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A note on Z-convergence and Z*-convergence of an infinite
product

MERVE ILKHAN', METIN BASARIR? and EMRAH EVREN KARA!

ABSTRACT. In this paper, we define Z-convergence and Z*-convergence of an infinite product by Cauchy
conditions and prove the relation between these two notions.

1. INTRODUCTION

In [5], Fast introduced the definition of statistical convergence using the natural density
of a set. For a subset K of natural numbers N, it is defined by §(K) = lim,, %|Kn|, where
K, = {k € K : k < n} and |K,| denotes the cardinality of K,,. It is a practical tool
to study the problems related to convergence of numerical sequences by means of the
concept of density. A sequence (z) of reel numbers is said to be statistical convergent to
x provided that for every € > 0 the natural density of the set K. = {k € N : |z, — 2| > ¢}
is equal to zero. Thus, this definition is equivalent to meet the condition (Cixk.)n —
0 as n — oo, where C; is the Cesaro mean of order one and X, is the characteristic
function of K.. Also by using a nonnegative regular summability matrix instead of C;
statistical convergence was generalized by some authors. In [15], Schoenberg gave some
basic properties of statistical convergence and also studied the concept as a summability
method. Later on it was further investigated and linked with the summability theory by
Connor [2], Freedman and Sember [6], Fridy [7] and many others.

As a generalization of statistical convergence, ideal convergence was defined by the
aid of ideal Z which is a family of subsets of natural numbers N and studied by sev-
eral authors. Kostyrko et al. [9] studied ideal convergence in metric spaces. In connection
with definition of Z-convergence, the authors also introduced another type of convergence
which is closely related to Z-convergence and called as Z*-convergence. They prove that
ZI*-convergence implies Z-convergence and for the converse implication ideal has an ad-
ditional property called (AP) condition. Later, Z and Z*-convergence were extended to
topological spaces and studied by Lahiri and Das [10].

In [4], Z-Cauchy condition was introduced for a sequence in any metric space and the
author proved that Z-convergence and Z-Cauchy condition are equivalent in complete
metric spaces. Later, Nabiev et al. [11] introduced Z*-Cauchy sequences in a linear metric
space. They prove that if a sequence is Z-convergent, then it satisfies Z-Cauchy condition.
Further, they showed that if a sequence is 7*-Cauchy, then it is Z-Cauchy and the converse
is true if the ideal 7 satisfies the condition (AP).

For more papers about ideal convergence of sequences, one can see [3]-[18].

Before continuing, we recall some concepts used throughout this paper.

Let X be a nonempty set. A class Z C 2% of subsets of X is said to be an ideal in X
provided that the following conditions hold:
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1) ez,
(2) A, BeZimply AUB €,
B Ac€Z,BC Aimply B € 1.
Anideal 7 in X is called proper (or non-trivial) if Z # () and X ¢ 7.
A proper ideal Z in X is called admissible if {x} € Z for each z € X.

Definition 1.1. [1] Anideal Z c 2V is a P-ideal if for every sequence (A, )nen of setsin Z
there is a set A, € 7 such that 4,,\ A is finite for every n.

Definition 1.2. [9] An admissible ideal Z C 2" is said to satisfy the condition (AP) if for
every countable family of mutually disjoint sets { A1, As, ...} belonging to Z there exists a
countable family of sets { By, Bs, ...} such that the symmetric difference A, AB,, is finite
foreveryn € Nand B =U2 B, € T.

We need the following lemma to prove one of our main results. That is, equivalently
we will use a P-ideal instead of the satisfaction of the condition (AP) .

Lemma 1.1. [1] Let Z C 2N be an admissible ideal. The following conditions are equivalent:

(1) T isa P-ideal.
(2) T satisfies the condition (AP).

Let X be a nonempty set. A class F C 2% of subsets of X is said to be a filter in X
provided that the following conditions hold:
1) 0¢F,
(2) A,Be Fimply ANB € F,
B Ae F,AC Bimply B € F.

If 7 is a proper ideal in X, then
F(I)={X\A: AecT}
is a filter in X.

Definition 1.3. [9] Let Z be an admissible ideal in N. A sequence {z), },cn of real numbers
is said to be Z-convergent to a real number ¢ (Z — limz,, = §) if for every € > 0 the set
A(e) ={n e N: |z, — £| > ¢} belongs to Z.

Definition 1.4. [9] Let Z be an admissible ideal in N. A sequence {z, },en of real numbers
is said to be Z*-convergent to a real number ¢ (Z* — lim z,, = &) if there is a set M € F(I),
M = {m; < mq < ...} such that

klgrolo Ty = € (nag%eM Tn = 5) ’
Definition 1.5. [11] Let Z be an admissible ideal in N. A sequence {z, },en of real num-
bers is said to be Z-Cauchy if for every ¢ > 0, there exists N = N(¢) € N such that the set
A(e) ={n e N: |z, —zn]| > €} belongs to T.

Definition 1.6. [11] Let Z be an admissible ideal in N. A sequence {xz, },cn of real num-
bers is said to be Z*-Cauchy if there is a set M € F(Z), M = {m; < mg < ...} such that
the subsequence (z,, ) is an ordinary Cauchy sequence; that is,

k}ligloo |xmk B xmp‘ =0
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2. MAIN RESULTS

In this section, we define Z-convergence and Z*-convergence of an infinite product by
the Cauchy conditions. Afterwards, 7 is an admissible ideal in N.

Definition 2.7. An infinite product [[7 | u, is said to be Z-convergent if it satisfies Z-
Cauchy condition; that is, for every ¢ > 0 there exist N = N(¢) € Nand A. € 7 such
that

H ulfl <e€

i€{g+1,....p}\Ac
forallp > ¢ > N.

Definition 2.8. An infinite product []7; u, is said to be Z*-convergent if it satisfies Z*-
Cauchy condition; that is, there exits A € Z such that for every ¢ > O thereisa N = N(¢) €
N\ A satisfying

H ’LLZ—]. <e€

ie{q+1,....,p}\ A
forallp > g > N.

Theorem 2.1. If an infinite product [ -, u,, satisfies T*-Cauchy condition, then it also satisfies
Z-Cauchy condition.

Proof. Assume that Z*-Cauchy condition holds for [] 7, u,. Then there exits A € Z such

that [] w, satisfies Cauchy condition. Given ¢ > 0 there exists N = N(g) € N\ A such
neN\A
that

H u; — 1| <e

i€{q+1,....q+j}\A
forallg > Nand j > 1. Let A. = AU{1,2,..., N}. Hence we have A, € T and

H ulfl <e€

i€{q+1,....,q+5}\Ac

forall ¢ > N and j > 1 which mean that [~ , u,, satisfies Z-Cauchy condition. |

Theorem 2.2. Let Z be a P-ideal. If an infinite product [ ], uy, satisfies Z-Cauchy condition,
then it satisfies Z*-Cauchy condition.

Proof. Let Z be a P-ideal and [],- ; u, satisfy Z-Cauchy condition. There exist m; € N
and A; € T such that

H u; — 1| < 1
i€{l41,...,k}\A; J
forall j € Nand k > [ > m,;. Since T is a P-ideal, there exists Ao, € Z such that A;\ A is
finite. We can write A;\ Ao C {1,2,...,p,;}, wherep; € A\A.Ifk,l € A;, thenk,l € Ay
for k > I > p;. Hence we have

’U,if]. < =

i€ {l4+1,... kN Ao J
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for k > I > max{m;,p,;}. Thismeans [] w, satisfies Cauchy condition, where A, €
neN\A
T. O

Theorem 2.3. If [[)", u,, is Z-convergent, then (uy,) is Z-convergent to 1.

Proof. Since [],°, u, satisfies Z-Cauchy condition, given ¢ > 0 there are N € N and

A, € 7 such that 11 u;— 1| <eforp>qg>N.Letp=¢g+1landp ¢ A,
i€{g+1,....p}\ A<

where ¢ > N. Then we have |u, — 1| < ¢. Thereforep ¢ U = {n € N : |u, — 1] > ¢}.

Obviously, U C {1,2,...,N} U A.. Since 7 contains all finite subsets of N, {1,2,..., N} € T

and so {1,2,..., N} U A. € T which implies that U belongs to Z. Consequently, (u,) is

Z-convergent to 1. g

Now, we give some examples which show that the converse of the last theorem is not
valid.

Example 2.1. Let Z; be the non-trivial admissible ideal consisting of all A C Nwith(A4) =
0. Then Z;s-convergence coincides with the statistical convergence. Define the sequence
(uy,) as follows:
(2, ifneP
tn = 1, otherwise
where P is the set of all prime numbers. From the prime number theorem (see [12]; p.217),
we obtain that 6(N\P) = 1. Also, since
lim U, =1
n—o00,n€N\P
holds, Lemma 1.1 in [14] implies that Zs-lim u,, = 1.
On the other hand, choosing ¢ < 1, for every n € Nand A € Zs we can find a prime
number p = ¢ + 1, where p > ¢ > n. Hence, we have |u, — 1| > ¢ which means that
[T, uy is not Zs-convergent.

Example 2.2. Let define a sequence (u,,) as follows:

[ z, ifn=~k*forsomek € N
Un =1, ifn#kforallkeN

where z is a real number different from 1. Then this sequence is Z;-convergent to 1. How-
ever, [~ u, is not Zs-convergent. Indeed, let ¢g = |z — 1|. Since for every n € N there
exits k € Nsuch thatp = k? > ¢ = k> — 1 > n, for every A € T we obtain

H u — 1| =|up — 1] = |z — 1| > «o.
i€{q+1,....p}\A

Example 2.3. Let Z be an admissible ideal in N. The infinite product [[;", ;47 is Z-
convergent although it is not convergent in the usual sense. In fact, given any ¢ > 0,
there exits n. € N such that ni < e. Also, we have A, = {¢+1,...,p — 1} € T for every

p > q > n.. Thus, we conclude that

1

I1 111‘i11'+1<s.
ne{g+1,....p}\Ac " P b
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