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Convergence of a Newton-like S-iteration process in R

NAZLI KARACA1, MUJAHID ABBAS2 and ISA YILDIRIM1

ABSTRACT. The aim of this paper is to show that Newton-like S-iteration method converges to the unique
solution of the scalar nonlinear equation f(x) = 0 under weaker conditions involving only f and f ′. We also
present numerical examples to support our analytical results.

1. INTRODUCTION

We are interested in approximating a solution x∗ of the nonlinear operator equation
f(x) = 0, where f is a differentiable operator. Newton’s methods are the most commonly
used methods for solving such equations. There are numerous generalizations of the
classical Newton’s method for solving nonlinear operator equation f(x) = 0.

Newton’s method is defined by an iterative sequence

xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0, (1.1)

under suitable assumptions on f and f ′. Note that (1.1) can be viewed as the sequence of
successive approximations ( Picard iteration) of the Newton iteration function given by

T (x) = x− f(x)

f ′(x)
, where f ′ 6= 0.

Moreover, under appropriate conditions, x∗ is a solution of f(x) = 0 if and only if x∗ is a
fixed point of the iteration function T .

This establishes a strong link of Newton’s methods with fixed point theory.
There are several convergence results in literature for the Newton’s method, see for

example [13], [14], and [15], which to ensure a quadratic convergence for the iterative
method (1.1) require strong smoothness assumptions which involve f , f ′ and f ′′.

Theorem 1.1. ([13]) Let f : [a, b] −→ R. Suppose that the following conditions hold:
(1) f(a)f(b) < 0;
(2) f ∈ C2[a, b] and f ′(x)f ′′(x) 6= 0, x ∈ [a, b];

Then the sequence {xn} defined by (1.1) starting with an initial guess x0 ∈ [a, b] converges to
x∗; the unique solution of f(x) = 0 in [a, b]. Moreover, we have the following estimation

|xn − x∗| ≤
M2

2m1
|xn − xn−1| , n ≥ 1, (1.2)

holds, where
m1 = min

x∈[a,b]
|f ′(x)| and M2 = max

x∈[a,b]
|f ′′(x)| .

Received: 29.08.2016. In revised form: 29.05.2017. Accepted: 05.06.2017
2010 Mathematics Subject Classification. 47H09, 47H10, 49M15.
Key words and phrases. Newton-like method, fixed point, nonlinear equation, quasi-contractive mapping.
Corresponding author: Isa Yildirim; isayildirim@atauni.edu.tr

289



290 Nazli Karaca, Mujahid Abbas and Isa Yildirim

For numerical point of view, Theorem 1.1 is widely applicable but there exist more
general results based on weaker smoothness conditions. In a series of papers [1]-[11],
Berinde obtained more general convergence results which extend Newton’s method both
scalar ([1]-[8], [10]-[11]) and n-dimensional [9] equations. These results can be applied to
weakly smooth functions. The term extended Newton method was adopted in view of
the fact that the iterative method (1.1) has been extended from [a, b] to the whole real axis
R.

One of the scalar variant of these results is stated below.

Theorem 1.2. ([4]-[5]) Let f : [a, b] −→ R, where a < b. If the following conditions hold:
(f1) f(a)f(b) < 0;
(f2) f ∈ C1[a, b] and f ′(x) 6= 0, x ∈ [a, b];
(f3) 2m > M , where

m = min
x∈[a,b]

|f ′(x)| and M = max
x∈[a,b]

|f ′(x)| . (1.3)

Then the Newton iteration {xn}, defined by (1.1) starting with x0 ∈ [a, b] converges to x∗; the
unique solution of f(x) = 0 in [a, b]. Moreover, the following estimation

|xn − x∗| ≤
M

m
|xn − xn+1| , n ≥ 0, (1.4)

holds.

All the proofs in [2], [4]-[7] are based on a classical technique which focuses on the
behavior of the sequence {xn} defined in (1.1). However, Berinde [3] proved Theorem 1.2
using an elegant fixed point technique.

Recently, Sen et al. [20] extended Theorem 1.2 to the case of a Newton-like iteration of
the form given as:

xn+1 = xn −
2f(xn)

f ′(xn) +M1f(xn)
, n ≥ 0, (1.5)

with M1f(x) = sgnf ′(x) ·M , where M is defined by (1.3).
Later, this result was extended to the n-dimensional case [21]. However, in both cases

an extended Newton-like algorithm was used.
In 2006, Berinde and Pacurar [12] obtained a convergence theorem for the iterative

method (1.5) under the same assumptions as given in Theorem 1.2.

Theorem 1.3. Let f : [a, b] −→ R be a function such that the following conditions are satisfied
(f1) f(a)f(b) < 0;
(f2) f ∈ C1[a, b] and f ′(x) 6= 0, x ∈ [a, b];
(f3) 2m > M , where

m = min
x∈[a,b]

|f ′(x)| and M = max
x∈[a,b]

|f ′(x)| .

Then the Newton-like iteration {xn} defined by (1.5) starting with x0 ∈ [a, b] converges to the
unique solution x∗ of f(x) = 0 in [a, b] with the following error estimate

|xn − x∗| ≤
2M

m+M
|xn − xn+1| , n ≥ 0, (1.6)

holds.

It was pointed out that the error estimate (1.6) is better than the error estimate (1.4).
In 2011, Sahu [18] introduced the normal S-iteration method as follows:
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Let E be a nonempty convex subset of a normed space X , T : E −→ E be an operator
and x0 be an arbitrary point in E. The normal S-iteration method is defined an iterative
sequence given by

xn+1 = T ((1− αn)xn + αnTxn), n ≥ 0,

where {αn} ⊂ (0, 1).
It was shown that the normal S-iteration method is faster than the Picard and Mann

iteration methods for contraction operators [18].
In this paper, we are interested in employing the iteration method (1.7) for a real-valued

function f . The iteration method was first introduced by Sahu [17] as follows:

xn+1 = zn −
f(zn)

f ′(zn)
, zn = (1− α)xn + αyn, yn = xn −

f(xn)

f ′(xn)
, (1.7)

for α ∈ (0, 1) and n ≥ 0.
Sahu et al. [19] have discussed the semilocal and local convergence analysis of the

Newton-like S-iteration method in Banach spaces.
The purpose of this paper is to give a convergence result for Newton-like S-iteration

method under weaker conditions involving only f and f ′.
We show that the Newton-like S-iteration method is better than the Newton method

(1.1) and extended Newton-like method (1.5). We present numerical examples to support
our analytical results.

The following definitions and lemma will be needed in the sequel.

Definition 1.1. Let (X, d) be a metric space. An operator T : X −→ X is said to be
(i) contraction if there exists a constant k ∈ [0, 1) such that for any x, y ∈ X, the following

condition hold:
d(T (x), T (y)) ≤ kd(x, y).

(ii) quasi-contraction [22] if there exist a constant k ∈ [0, 1) such that for any x ∈ X and
x∗ ∈ F (T ), we have

d(T (x), x∗) ≤ kd(x, x∗), (1.8)
where, F (T ) = {x ∈ X : Tx = x} 6= ∅.

Definition 1.2. [18] Let E be a nonempty convex subset of a normed space X and T :
E → E be an operator. The operator G : E → E is said to be an S-operator generated by
an α ∈ (0, 1) and T if it has the following form:

G = T [(1− α) I + αT ]

where I is an identity operator on E.

Note that G is a contraction operator with contractivity factor k(1 − α(1 − k)) if T is a
contraction operator with contractivity factor k.

Lemma 1.1. [12] Let (X, d) be a complete metric space and T : X −→ X be a quasi-contractive
operator with x∗ ∈ F (T ). Then x∗ is the unique fixed point of T and the Picard iteration {Tn(x0)}
converges to x∗ for each x0 ∈ X .

2. MAIN RESULT

We start with the following result.

Theorem 2.4. Let f : [a, b] −→ R be a function such that the following conditions are satisfied
(f1) f(a)f(b) < 0;
(f2) f ∈ C1[a, b] and f ′(x) 6= 0, x ∈ [a, b];
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(f3)
√

2m ≤M < 2m, where

m = min
x∈[a,b]

|f ′(x)| and M = max
x∈[a,b]

|f ′(x)| .

Then
(i) Newton-like S-iteration method starting with an arbitrary point x0 in [a, b] converges the

unique solution x∗ of f(x) = 0 in [a, b].
(ii) We have the following error estimate

|xn − x∗| ≤
mM

(M2 − αm2)
|xn − xn+1| , (2.9)

for n ≥ 0.

Proof. (i) It follows from (f1) and (f2) that the equation f(x) = 0 has a unique solution x∗

in (a, b).
Suppose that T : [a, b] −→ R is the Newton-like iteration function associated with f ,

that is T (x) = V Uα(x), where V,Uα : [a, b] −→ R are defined as:

V (x) = x− f(x)

f ′(x)
and Uα(x) = x− α f(x)

f ′(x)
.

Note that, x∗ is a solution of f(x) = 0 if and only if x∗ is a fixed point of V and Uα, that is

V (x∗) = x∗ and Uα(x∗) = x∗.

Thus, we obtain that

Uα(x)− x∗ = x− α f(x)

f ′(x)
− x∗ = x− x∗ − α f(x)

f ′(x)
.

Obviously,
f(x) = f(x)− 0 = f(x)− f(x∗).

From (f2) and the mean value theorem, we get that

f(x) = f ′(ȳ)(x− x∗),
where ȳ = x∗ + λ(x− x∗), 0 < λ < 1. Thus, for all x ∈ [a, b] we have

Uα(x)− x∗ = (x− x∗)
(

1− αf
′(ȳ)

f ′(x)

)
. (2.10)

By (f2), f ′ preserves sign on [a, b]. Hence f ′(ȳ)/f ′(x) > 0. Thus for any x ∈ [a, b] and ȳ
between x∗ and x, we have

1− αf
′(ȳ)

f ′(x)
< 1. (2.11)

Also, by (f3), we obtain that

α
f ′(ȳ)

f ′(x)
<
f ′(ȳ)

f ′(x)
=

∣∣∣∣f ′(ȳ)

f ′(x)

∣∣∣∣ =
|f ′(ȳ)|
|f ′(x)|

≤ M

m
< 2,

which implies that

1− αf
′(ȳ)

f ′(x)
> −1, ∀x ∈ [a, b] (2.12)

where, ȳ between x∗ and x. From (2.11), (2.12) and the continuity of f ′, we have

k = max
x,ȳ∈[a,b]

∣∣∣∣1− αf ′(ȳ)

f ′(x)

∣∣∣∣ < 1 and 0 < k < 1,

which together with (2.10) implies that

|Uα(x)− x∗| ≤ k |x− x∗| , ∀x ∈ [a, b].
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Similarly, we obtain that

|V (x)− x∗| ≤ l |x− x∗| , ∀x ∈ [a, b].

where

l = max
x,ȳ∈[a,b]

∣∣∣∣1− f ′(ȳ)

f ′(x)

∣∣∣∣ < 1 and 0 < l < 1.

Note that we cannot apply Lemma 1.1 directly, as [a, b] is generally not an invariant set
under V and Uα. If so, we can use same arguments as given in the proof of Theorem 6 in
[12] and obtain the following

xn+1 = V (xn) ∈ [a, b] ,

which means that V : [a, b] −→ [a, b] . Similarly, we have Uα : [a, b] −→ [a, b] . Hence,
T : [a, b] −→ [a, b] , T (x) = V Uα(x) is writen as Newton-like iteration function of iteration
method (1.7). Since, T (x∗) = V Uα(x∗) = V (x∗) = x∗, we get

|T (x)− x∗| = |V Uα(x)− x∗| ≤ k |Uα(x)− x∗| ≤ (kl) |x− x∗| . (2.13)

Thus T is quasi contractive operator with constant kl. On the other hand, from (2.13) we
obtain |Tn(x)− x∗| =

= |(V Uα)
n

(x)− x∗| ≤ (kl)
∣∣∣(V Uα)

n−1
(x)− x∗

∣∣∣ · · · ≤ (kl)
n |x− x∗| .

Since 0 < kl < 1, on taking limit as n −→ ∞ on the both sides of the above inequality,
we have, Tn(x0) −→ x∗ for each x0 ∈ [a, b].Therefore, all the conditions of Lemma 1.1 are
satisfied and hence x∗ is the unique fixed point of T .

(ii) By (1.7), we have

xn − xn+1 = α
f(xn)

f ′(xn)
+
f(yn)

f ′(yn)
. (2.14)

Using mean value theorem in (2.14), we have

xn − xn+1 = α
f ′(cn)

f ′(xn)
(xn − x∗) +

f ′(c̄n)

f ′(yn)
(xn − x∗)

(
1− α f

′(cn)

f ′(xn)

)
(2.15)

=

[
α
f ′(cn)

f ′(xn)
+
f ′(c̄n)

f ′(yn)

(
1− α f

′(cn)

f ′(xn)

)]
(xn − x∗)

where cn = x∗ + µ(xn − x∗) and c̄n = x∗ + µ(yn − x∗) for 0 < µ < 1. From (2.15), we get

xn − x∗

xn − xn+1
=

1[
α f

′(cn)
f ′(xn) + f ′(c̄n)

f ′(yn)

(
1− α f

′(cn)
f ′(xn)

)] ≤ 1(
αm
M −

M
m

) .
Thus, we have∣∣∣∣ xn − x∗xn − xn+1

∣∣∣∣ ≤ mM

(M2 − αm2)
and hence |xn − x∗| ≤

mM

(M2 − αm2)
|xn − xn+1| ,

which is a required error estimation. �

Remark 2.1. Note that the error estimate (2.9) is better than the error estimate (1.6) and
consequently the error estimate (1.4).
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3. NUMERICAL EXAMPLES

We now present some numerical examples to show the efficiency of Newton-like S-
iteration method. We compare the Newton method (NM) (1.1), the extended Newton-like
method (ENLM) (1.5) and the Newton-like S-iteration method (SNLM) (1.7). All compu-
tations are done using the MATLAB.

We consider the following nonlinear equations in order to compare the above methods
(1.1), (1.5) and (1.7).

f1 :

[
9

10
,

6

5

]
→ R, f1(x) = x3 − 1; f2 :

[
7,

42

5

]
→ R, f2(x) = x2 − 11x+ 24;

f3 :

[
21

10
, 4

]
→ R, f3(x) = x2 − 9; f4 : [−1, 1]→ R, f4(x) = arctanx.

Table 3.1. Comparison of iterative methods. (f1, x0 = 1.2, α = 0.5)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 1.031481481481481 1.031481481481481 1.025703603467683
2 1.000951060058530 1.005536144775204 1.000486236297209
3 1.000000903369599 1.000993822096082 1.000000177257022
4 1.000000000000816 1.000179068011932 1.000000000000024
5 1.000000000000000 1.000032286214456 1.000000000000000

Tablo 3.2. Comparison of iterative methods. (f1, x0 = 1.2, α = 1.0)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 1.031481481481481 1.031481481481481 1.008923866607488
2 1.000951060058530 1.005536144775204 1.000001379921697
3 1.000000903369599 1.000993822096082 1.000000000000000
4 1.000000000000816 1.000179068011932 1.000000000000000
5 1.000000000000000 1.000032286214456 1.000000000000000

Tablo 3.3. Comparison of iterative methods. (f2, x0 = 7.5, α = 0.5)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 8.062500000000000 8.011363636363637 8.010488013698630
2 8.000762195121951 7.999768625636278 8.000005511337729
3 8.000000116152869 8.000004722148766 8.000000000001519
4 8.000000000000002 7.999999903629711 7.999999999999998
5 7.999999999999999 8.000000001966741 8.000000000000000

Tablo 3.4. Comparison of iterative methods. (f2, x0 = 7.5, α = 1.0)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 8.062500000000000 8.011363636363637 8.000762195121951
2 8.000762195121951 7.999768625636278 8.000000000000002
3 8.000000116152869 8.000004722148766 7.999999999999999
4 8.000000000000002 7.999999903629711 7.999999999999999
5 7.999999999999999 8.000000001966741 7.999999999999999

Tablo 3.5. Comparison of iterative methods. (f3, x0 = 4, α = 0.5)
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n NM (1.1) ENLM (1.5) SNLM (1.7)
1 3.125000000000000 3.125000000000000 3.044407894736842
2 3.002500000000000 3.017543859649123 3.000082755197912
3 3.000001040799334 3.002500000000000 3.000000000285355
4 3.000000000000180 3.000357015351660 3.000000000000000
5 3.000000000000000 3.000050999592003 3.000000000000000

Tablo 3.6. Comparison of iterative methods. (f3, x0 = 4, α = 1.0)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 3.125000000000000 3.125000000000000 3.002500000000000
2 3.002500000000000 3.017543859649123 3.000000000000180
3 3.000001040799334 3.002500000000000 3.000000000000000
4 3.000000000000180 3.000357015351660 3.000000000000000
5 3.000000000000000 3.000050999592003 3.000000000000000

Tablo 3.7. Comparison of iterative methods. (f4, x0 = 1, α = 0.5)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 0.738200612200851 0.607300918301276 0.607805063038586
2 0.481414019366476 0.267743757940761 0.255409851684756
3 0.252831297040562 0.061386831843207 0.045568155214680
4 0.088357772945637 0.003622880946457 0.001167667461501
5 0.013463797786353 0.000013093679810 0.000000684170713
6 0.000353833278588 0.000000000171443 0.000000000000234
7 0.000000250233662 0.000000000000000 0.000000000000000

Tablo 3.8. Comparison of iterative methods. (f4, x0 = 1, α = 1.0)
n NM (1.1) ENLM (1.5) SNLM (1.7)
1 0.738200612200851 0.607300918301276 0.481414019366476
2 0.481414019366476 0.267743757940761 0.088357772945637
3 0.252831297040562 0.061386831843207 0.000353833278588
4 0.088357772945637 0.003622880946457 0.000000000000125
5 0.013463797786353 0.000013093679810 0.000000000000000
6 0.000353833278588 0.000000000171443 0.000000000000000
7 0.000000250233662 0.000000000000000 0.000000000000000

4. CONCLUSION

In this paper, we used the Newton-like S-iteration method for solving nonliner equa-
tions. This method is then compared with some other methods to show its better perfor-
mance than comparable methods.
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