformations [12]. Wen-tao et al. consider influence of identical
applied initial pressures on the radial surfaces of a hollow cylinder composed of materials
with first power hypo-elastic constitutive model [11]. Ipek investigates the influence of
the interface imperfect bonding on the flexural wave dispersion in the bi-layered hollow
circular cylinder [8]. In addition, the forced vibration of a pre-stressed bi-layered plate-
strip with finite length under a time-harmonic force is widely studied under the different
assumptions by employing the finite element method (FEM) in [2, 4].

It is evident from the numerical results presented in [4] that the influence of certain
problem parameter on the frequency response of a pre-stressed bi-layered plate-strip un-
der the action of an arbitrary inclined time-harmonic force resting on a rigid foundation
has not been investigated so far, and there is a lack of mathematical modeling to present
fundamental insights for characterizing frequency response of the bi-layered plate-strip
for the concrete materials. To address the issue, the mathematical modeling under consid-
eration is constituted within the scope of the piecewise homogeneous body model with
utilizing of TLTEWISB, and it is numerically solved by employing the FEM. Note that the
numerical investigations presented in this paper can be also considered as expansion of
that in [4].

2. STATEMENT OF PROBLEM

Consider a bi-layered plate-strip with length 2a and thickness h (= h1 + h2), where h1
(h2) denotes the thickness of the upper (lower) layer. For convenience, two homogeneous
transversely isotropic materials are selected. The Cartesian coordinates denoted by xi are
assumed to be associated with the initial state and in the natural state coincide with the
Lagrange coordinates.

The considered body is being under the influence of an arbitrary inclined (in being at
both the normal and tangential directions) time-harmonic lineal load applied to the free
surface as shown in Fig. 1 and resting on a rigid foundation. But, note that the length of
the plate in the direction of Ox3 axis is infinite, and it is assumed that the time-harmonic
force extends to infinity in this direction which is inclined to the x2 = 0 plane. According
to all the foregoing assumptions, the plane deformation state arises in the Ox1x2 plane.
Consequently, all the numerical investigations for the present case are presented in the
Ox1x2 plane. The corresponding quantities related to the upper and lower layers are
denoted by the superscripts “(1)” and “(2)” respectively, and the subscript “0” to the initial
state. According to Fig. 1, the considered plate-strip occupies the domain B = B1 ∪ B2,
where

B1 = {(x1, x2) : −a 6 x1 6 a, −h1 6 x2 6 0} ,
B2 = {(x1, x2) : −a 6 x1 6 a, −h 6 x2 6 −h1} .

(2.1)

Before compounding each layer with one another and with rigid foundation, each layer
is separately subjected to uniaxial uniformly distributed normal mechanical force. These
initial stresses are determined by utilizing the linear theory of elasticity as

σ11
0,(m) = q(m) and σij

0,(m) = 0 for all ij 6= 11, (2.2)

where m = 1, 2 and q(m) is the known constant for each layer.
According to the plane-strain state within the scope of TLTEWISB based on the piece-

wise homogeneous body model, the general forms of the governing field equations under
consideration are expressed as follows [6, 7]:

σij,j
(m) +

(
σkj

0,(m)ui,k
(m)
)
,j

= ρ(m)ü
(m)
i , (2.3)
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a b

FIGURE 1. a Geometry of problem. b Scheme of heights of layers.

where i, j, k = 1, 2, ρ(m) is the mass density of the mth layer, ui(m) are the mechanical dis-
placements of the plate in the direction of xi, and σij

(m) are the components of the stress
tensor. The dot over the quantities is time differentiation and the subscripts followed by
the comma indicate the space-coordinate differentiation. Here and below, the repeated
index in the subscript is summed with respect to that index.

The mechanical and geometrical relations under consideration can be written as

σ
(m)
ij = λ(m)ε

(m)
`` δij + 2µ(m)ε

(m)
ij , ε

(m)
ij =

1

2

(
u
(m)
i,j + u

(m)
j,i

)
, (2.4)

where λ(m) and µ(m) are the Lamé constants, δij is the Kronecker delta, and εij are the
components of the strain tensor.

Now the boundary-contact conditions for the present problem are investigated. For the
analysis presented here, the case where there exists complete contact interaction between
the layers is considered. Hence, the contact conditions

σ
(1)
i2

∣∣∣
x2=−h1

= σ
(2)
i2

∣∣∣
x2=−h1

and u
(1)
i

∣∣∣
x2=−h1

= u
(2)
i

∣∣∣
x2=−h1

(2.5)

are given.
At the same time, on the surfaces of the plate-strip, the boundary-contact conditions

σ
(1)
21

∣∣∣
x2=0

= −p0δ (x1) eiωt cosα, σ
(1)
22

∣∣∣
x2=0

= −p0δ (x1) eiωt sinα, (2.6)

(
σ
(m)
0 u

(m)
j,1 + σ

(m)
1j

)∣∣∣
x1=±a

= 0, (2.7)

are written.
In addition, since the considered body is resting on a rigid foundation, the contact

conditions
u
(2)
j

∣∣∣
x2=−h

= 0 (2.8)

can be given.
This completes presentation of the governing field equations and the corresponding

boundary-contact conditions for the plate-strip shown in Fig. 1.

3. SOLUTION PROCEDURE

An analytical solution of the problem cannot be obtained by the fact that the equations
of motion and boundary-contact conditions are quite complex. Hence, the solution to this
problem is obtained by employing the FEM.
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First of all, the external force applied to the plate-strip is assumed to be time-harmonic,
with frequency ω, as poδ (x1) eiωt. Thus, all the corresponding dependent variables can be
written in the form

{σij , ui, εij}(m)
(x1, x2, t) = {σ̄ij , ūi, ε̄ij}(m)

(x1, x2) eiωt, (3.9)

where the superposed bar represents the amplitude of the corresponding quantities. The
dimensionless coordinate system is also introduced as

x̂1 =
x1
h

and x̂2 =
x2
h
. (3.10)

Substituting the expression in (3.9) into the foregoing equations and conditions after
the coordinate transformation in (3.10), the same equations and boundary-contact condi-
tions are directly obtained for the amplitude of the sought values by replacing the terms
∂2uj

(m)/∂t2 and poδ (x1) eiωt with −ω2uj
(m) and poδ (x1), respectively.

To obtain FEM modeling of the last boundary-contact problem, the functional

J
(
u(m)

)
= 1

2

∫
B

[
Tij

(m)uj,i
(m) −

(
Ω(m)

)2 {(
u1

(m)
)2

+
(
u2

(m)
)2}]

dB

+
a/h∫

−a/h

poδ(x1)
µ(1) u2

(1)
∣∣∣
x2=0

dx1
(3.11)

is proposed, where

Tij
(m) = σij

(m) + η(m)uj,n, (3.12)

Ω(m) = ωh

√
ρ(m)

µ(m)
and η(m) =

q(m)

µ(m)
. (3.13)

In Eq. (3.13), Ω(m) denotes the dimensionless frequency of the plate-strip, and η(m) is the
initial stress parameter of the mth layer.

The validity of the functional presented in (3.11) can be shown as follows: Considering
the notations in (3.12), using the famous Gauss’s theorem and computing the statements
δJ
(
u(m)

)
= 0, which is the first variation of the functional in (3.11), the equations of

motion and the corresponding boundary-contact conditions under consideration can be
obtained. So, the desired proof is completed.

To do the FEM modeling of the considered problem, the virtual work principle and
the standard Rayleigh-Ritz method are considered [13]. According to the method, the
domain B is divided into a finite number of sub-domains whose structures are nine-node
smooth rectangular elements. The number of these finite elements is selected from the
requirements that the boundary conditions must be satisfied with very high accuracy and
numerical results obtained must converge. After certain mathematical arrangements, a
system of algebraic equations (

K - ω2M
)
x̃ = F (3.14)

is attained, where, K is the stiffness matrix, M is the mass matrix, x̃ is the column vector
of un-known nodal displacements, and F is the force vector. To reduce the size of the
present paper the explicit forms of the above-stated matrices and vectors are not given
here. Note that their explicit forms are directly derived from Eq. (3.11) by using the
considered procedure. So, with the above-stated the FEM modeling of the problem being
considered is exhausted.
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4. NUMERICAL RESULTS

Introduce the notation e = E(1)/E(2), where E(m) is the Young modulus of mth layer.
In this study, certain concrete materials are selected, and their mechanical properties are
given in Table 1. All the numerical results are presented under the case where h/2a = 0.2,
h1 = h2, Ω = Ω(1) = Ω(2) = 0 and η = η(1) = η(2) = 0 unless otherwise.The investigated
figures are presented at the interface plane between the layers and on the bottom surface
between the plate-strip and rigid foundation, and the letters a and b in figures show the
graphs plotted at the points (−h1/h, 0) and (−1, 0), respectively.

TABLE 1. Mechanical constants of selected materials

Abbreviation E × (GPa) ν ρ× (kgm−3)
Aluminum Al 70 0.35 2712

Steel St 205 0.29 7860
Nickel Ni 210 0.31 8890

Titanium Ti 110 0.33 4540

In order to prove the validity of the used programs, the case where e = 1, ν(1) = ν(2) =
0.33 and α = π/2 is considered. The problem which for the plate with infinite length was
considered by Uflyand [10], and note that the mentioned problem was solved by employ-
ing Fourier integral transformation method. It should be noted that, as h/2a → 0, the
geometry of the considered plate-strip begins to resemble that in [10]. In this case, the nu-
merical results given by the present FEM algorithm must converge to the corresponding
ones given in [10]. Fig. 2 prove this prediction. Consequently, the validity and trustiness
of the algorithm and programs has been shown.

The one of the main goals of the paper is to present the consideration of the frequency
response of the bi-layered plate-strip, especially the influence of the initial stress param-
eter η on this response. The each graph in Fig. 3 displays the dependence between the
stress σ22h/p0 and Ω for various values of η in the case where α = π/2. The used mate-
rials are selected as a pair of Al+St. The numerical results indicate that there exist certain
locations where the parametric resonance of σ22h/p0 occurs for certain values of the initial
stress parameter η. It follows from the investigations of the graphs that there exist loca-
tions where σ22h/p0 reach the extrema for the certain values of Ω. As known, these values
are called as the “resonance” values and denoted by Ω∗. An increase in the values of the
parameter η causes to decrease the values of these parametric resonance. It is concluded
that the influence of the initial stress parameter η on the frequency response of the stress
σ22h/p0 is considerable not only in the quantitative sense, but also in the qualitative sense.

Now, the influence of the initial stress parameter η on the dependence between σ22h/p0
and the angle α is now considered for a pair of Ti+Ni or Ni+Ti at the points (0,−1/2) and
(0,−1). Note that the case where the plate-strip is subjected to only initial stretching was
investigated in [4]. The comparison of the influence of the initial stretching and compress-
ing on the dynamic behavior of the plate-strip is presented here. The comparison of the
numerical results in Figs. 4 and 5 and those given in [4] indicates that the influence of
the initial stretching parameter on the dynamic response of the stress σ22h/p0 exhibits a
behavior unlike that for the initial compressing parameter. The absolute values of the
stress σ22h/p0 decrease with the initial compressing parameter η. The stress σ22h/p0 de-
pend linearly on the initial stress (stretching or compressing) parameter. It can be shown
that the influence of the choice of materials of plates and the values of σ22h/p0 increase
with the angle α. It follows from the graphs in Figs. 4 and 5 that the absolute values of
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the normal stress σ22h/p0 decreases with the selection of the materials. It means that the
influence of the initial compressing parameter on dynamic behavior of the stress σ22h/p0
decreases with the selection of a pair of Ti+Ni instead of a pair of Ni+Ti. Consequently,
the mentioned influence damps with increasing the ratio of e.

FIGURE 2. The variation of σ22h/p0 versus the line x1/h for various thick-
ness ratios under the same assumption in [10]

5. CONCLUSIONS

In the present paper, the forced vibration of the pre-stressed bi-layered plate-strip sub-
jected to the action of the arbitrary inclined time-harmonic force resting on rigid founda-
tion has been investigated within the scope of the piecewise homogeneous body model
with utilizing of the three dimensional linearized theory of elastic waves in initially stressed
bodies (TLTEWISB). The mathematical modeling of the considered problem is carved out
and is numerically solved by employing Finite Element Method (FEM). The numerical
results illustrating the influence of certain parameter on the dynamic behavior of the con-
sidered plate-strip are presented and discussed.

a b
Figure 3. The influence of the angle α on the dependence between σ22h/p0 and η for a

pair of Ni+Ti; a at the interface, b on the bottom surface
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a b

Figure 4. The influence of the angle α on the dependence between σ22h/p0 and η for a
pair of Ni+Ti; a at the interface, b on the bottom surface

a b

Figure 5. The influence of the angle α on the dependence between σ22h/p0 and η for a
pair of Ti+Ni; a at the interface, b on the bottom surface

According to all the numerical investigations, certain inferences of the important re-
sults can be drawn as follows:

i An increase in the values of the initial stress parameter η causes to vanish the reso-
nance mode of the normal stress σ22h/p0;

ii the initial stretching parameter prevents the resonance of σ22h/p0, but the compress-
ing parameter exceed the this resonance mode;

iii the influence of the initial compressing parameter on dynamic behavior of the normal
stress σ22h/p0 decreases with the selection of the plates,

iv there exist certain locations where the parametric resonance of σ22h/p0 occurs for cer-
tain values of the initial stress parameter η.

The numerical results listed above have been presented for under two different cases
(for example a pair of Al+St), but note that they also have a general validity in a qualitative
sense. Moreover, these numerical results are encountered daily in the engineering practice
under an impact treatment of metals which lie on the others.
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[4] Daşdemir, A. and Eroz, M., Mathematical Modeling of Dynamical Stress Field Problem for a Pre-stressed Bi-layered
Plate-Strip, Bull. Malays. Math. Sci. Soc., 38 (2015), 733–760

[5] Emiroglu, I., Tasci F. and Akbarov, S. D., Lamb’s Problem for a half-space covered with a two axially prestretched
layer, Mech. Compos. Mater., 40 (2004), No. 3, 227–236

[6] Guz, A. N., Elastic Waves in a Body Initial Stresses, I. General Theory, Naukova Dumka, Kiev, 1986 (in Russian)
[7] Guz, A. N., Elastic Waves in a Body Initial Stresses, II. Propagation Laws, Naukova Dumka, Kiev, 1986 (in

Russian)
[8] Ipek, C., The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers,

Struct. Eng. Mech., 55 2015, No. 2, 335–348
[9] Kepceler, T., Torsional wave dispersion relations in a pre-stressed bi-material compounded cylinder with an imperfect

interface, Appl. Math. Model., 34 (2010), 4058–4073
[10] Uflyand, Y. S., Integral Transformations in the Theory of Elasticity, Nauka, Moscow-Leningrad, 1963
[11] Wen-tao, H., Tang-dai, X. and Wei-yun, C., Influence of lateral initial pressure on axisymmetric wave propagation

in hollow cylinder based on first power hypo-elastic model, J. Cent. South Univ., 21 (2014), 753–760
[12] Zamanov A. D., and Agasiyev, E. R., Dispersion of Lamb waves in a three-layer plate made from compressible with

finite deformations, Mech. Compos. Mater, 46 (2011), No. 6, 583–592
[13] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, Basic Formulation and Linear Problems,

McGraw-Hill, London, 1989

DEPARTMENT OF MATHEMATICS

KASTAMONU UNIVERSITY

KUZEYKENT CAMPUS, 37100, KASTAMONU, TURKEY

Email address: ahmetdasdemir37@gmail.com


