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Approximation of fixed point of accretive operators based
on a Halpern-Type iterative method

KADRI DOGAN and VATAN KARAKAYA

ABSTRACT. In this study, we introduce a new iterative processes to approximate common fixed points of
an infinite family of quasi-nonexpansive mappings and obtain a strongly convergent iterative sequence to the
common fixed points of these mappings in a uniformly convex Banach space. Also we prove that this process
to approximate zeros of an infinite family of accretive operators and we obtain a strong convergence result for
these operators. Our results improve and generalize many known results in the current literature.

1. INTRODUCTION AND PRELIMINARIES

Throughout this study, the set of all non-negative integers and the set of reel numbers
will be denote by N and R, respectively.

A quick look into the vast literature of fixed point theory reveals that geometric prop-
erties of Banach spaces play a crucial role in the study of iterative approximations of fixed
points. Our exposition begins by recalling some geometric properties of a Banach space.

In 1936, Clarkson [6] achieved a remarkable study on uniform convexity. It signalled
the beginning of extensive research efforts on the geometry of Banach spaces and its ap-
plications. Most of the results indicated in this work were developed in 1991 or later.

Let C be a nonempty, closed and convex subset of a Banach space B , and B* be the
dual space of B.

The convexity modulus of B is defined as follows:

op(e) = inf{l - HGQﬂ ca,b € B(0,1),]la—0b| > e}.

The modulus of convexity is a real valued function defined from [0, 2] to [0, 1] which is
continuous on [0,2). A Banach space B is uniformly convex if and only if ég(e) > 0 for
all € > 0.Let B be a normed space and Sg = {a € B : ||a|]| = 1} the unit sphere of B. Then
the norm of B is Gateaux differentiable at a point a € S if for a € Sp, the limit

o ot b)) = Jal
t—0 t

exists. The norm of B is said to be Gateaux differentiable if it is GAteaux differentiable at
each point of Sp. In this case, B is called smooth. The norm of B is said to be uniformly
Gateaux differentiable if for each b € Sp, the limit is approached uniformly for a € Sp.
Similarly, if the norm of B is uniformly Gateaux differentiable, then B is called uniformly
smooth. A normed space B is called stricly convex if forall a,b € B, a # b, ||a|]| = ||b]| = 1,
we have

d
P (Ila +toll) [t=0

ha+(1-=X)0b|]| <1, forall A € (0,1).
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Theorem 1.1. [3] Let B be a Banach space.
1) B is uniformly convex if and only if B* is uniformly smooth.
2) B is uniformly smooth if and only if B* is uniformly smooth.

Theorem 1.2. [3] Every uniformly smooth space is reflexive.

A self mapping ¢ on [0, c0) is said to be a gauge map if it is countinuos and strictly
increasing such that ¢ (0) = 0. Let ¢ be a gauge function, and let B be any normed space.
A mapping J, : B — 28" defined by

Joa={f € B":(a, f) = lall [ ]l/] = ¢ (lal)}

for all ¢ € B, is called the dulaity map with gauge function ¢.If ¢ (¢) = ¢, then Jy = J
duality mapping is called the normalized duality map.
Let

¢
vi)= [ o@ds 10,
0
then ¢ (6t) < d¢ (t) and for each § € (0,1). A mapping p : [0, 00) — [0, 00) defined by

b —b
,o(t):sup{”ChL ”;”a ” —1:a,be B,|a| =1and |b||=t}
is called the modulus of smoothness of B. Also, lim;_,q @ = 0 if and only if B is uni-

formly smooth.
Let ¢ € (1,2] be a real number. If a Banach space B is g—uniformly smooth, then the
following conditions hold:

(i) there exists a fix ¢ > 0;  (it)p (t) < ct?.

For ¢ > 2 there is no g-uniformly smooth Banach space. In [5], this assertion was showed
by Cioranescu. We say that the mapping J is single-valued and also smooth if the Ba-
nach space B having a sequentially continuous duality mapping J from weak topology
to weak™ topology. The space B is said to have weakly sequentially continuous duality
map if duality mapping J is continuous and single-valued, see [5, 19].

Let C be a nonempty subset of Banach space B and 7' : C' — B be a nonself mapping.
Also, let F (T) = {a € C : Ta = a} denote the set of fixed point of . Themap T : C — B
is said to be:

1) Nonexpansive if | Ta — Tb|| < ||a — b|| for all a,b € C;

2) Quasi-nonexpansive if || T'a — p|| < ||a — p|| foralla € C and p € F (T).

In 1967, Halpern [9] was the first who introduced the following iteration process under
the nonexpansive mapping 7. For any initial value ap € C and any fix u € C, ¢,, € [0,1]

such that ¢, = n~?,

apt1=ppu+ (1 —p,)Ta, VYneN, (1.1)
where b € (0,1). In 1977, Lions [11] showed that the iteration parocess (1.1) converges
strongly to a fixed point of T', where {¢, },, .\ satisfies the following first three conditions:

(C1) limy, 00 o = 0;  (C2) Z:;ozl Pn = OO;
(C3) limysoe 22522 = 0; (C4) 2024 |ns1 — ol < 00

+1
(Cs) limp o0 % =0;  (C6) lpn+1 — @nl < 0(nt1) +0n, 22021 0n < 0.
Afterwards, several authors obtained various results by imposing different conditions
on the sequence {¢, }, .y as well as ambient.
(1) In [28], Wittmann showed that the sequence {a,, }, .y converges strongly to a fixed
point of T' by the conditions C, C; and Cj.
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(2) In [17, 18], Reich showed that the sequence {ay}, .y converges strongly to a fixed
point of T in the uniformly smooth Banach spaces by the conditions C, Cs and Cs.

(3) In [22], Shioji and Takahashi showed that the sequence {a,, }, .y converges strongly
to a fixed point of T in the Banach spaces with uniformly Gateaux differentiable norms
by the conditions C, C and Cj.

(4) In [29], Xu showed that the sequence {a,, }, . converges strongly to a fixed point of
T by the conditions C, C and Cs.

Open question: Are the conditions C;and C5 enough to guarantee the strong conver-
gence of the iteration process (1.1) for the quasi-nonexpansive mappings, (see [9])?

This question was answered positively in [13 — 21]. But, in [25], it was shown that the
answer to open question is not positive for nonexpansive mappings in Hilbert spaces.

The effective domain and range of an operator A : B — 25 will be denoted by dom (A) =
{a € B: Aa # @} and R (A), respectively. Let J : B — 2B be a duality mapping. The
operator A is said to be accretive if there exists j € J (a — b) such that (¢ — b, j) > 0 for all
a,b € B.An accretive operator A is called m-accretive operator if R (I +rA) = B, for each
7 > 0. For the rest of this manuscript, the operator A : B — 2P will be considered as an ac-
cretive operator having a zero. A single-valued mapping J, = (I +rA)~' : B — dom (A)
for all r > 0 is called resolvent operator of A. It is well known that A=! = F (J,.) for all
r >0, where A~! = {a € B : 0 € Aa}, (see,[31,27]).

Let B be a reflexive, smooth and strictly convex Banach space and C be a nonempty,
closed and convex subset (ccs) of B. Under these conditions, for any a € B, there exists a
unique point z € C such that

|z — a| < min |t —a; see [27].
teC

Definition 1.1. [27] If Pca = z, then the map Pc : B — C'is called the metric projection.

Assume thata € Band z € C, then z = Poaiff (z —t,J(a— z)) > 0,forallt € C.Ina
real Hilbert space H, there is a P : H — C projection mapping, which is nonexpansive,
but, such a P : B — C projection mapping does not provide the nonexpansive property
in a Banach space B, where C is a nonempty, closed and convex subset of them; see [7].

Definition 1.2. [20] Let C C D, and C and D be subsets of Banach space B. A mapping
Q : C — Dis said to be sunny if Q (éz + (1 — §) Qz) = Qz, foreachz € Band § € [0,1).

A mapping @ is said to be a retraction if and only if Q* = Q. A mapping Q is a
sunny nonexpansive retraction if and only if it is sunny, nonexpansive and retraction; a
nonexpansive retract of C' if and only if there exists a nonexpansive retraction.

In the sequel, we shall need the following results.

Lemma 1.1. [29] Let B be a Banach space with weakly sequentially continuous duality mapping
J¢. Then

¥ (lla+0ll) <4 (llall) +2 (b, jo (a + b))
for a,b € B. Ifwe get J instead of J, we have
la+l1” < llall” + 2 (b, jg (a + b))
fora,b e B.

Lemma 1.2. [8] Let B be a Banach space with weakly sequentially continuous duality mapping
Jy and C be a ccs of B. Let T : C' — C' be a nonexpansive operator having F (T') # @. Then, for
each u € C, there exists a € F (T') such that

(u—a,J(b—a)) <0
forallb € F(T).
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Lemma 1.3. [30] Let B be a reflexive Banach space with weakly sequentially continuous duality
mapping Jy and C be a ccs of B. Assume that T : C — C' is a nonexpansive operator. Let z, € C
be the unique solution in C' to the equation z, = tu + (1 — t) Tz, such that v € C and t € (0,1).
Then T has a fixed point if and only if {zi},¢ 1) remains bounded as t — 0", and in this case,
{zt}ie(0,1) converges as t — 0% strongly to a fixed point of T If we get the sunny nonexpansive
retraction defined by Q) : C — F (T) such that

Q (U) = lim 2ty
t—0
then Q (u) solves the variational inequality
(u—Q(u),Jy(b—Q(u) <0,ucCandbe F(T).

One of the useful and remarkable results in the theory of nonexpansive mappings is
demiclosedness principle. It is defined as follows.

Definition 1.3. [15] Let B be a Banach space, C'a nonempty subsetof B,and 7' : C' — B a
mapping. Then the mapping T is said to be demiclosed at origin, that is, for any sequence
{an}nen in C which a,, = p and || Ta,, — a,|| — 0 imply that T'p = p.

Lemma 1.4. [1] Let B be a reflexive Banach space having weakly sequentially continuous duality
mapping Jg with a gauge function ¢, C bea ccs of Band T : C — B be a nonexpansive mapping.
Then I — T is demiclosed at each p € B, i.e., for any sequence {an }nen in C which converges
weakly to a, and (I — T)a,, — p converges strongly imply that (I — T)a = p. (Here I is the
identity operator of B into itself.) In paticular, assuming p = 0, it is obtained a € F (T).

Lemma 1.5. [16] Let {p,}
following inequality

nen be a nonnegative real sequence and suppose {p,,} satisfies the
Hn+41 S (1 - (pn) Hn + Pn€ns

assume that {on},, cn and {en},, o satisfy the following conditions:

(1) {entnen C 10,1 and 37 0, = 00;  (2) limsup,, , €, < 0,07 (3) 3 wnen < 00,

n=1 n=1

then lim,, o0 b, = O.
Lemma 1.6. [27] Let B be a real Banach space, and let A be an m—accretive operator on B. For
t > 0, let J; be a resolvent operator related to A and t. Then
|k

-1
’ | la — Jgall, forall k,l > 0 and a € B.

Lemma 1.7. [13] Let {in },,cy be a sequence of real numbers such that there exists a subsequence
{tn, Yien Of {ktn },cn Which satisfies pin, < fin,,, for alli > 0. Also, we consider a subsequence

{n(n)}@no C N defined by

[Jka — Jia| <

Neny = max {k <n:pp < ppyr}.
Then {n(n)}n>n0 is a nondecreasing sequence providing lim,, o ¢,y = 00, for all n > ny.
Hence, it holds that pu, ., < p., ., and we obtain ji, < iy, ...

Lemma 1.8. [2] Let B be a uniformly convex Banach space and t > 0 be a constant. Then there
exists a continuous, strictly increasing and convex function g : [0, 2t) — [0, c0) such that

o0
E PiQ;
i=1

Vk,0>0,a; € Bi={z€ B:|z|| <t}, p;€(0,1)and k > 0with ) p; = 1.
i=0

2 o0
2
< Zpi laill”™ = prprg (llax — ail])
=1
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2. MAIN RESULTS

Theorem 2.3. Let B be a real uniformly convex Banach space having the normalized duality
mapping J and C be a ccs of B. Assume that {T;}, oy 1s a infinite family of quasi nonexpansive

mappings given in the form T, : C' — C such that F = (| F (T;) # @, and foreachi > 0, T; — I
i=0

is demiclosed at zero. Let {v,, },, . be a sequence generated by

vy, u € C arbitrarily chosen,
Un41 = gnu + (1 - Cn) Tovn, + (Cn - gn) Towy,

- (2.2)
Wy, = Pn,00n + > PniTive, n >0,
i=1
where{Cn}pens 160 ey and {Son,i}neN.ieNu{o} are sequences in [0, 1] satisfying the following
control conditions: - -
(1) limy, o0 &y = 0; (2) > & = o0 (3) Yno+ D ni=1foralln e N;
=1 i=1

(2

(4) Hminf,, o0 Con.o@ni > 0, forallm € N,
Then {vy, },, cn converges strongly to Pru, where the map P : B — F is the metric projection.

Proof. The proof consists of three parts.

Step 1. We prove that {v,},, e, {wn},en and {Tivn}, e jenu oy are bounded. Firstly,
we show that {v,},.y is bounded. Let p € F be fixed. By Lemma 1.8, we have the
following inequality
2

ProVn + > @niTivn — p
i=1

2
lwn, — plI” =

o0
2 2
< oo llon = pI> + D ni ITivn — plI* = @n.0@n.ig (lvn — Tivnl|)
=1

< enollvn =17+ @ni lvn — oI = @no@n.ig (lon — Tivnl))
i=1
= on = pl* = en.00n.ig ([vn = Tivall) < [lon = plI* (2.3)
which implies that
[vnt1 = pll = l€nu + (1 — Ga) Tovn + (G — &) Town — p|
< &nllu —pll + (1= Go) 1Tovn = pll + (Gn = &n) | Town — p
<& llu=pl+ 1 =G)llon =l + (G = &) wn —p
<&nllu—pl+ (1 =& llon —pl < max{flu—pl, [lvn —pll}.
If we continue the way of induction, we have
[ont1 = pll = max{[u —pl|, [lvs —pll },Vn €N.

Hence, we conclude that ||v, 41 — pl| isbounded and this implies that {v;, },, .\ is bounded.
Furthermore, it is easily show that {T;v,},, ey jenugo; and {wn},, o are bounded.
Step 2. We show that for any n € N,

[ Z||2 < (1 =&n) llvn — ZH2 + 265 (u — 2, J (Vg1 — 2)) - (2.4)
By (2.3), we have

2 2
lwn = 2|I" = [lon = 21" = ¢n,00n,ig ([on — Tivnl|) (2.5)
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which gives
onss = 21 = llgnu+ (1= Gu) Tovn + (G — &) Town — |
< & flu— 2l + (1= Ga) [ Tovn — 21> + (Gu — &) [ Town — 21
< Eullu—2I” + (1= G lon — I 26)
+ (6o = ) [0 = 21 = Pno#nig (lon = Tronl)]

= tullu = 241~ &) on = 212~ G opn 9 (lon = Trvnl)+nmotni (lew = Tronl).
Assume that K; = sup{‘”u — 2| = lvn = 21| + €nn0@n.ig (v — Evn”)}
By (2.6), we get that
Copno9mig ([on — Tovall) < on — 20> = onss — 21 + €aKo. 27)
By Lemma 1.1 and (2.3), we have
[ont1 = 2] = lnt + (1 = Ga) Tovn + (Gn — &n) Town — 2|
= (1€ (u = 2) + (1 = Ga) (Tova — 2) + (Gn — &) (Town, — 2)|*
< (1 = Ga) (Tova = 2) + (Go = &) (Town — 2)1*
+2(6n (u—2), T (Uns1 = 2)) £ (1= Ga) 1 Tovn — 21 + (Gn = &) | Town — 2|
+2 (6 (= 2), T (g1 = 2)) < (1= Ga) on = 2] + (Go = &) lwn — 2|
+26 (1= 2,7 (Vp1 = 2)) < (1= Ga) llon = 201" + (G = &n) [lvn — 2|

+26n (u = 2,J (Un41 — 2)) = (1 = &) [Jon — Z||2 + 260 (u—2,J (Un+1 — 2)) -
Step 3. We show that v,, — z as n — oo. To this end, we will examine two cases.
Case 1. Suppose that there exists ng € N such that {||v,, — z|/},,5,,, is nonincreasing.
Assume furthermore that the sequence {|[|v,, — 2|/}, oy is convergent. Thus, it is clear that
lvn — 2||* = |[vng1 — z||* = 0 as n — oo. In view of condition (4) and (2.7), we have

lim g (||vn, — Tivn||) = 0 and hence lim ||v, — Tyv,| =0,
n—oo n—oo

from the properties of g. Also, we can construct the sequences (w,, — vy,) and (vp4+1 — wy)
as follows:

Wn—Unp = @n,O’Un"'Z ‘pn,iTivn_vn = Z (pn,iTi'Un_vn and Un4+1—Wn = fnu+(1 - Cn) TO”n"‘(Cn - gn) Tt
=1 i=1

(2.8)
[vnt1 —wnll = (& (u—Town) + G (Tovn — Town) + (Tove — wy)||
< Gnllu = Townll + o [[Tovn — Townll + | Tovn — wnll < & llu = Townl| + G [[on — wn|
These imply that
nh_}rrgo |vnt1 —wn|| =0 and nh—>H;o lwn — vy || = 0. (2.10)

By (2.10), we obtain
vnt1 = vnll < lwn — v || + [[vns1 — wal]

which further yield
ILm lvnt1 — vn]l = 0. (2.11)
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Previously, we have shown that the sequence {v, }, .\ is bounded. Therefore, there exists
a subsequence {v,,, }j en Of {vn},, oy such that v, 41 — [ forall j € N. By principle of demi-

closedness at zero, we conclude that [ € F. Considering the above facts and Definition
(1.1), we obtain

limsup (u — 2,J (p41,2)) = lim (u—2zJ (vy,41 —2))
n— o0 J—0
(u—2z,J(I—2)) (2.12)
= (u— Ppu,J (I — Ppu))
< 0.

By Lemma (1.5), we have the desired result.
Case 2. Let {n;},\ be subsequence of {n}, . such that

|vn, = 2|| < ||vn,+1 — 2||, forall j € N.

Then, in view of Lemma (1.7), there exists a nondecreasing sequence {my},.y C N, and
hence

Iz = V| < 2 = vl and 12 = ogl] < |12 = vyl VE € .

If we rewrite the equation (2.7) for this lemma, we have

2 2
kasomkyogomkyig (vak - ﬂvmk H) < ”'Umk - Z” - ”Ukarl - Z” + gkal
< & K1, Wk EN.

By (1) and (2), we obtain
lim ¢ (||vm, — Tivm,||) = 0 which implies lim |[v,,, — T;0m, || = 0.
k—o0 k—o0

Therefore, using the same argument as in Case 1, we have

limsup (u — z, J (Vyn,,, 2)) = lim sup <u —z,J <vv,mk+1,z>> <0.

n— oo n—oo

Using (2.4), we get

2 2
||Umk+1 =27 <(1- gmk) vak —z|I" + 28my (u — Z?‘](U"’Lk"t‘l —2)).

Previously, we have shown that the inequality ||v,,, — 2| < ||vm,+1 — 2|, we obtain

A

2 2
vak —z|I" - ||U77lk+1 —z|I" + 28m, (u— 2z, J(Umk-H —2))

2
Emy vak —z|| >
< 2, (u—2z,J (Umyg1 — 2)) .

Hence, we get
lim ||vg,, — 2| = 0. (2.13)
k—o0

considering the expressions (2.12) and (2.13), we obtain

lim ||vp,,+1 — 2| =0.
k—o0

Finaly, we get |lvp, — z|| < |[um,+1 — 2|, Yk € N. It follows that v,,,, — 2z as k — oco. Then
we have v, — zasn — oco. O

Theorem 2.4. Let B be a real uniformly convex Banach space having the weakly sequentially

continuous duality mapping J, and C be a ccs of B such that D(A;) C C C (| R(I +r4;) for
r>0
each i € N. Assume that {A;},cn oy is an infinite family of accretive operators satisfying the
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range condition, and r,, > 0 and r > 0 be such that lim,_,cr,, = 7. Let Jff = (I +r,A;) " be

the resolvent of A. Let {vn}, o be a sequence generated by

vi, u € C arbitrarily chosen,
Un+1 = Enu + (1 - Cn) Jéovn + (Cn - ﬁn) Jé?“’n (214)

e}

A
W = Pn,0Vn + Y. Pnidiivn, 120,
=1

1=

where{Cu}peny 160 nen 414 {ni},en ienu{o} 4re sequences in [0, 1] satisfing the following
control conditions:

2) i:: £, = o;

(3) Yno+ >, pni=1forallneN;
=1
(4) liminf,, o0 G, 09n,: > 0, foralln € N.
IfQz : B — Z is the sunny nonexpansive retraction such that Z = (| A; ' (0) # @, then

=1

{Un},en converges strongly to Q zu.

Proof. The proof consists of three parts.

We note that Z is closed and convex. Set z = Q zu.

Step 1. We prove that {v,},,cn, {wn },en and {Jéiv"}neN,iENU{O}
we show that {v,},.y is bounded. Let p € Z be fixed. By Lemma 1.8, we have the
following inequality

are bounded. Firstly,

2

00
Pn,0Un + Z (Pnzjélvn —Pp
i=1

2
[[wn = pll

0

< $n,0 ||Un _p”2 + Z Pn.i H‘];-iivn _pH2 — ¥n,0¥n,i9 (an - J::;UnH)
’Ljol

< nollon —pI? + > nillve = plI* = no@n.ig (|Jon — Jitivn]))
i=1

= Jon = pI* = noenig (Jon = JZival])

< Al — 2l (2.15)

which implies that

||vn+1 - p” = ||§nu + (1 - Cn) J::OUn + (Cn - fn) Jé,,o'wn *pH

En llu —pll + (1= Go) |20 — p| + (Gn = &) ||Ji20wn —p|
Enllu—pll + (1 =) llon = pll + (Gn — &) [[wn —pll

nllu —pll + (1 = &) [[vn — Dl

max {|u —pl|, [[v. —p[| }

IA AN A

If we continue the way of induction, we have
[vn+1 — pll = max {|ju —p||, v —p| },Vn € N.

Hence, we conclude that ||v, 1 — pl| is bounded and this implies that {v,, }, . is bounded.

Futhermore, it is easily show that {J v, } . (0 and {wy },,cy are bounded.
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Step 2. We show that for any n € N,
|vng1 — Z||2 < (1 =&)||vn — ZH2 + 26, (u — 2, Jy (Vny1 — 2)). (2.16)
By (2.15), we have
[wn = 2I* = llvn = 21* = on0@n.ig (Jon — JAvn])) (2.17)

which gives

an+1 _2”2 = “Enu"’_(l_Cn) J;?Lovn'i‘(Cn _gn) J;iown _ZH2
< Gullu— 22+ (1= Go) [T 200 — 2||” + (G — &) || T own — 2|
< Gullu—z)*+ (1= Ga) o — 2l (2.18)

(G = &) [lon = 21 = o ig (lon — TAwa])]

En llu—2[* + (1= &) [Jon — 2|
_Cnson,OSDn,ig (an - J;ilvnH) + gncpn,o‘pn,ig (an - J:}:vnH) .

Assume that Ky = sup{‘”u —z|> = ||lon — z||2‘ + &€nPn.0Pn.id (an - J,’.‘};vnH) }
By (2.18), we get that

Cn‘pn,O(pn,ig (an - J:};'UnH) < ||Un - ZH2 - ||Un+1 - 2”2 + &£ Ko, (219)
By Lemma 1.1 and (2.15), we have
€0t + (1= o) T + (G — E0) Tiow, — 2|
lén (= 2) + (1= o) (Fi220n = 2) + (o — &) (Jown — )|

o1 — 2|

< =) (Fn = 2) 4+ (G = &) (Frwn = 2)II
+2 (& (u—2), g (Vg1 — 2))

< =G [T = 2"+ G = &) 17w ==
+2 (&, (u—2), g (Vg1 — 2))

< (=) lon = 21° + (G — &) lwn — 2|7
+2&, (u— 2, g (Uny1 — 2))

< (=G llon = 21 + (Gn = &) llon — 211°

+2&, (u — 2z, Jp (V41 — 2))
= (1=&) llva — 217 + 26 (u = 2, Jp (vn11 — 2)) -
Step 3. We show that v,, — z as n — oo. For this , we will examine two cases.
Case 1. Suppose that there exists nyg € N such that {||v, — z|/},,>,,, is nonincreasing.
Furthermore, the sequence {|v,, — z||}, <y is convergent. Thus, it is clear that ||v, — 2|)? -
[vns1 — 2z]|> = 0 as n — oo. In view of condition (4) and (2.19), we have

Jim g (o = J7tvall) = Oand hence lim_|lv. — J7iv]| = 0,

from the properties of g. Also, we can construct the sequences (w,, — vy,) and (v, 41 — wy,),
as follows:

o0

o0
Wy, — Un = Pn,0Un + Z (pn,it]qéfvn — Up = Z Pn,i (J;iivn - Un) . (2.20)

i=1 i=1
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and
Ung1 — Wn = &u + (1= Go) J0v, + (G — &) Jow, —w,
ol fn<uwn>+<1o»(ngmwn)H
lvns1 —wn|| = H + (6 — &) (J;-iown _ wn)
< Gnllu—wal +(1-G) HJéoUn - wn“
+ (Cn = &) || T owy, — wa| - (2.21)
These imply that
lim ||vp41 —wy| =0 and lim |jw, —v, || =0. (2.22)
n—o00 n—00

By (2.22), we obtain
vnt1 = vnll < lwn — v || + [[vng1 — wal]

which gives
li_)m lvnt1 —vn]| = 0. (2.23)

By Lemma 1.6 and (2.20), we have

lon = 7 n |

IN

lon = T2 onll + (17500 = 7w

IN

fon = Tcwnl] + 22 = 7|

which gives
lim ||vn — Jf‘ivnH =0, forall i € N.

n—oo
Previously, we have shown that the sequence {v,}, .y is bounded. Therefore, there
exists a subsequence {v,,, }jeN of {vy},,cy such that v, 11 — 1 € F (Jv,) forall j € N.
This, together with Lemma 1.1 implies that
limsup (1 — 2, Jy (011, 2)) =

n—oo
= Jlggo (u—2,Jg (Un;41 — 2)) = (u—2z,J4 (I — 2)) 0. (2.24)
By Lemma (1.5), we obtain the desired result.
Case 2. Let {n;},_\ be subsequence of {n}, .\ such that

|lvn, — 2|| < ||vn,+1 — 2|, forall j € N.

Then, in view of Lemma (1.7), there exists a nondecreasing sequence {ms}, .y C N, and
hence

12 = vmill < |2 = oyl and [z = o]l <[z = v, VR €N

If we rewrite the equation (2.7) for this Lemma, we have

2 2
ka‘)ommo()pmk,ig (vak - Jélvmku) < vak - z” - ||Um1c+1 - Z” + §7mcK2
< & Ko, VE e N
By (1) and (2), we obtain

im g (||vm, — 2 vm,||) =0, which gives lim ||vy,, — J/ v, || = 0.
k—o00 " k—o0 "
Therefore, using the same argument as Case 1, we have
limsup (v — 2, Jg (U, , 2)) = limsup <u —z,Jy (UUMk_H, z)> <0.

n—oo n—oo
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Using (2.16), we get

2
||/Umk+1 _ZH (1 _gmk) Humk Z” +2€mk <U_Z7J¢ (vkarl _Z)>
Previously, we have shown that the inequality ||vy,, — 2| < ||vm,+1 — 2||, we obtain

2 2 2
gmk vak - Z” < vak - Z” - ”U’mk-i-l - ZH + 2§mk <u - % ‘]¢ (U’mk-‘rl - Z)>
< 2§mk <u - % J¢ (Umk+1 - Z)> .

Hence, we get

lim ||vy,, — 2| = 0. (2.25)
k— o0
By (2.24) and (2.25), we obtain
lim ||V, +1 — 2|| = 0.
k— o0

Finaly, we get |lvy — 2| < ||[vme+1 — 2|, Yk € N. It follows that v,,,, — 2z as k — oco. Then
we have v, — zasn — oco. O

Theorem 2.5. Let B be a real uniformly convex Banach space having a Gdteaux differentiable
norm. and C be a ccs of B such that D(A;) C C C () R(I +rA;) foreach i € N. Assume that
r>0

{Ai}tienuqoy is an infinite family of accretive operators satisfying the range condition, and ry, > 0

and r > 0 be such that lim, ooy, = 7. Let JAL = (I + r,A;)~ ! be the resolvent of A. Let
{vn},en be a sequence generated by

v1, u € C arbitrarily chosen

n = Pn,0Un + Z Qon,ern Up, M2 0/
=1

where{Cn}ens 1€ntnen and {wnvi}neN,iENU{O} are sequences in [0, 1] satisfing the following
control conditions:

(2) Z €n = 00;

(3) sDno+Z<PnZ—1forallneN

(4) lim 1nf,HOO CnPn,09Pn,: >0, foralln € N.
e}
IfQz : B — Z is the sunny nonexpansive retraction such that Z = (| A; ' (0) # @, then
i=1

{vn },,en converges strongly as n — oo to Q zu.

Proof. The proof can be done simply using similar arguments as in the proof of Theorem
24. O
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