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Fixed point theorems for expansive mappings in Gp-metric
spaces

MELTEM KAYA and HASAN FURKAN

ABSTRACT. In the present paper, we adopt the concept of expansive mapping in the context of Gp-metric
spaces in a similar manner expansive mapping in metric spaces. Furthermore, we obtain some results on fixed
points of expansive type mappings. Also, we prove some common fixed point results for expansive mappings
by using the notion of weak compatibility in Gp-metric space. Our results generalize some comparable results in
metric spaces and partial metric spaces to Gp-metric spaces. Moreover, some examples are introduced in order
to support our new results.

1. INTRODUCTION

Fixed point theory has been one of the most important research fields and one of the
most rapidly developing fields in analysis during the last few decades. Since wide ap-
plication potential of this theory, the study of fixed points of mappings has been at the
center of strong research activity. In a large class of studies, the classical concept of a met-
ric space has been generalized in different directions by partly chancing the conditions
of the metric. Among this generalizations, we can mention the partial metric spaces and
G-metric spaces.

The notion of partial metric space was described by Matthews [12] in 1994 as a gener-
alization of metric spaces where self-distances are not necessarily zero. In 2005, Mustafa
and Sims [13] identified a new structure of generalized metric spaces named G-metric
space.

Recently, based on the two above notions, Zand and Nezhad [20] introduced a new
generalized metric space as a generalization of both partial metric spaces and G-metric
spaces by defining the notion of Gp-metric space. Following this remarkable research,
Aydi et al. [2] established some fixed point results in Gp-metric spaces which are first
fixed point results in Gp-metric spaces. Then, many fixed point results for mappings
satisfying various contractive conditions have been presented in Gp-metric spaces. Some
of these results are noted in [3, 4, 5, 14, 16, 18, 10, 15].

In 1984, Wang et al. [19] defined the concept of expanding mappings and proved some
fixed point theorems in complete metric spaces. In 1992, Daffer and Kaneko [6] defined
expanding condition for a pair of mappings and proved some common fixed point the-
orems for two mappings in complete metric spaces. Thereafter, the result of Daffer and
Kaneko [6] was extended to compatible mappings by Rhoades [17]. In 2008, Kumar [11]
generalized the results of Rhoades [17] to weakly compatible mappings in metric spaces.
Recently, Huang et al. [7] defined expanding mappings in the framework of partial metric
space in the similar way to expanding mappings in metric spaces and also extended a re-
sult of Daffer and Kaneko [6] for two mappings to the partial metric spaces. Also, Imdad
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et al. [8] proved a general common fixed point theorem for two pairs of occasionally weak
compatible expansive mappings in symmetric spaces.

The purpose of this study is to define the notion of expansive mapping in Gp-metric
spaces and also to generalize some results of Wang et al. [19], Daffer and Kaneko [6],
Huang et al. [7] and other comparable results by proving some fixed point theorems for
expansive mappings ensuring the existence and uniqueness of a fixed point and common
fixed point under certain conditions within the context of Gp-metric space.

2. BASIC FACTS AND DEFINITIONS

In this section, we recall some fundamental definitions and useful results for the sake
of completeness of this study.

Zand and Nezhad defined the concept of Gp-metric space by combining the notions of
patrial metric space and G-metric space in the following manner.

Definition 2.1. [20] Let X be a nonempty set. A function Gp : X ×X ×X → [0,+∞) is
called a Gp-metric if the following conditions are satisfied:
Gp1

. x = y = z if Gp(x, y, z) = Gp(z, z, z) = Gp(y, y, y) = Gp(x, x, x);
Gp2 . 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X ;
Gp3 . Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) = . . . , symmetry in all three variables;
Gp4

. Gp(x, y, z) ≤ Gp(x, a, a) +Gp(a, y, z)−Gp(a, a, a) for any x, y, z, a ∈ X .
Then the pair (X,Gp) is called a Gp-metric space.

On the other hand, instead ofGp2 , Parvaneh, Roshan and Kadelburg used the following
condition in [14]:
G∗p2

. 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X with z 6= y.
Also, they stated an important remark as following:

Remark 2.1. [14] With Gp2 assumption, it is very easy to obtain that

Gp(x, x, y) = Gp(x, y, y)

holds for all x, y ∈ X , i.e., the respective space is symmetric. On the other hand, there are
a lot of examples of asymmetric G-metric spaces. Hence, the conclusion stated in [20, 2]
that each G-metric space is a Gp-metric space (satisfying Gp2 ) does not hold. With the
assumption G∗p2

, this conclusion holds true.

Some easy examples of Gp-metric space are given as follows:

Example 2.1. [20] Let X = [0,∞) and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X .
Then (X,Gp) is a symmetric Gp-metric space. Also, one can show that (X,Gp) is not a
G-metric space.

Example 2.2. [20] If (X, d) is an ordinary metric space, then (X, d) can define symmetric
Gp-metrics on X by

i. Gp(x, y, z) = d(x, y) + d(y, z) + d(x, z),
ii. Gp(x, y, z) = max{d(x, y), d(y, z), d(x, z)}.

Example 2.3. [14] Let X = {0, 1, 2, 3} and

A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2), (3, 0, 0), (0, 3, 0), (0, 0, 3),
(1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 3, 3), (3, 1, 3), (3, 3, 1), (2, 3, 3), (3, 2, 3), (3, 3, 2)},

B = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (0, 3, 3), (3, 0, 3), (3, 3, 0),
(2, 1, 1), (1, 2, 1), (1, 1, 2), (3, 1, 1), (1, 3, 1), (1, 1, 3), (3, 2, 2), (2, 3, 2), (2, 2, 3)}.
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Define Gp : X ×X ×X → [0,+∞) by

Gp(x, y, z) =


1, if x = y = z 6= 2,
0, if x = y = z = 2,
2, if (x, y, z) ∈ A,
5
2 , if (x, y, z) ∈ B,
3, if x 6= y 6= z 6= x.

It is easy to see that (X,Gp) is an asymmetric Gp-metric space.

In the rest of this paper, we will use the definition of Gp-metric space given by Zand
and Nezhad, that is, we will consider that (X,Gp) is a symmetric Gp-metric space.

Proposition 2.1. [20] Let (X,Gp) be a Gp-metric space. Then for any x, y, z and a ∈ X , it
follows that

i. Gp(x, y, z) ≤ Gp(x, x, y) +Gp(x, x, z)−Gp(x, x, x);
ii. Gp(x, y, y) ≤ 2Gp(x, x, y)−Gp(x, x, x);

iii. Gp(x, y, z) ≤ Gp(x, a, a) +Gp(y, a, a) +Gp(z, a, a)− 2Gp(a, a, a);
iv. Gp(x, y, z) ≤ Gp(x, a, z) +Gp(a, y, z)−Gp(a, a, a).

Proposition 2.2. [20] Every Gp-metric space (X,Gp) defines a metric space (X, dGp
) where

dGp(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y)

for all x, y ∈ X .

Definition 2.2. [20] Let (X,Gp) be a Gp-metric space and {xn} be a sequence of points of
X .

i. The sequence {xn} is called Gp-convergent to x ∈ X if lim
m,n→∞

Gp(x, xm, xn) =

Gp(x, x, x). A point x ∈ X is said to be limit point of the sequence {xn};
ii. A sequence {xn} is said to be a Gp-Cauchy sequence if and only if

lim
m,n→∞

Gp(xn, xm, xm) exists (and is finite);

iii. A Gp-metric space (X,Gp) is said to be Gp-complete if and only if every Gp-
Cauchy sequence {xn} in X is Gp-convergent to x ∈ X such that Gp(x, x, x) =
limm,n→∞Gp(xn, xm, xm).

Proposition 2.3. [20] Let (X,Gp) be a Gp-metric space. Then, for any sequence {xn} in X and
a point x ∈ X the followings are equivalent:

i. {xn} is Gp-convergent to x;
ii. Gp(xn, xn, x)→ Gp(x, x, x) as n→∞;

iii. Gp(xn, x, x)→ Gp(x, x, x) as n→∞.

Lemma 2.1. [14]
i. A sequence {xn} is a Gp-Cauchy sequence in a Gp-metric space (X,Gp) if and only if it

is a Cauchy sequence in the metric space (X, dGp
).

ii. A Gp-metric space (X,Gp) is Gp-complete if and only if the metric space (X, dGp) is
complete. Moreover, lim

n→∞
dGp(x, xn) = 0 if and only if

lim
n→∞

Gp(x, xn, xn) = lim
n→∞

Gp(xn, x, x) = lim
n,m→∞

Gp(xn, xn, xm)

= lim
n,m→∞

Gp(xn, xm, xm) = Gp(x, x, x).

Lemma 2.2. [2] Let (X,Gp) be a Gp-metric space. Then
i. If Gp(x, y, z) = 0, then x = y = z;

ii. If x 6= y, then Gp(x, y, y) > 0.
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Lemma 2.3. [14] Assume that {xn} → x as n → ∞ in a Gp-metric space (X,Gp) such that
Gp(x, x, x) = 0. Then, for every y ∈ X ,

i. lim
n→∞

Gp(xn, y, y) = Gp(x, y, y),
ii. lim

n→∞
Gp(xn, xn, y) = Gp(x, x, y).

The following proposition shows that the concepts of continuity and sequentially con-
tinuity are equal in a Gp-metric space.

Proposition 2.4. [20] Let (X1, G1) and (X2, G2) be Gp-metric spaces. Then a function f :
X1 → X2 is Gp-continuous at a point x ∈ X1 if and only if it is Gp-sequentially continuous at x;
that is, whenever {xn} is Gp-convergent to x one has {f(xn)} is Gp-convergent to f(x).

Kaya et al. given an important remark, which shows the relationship between Gp-
continuity and dGp

-continuity, as follows.

Remark 2.2. [10] It is worth noting that the notions of Gp-continuity and dGp
-continuity

of any function in the contex of Gp-metric space are incomparable, in general. Indeed,
if X = [0,+∞), Gp(x, y, z) = max{x, y, z}, dGp

(x, y) = |x − y|, f0 = 1 and fx = x2

for all x > 0, gx = | sinx|, then f is a Gp-continuous and dGp -discontinuous at point
x = 0; while g is a Gp-discontinuous and dGp -continuous at point x = π. Therefore,
in this paper, we take that T : X → X continuous if both T : (X,Gp) → (X,Gp) and
T : (X, dGp

)→ (X, dGp
) are continuous.

Definition 2.3. [1] Let f and g be two self mappings of a nonempty set X . If fx = gx = y
for some x ∈ X , then x is called the coincidence point of f and g and y is called the point
of coincidence of f and g.

Definition 2.4. [9] Two self mappings f and g are said to be weakly compatible if they
commute at their coincidence points, that is fx = gx implies that fgx = gfx.

Now, we define the concept of expansive mapping in a Gp-metric space in analogy to
expansive mapping in a metric space, as follows.

Definition 2.5. Let (X,Gp) be a Gp-metric space and T be a self mapping on X . Then T
is called an expansive mapping if

Gp(Tx, Ty, Tz) ≥ kGp(x, y, z),

where k > 1 is a constant for every x, y, z ∈ X .

3. MAIN RESULTS

In this section, we first obtain some fixed point theorems for a single mapping and then
prove several common fixed point theorems for expansive mappings of different types on
Gp-metric spaces.

Now, we start by stating the following fixed point result.

Theorem 3.1. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a surjective
mapping satisfying the following condition

Gp(Tx, Ty, Tz) ≥ aGp(x, y, z) + bGp(x, x, Tx) + cGp(y, y, Ty) + dGp(z, z, Tz) (3.1)

for all x, y, z ∈ X where a, b, c, d ≥ 0 with a+ b+ c+ d > 1. Then T has a fixed point in X .

Proof. Suppose x0 is an arbitrary point in X . Since T is a surjective mapping, there exists
x1 ∈ X such that x0 = Tx1. Continuing in this way, we can define a sequence {xn} by
xn−1 = Txn, n ≥ 1. If xn = xn−1 for some n ≥ 1 then we see that xn = Txn. Thus xn is
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a fixed point of T . Therefore, we assume that two consecutive terms of sequence {xn} are
not equal. Now, using inequality (3.1), we have

Gp(xn−1, xn, xn) = Gp(Txn, Txn+1, Txn+1)

≥ aGp(xn, xn+1, xn+1) + bGp(xn, xn, Txn)

+cGp(xn+1, xn+1, Txn+1) + dGp(xn+1, xn+1, Txn+1)

= aGp(xn, xn+1, xn+1) + bGp(xn, xn, xn−1) + cGp(xn+1, xn+1, xn)

+dGp(xn+1, xn+1, xn),

which yields

(1− b)Gp(xn−1, xn, xn) ≥ (a+ c+ d)Gp(xn, xn+1, xn+1).

If a+ c+ d = 0, then b > 1 from hypothesis. The above inequality implies that a negative
number is greater than or equal to zero. That is impossible. So, a+c+d 6= 0 and (1−b) > 0.
Therefore, we can write

Gp(xn, xn+1, xn+1) ≤ qGp(xn−1, xn, xn), (3.2)

where q =
1− b

a+ c+ d
. Since a + b + c + d > 1, it implies q < 1. Using (3.2) repeatedly, we

obtain
Gp(xn, xn+1, xn+1) ≤ qnGp(x0, x1, x1). (3.3)

Then, for all n,m ∈ N, m > n, we have by repeated use of the rectangle inequality and
equation (3.3) that

Gp(xn, xm, xm) ≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)

≤ [qn + qn+1 + · · ·+ qm−1]Gp(x0, x1, x1)

≤ qn

1− q
Gp(x0, x1, x1),

which shows that Gp(xn, xm, xm) → 0 as n,m → ∞. Hence, {xn} is a Gp-Cauchy se-
quence in X . By the completeness of (X,Gp), there exists z ∈ X such that {xn} is Gp-
converges to z, that is

lim
n→∞

Gp(xn, xn, z) = lim
n→∞

Gp(xn, z, z) = lim
n,m→∞

Gp(xn, xm, xm) = Gp(z, z, z) = 0.

Since T is a surjective mapping, there exists u ∈ X such that Tu = z. Now, we denote that
z = u. Then, from condition (3.1), we obtain

Gp(xn, z, z) = Gp(Txn+1, Tu, Tu)

≥ aGp(xn+1, u, u) + bGp(xn+1, xn+1, Txn+1) + (c+ d)Gp(u, u, Tu)

= aGp(xn+1, u, u) + bGp(xn+1, xn+1, xn) + (c+ d)Gp(u, u, z).

Taking the limit as n→∞ in the previous inequality, we get

0 = Gp(z, z, z) ≥ aGp(z, u, u) + (c+ d)Gp(u, u, z) = (a+ c+ d)Gp(u, u, z),

which means that Gp(u, u, z) = 0, that is u = z = Tu. This gives that z is a fixed point of
T .

We can deduce that if a < 1, then fixed point of T is not unique, since the mapping will
provide Condition (3.1). But, if a > 1 this fixed point is unique. �
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Corollary 3.1. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a surjective
mapping satisfying the following condition

Gp(Tx, Ty, Tz) ≥ λGp(x, y, z) (3.4)

for all x, y, z ∈ X where λ > 1. Then T has a unique fixed point in X .

Proof. From Theorem 3.1, we can conclude that T has a fixed point z in X by taking b =
c = d = 0 and a = λ in Condition (3.1).

Uniqueness of fixed point: Let z 6= w be another fixed point of T , that is Tw = w.
Then, by (3.4) we get

Gp(z, w,w) = Gp(Tz, Tw, Tw) ≥ λGp(z, w,w),

which is a contradiction and hence z = w. This proves uniqueness. �

Corollary 3.2. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a surjective
mapping. Suppose that there exists a positive integer n such that

Gp(T
nx, Tny, Tnz) ≥ λGp(x, y, z)

for all x, y, z ∈ X where λ > 1. Then T has a unique fixed point in X .

Proof. From Corollary 3.1, Tn has a unique fixed point z. Furthermore, since we have
Tn(Tz) = T (Tnz) = Tz, Tz is also a fixed point of Tn. This shows that Tz = z, that is, z
is a fixed point of T . Since the fixed point of T is also fixed point of Tn, the fixed point of
T is unique. �

Next theorem is one of the main results of this study.

Theorem 3.2. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a continuous
surjective mapping satisfying the following condition

Gp(Tx, Ty, Tz) ≥ λu (3.5)

where u = min{Gp(x, y, z), Gp(x, x, Tx), Gp(y, y, Ty), Gp(z, z, Tz)}, for all x, y, z ∈ X and
λ > 1. Then T has a fixed point in X .

Proof. Let {xn} be a sequence in X defined by xn−1 = Txn. If xn−1 = xn for some n ≥ 1,
then T has a fixed point in X , which is xn. Assuming xn−1 6= xn for each n ≥ 1, the we
have from (3.5)

Gp(xn−1, xn, xn) = Gp(Txn, Txn+1, Txn+1) ≥ λu
where u = min{Gp(xn, xn+1, xn+1), Gp(xn−1, xn, xn)}.

Now we have to consider the following two cases.
If u = Gp(xn−1, xn, xn), then

Gp(xn−1, xn, xn) ≥ λGp(xn−1, xn, xn),

which is impossible since λ > 1.
Also if u = Gp(xn, xn+1, xn+1), then

Gp(xn−1, xn, xn) ≥ λGp(xn, xn+1, xn+1),

i.e.,
Gp(xn, xn+1, xn+1) ≤ qGp(xn−1, xn, xn),

where q =
1

λ
and q < 1. Continuing in this way, we obtain

Gp(xn, xn+1, xn+1) ≤ qnGp(x0, x1, x1). (3.6)
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We can prove that {xn} is aGp-Cauchy sequence inX using rectangle inequality and (3.6)
as proved in Theorem 3.1. Since (X,Gp) is Gp-complete, the sequence {xn} Gp-converges
to a point z ∈ X . So, we can conclude that lim

n→∞
dGp

(z, xn) = 0 if and only if

lim
n→∞

Gp(xn, xn, z) = lim
n→∞

Gp(xn, z, z) = lim
n,m→∞

Gp(xn, xm, xm) = Gp(z, z, z) = 0.

Since T is a continuous mapping, thanks to Remark 2.2 we have Txn+1 converges to
Tz in (X, dGp

). On the other hand, Txn+1 = xn converges to z in (X, dGp
) because of

lim
n→∞

dGp
(z, xn) = 0. By uniqueness of the limit in metric space (X, dGp

), we deduce that
Tz = z. �

Let’s state and prove a fixed point theorem for expansive condition given by a rational
expression.

Theorem 3.3. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a surjective
mapping satisfying the following condition

Gp(Tx, Tx, Ty) ≥ aGp(x, x, Tx)Gp(y, y, Ty)

Gp(x, x, y)
+ b[Gp(x, x, Tx) +Gp(y, y, Ty)]

+cGp(x, x, y) (3.7)

for all x, y ∈ X with Gp(x, x, y) > 0, where a, b ≥ 0, c > 1 with a + 2b + c > 1. Then T has a
unique fixed point in X .

Proof. As in the proof of the previous theorems, we define a sequence {xn} by xn−1 = Txn
for each n ≥ 1. Without loss of generality, we suppose that two successive terms of
sequence {xn} are different. Then, from condition (3.7), we get

Gp(xn−1, xn−1, xn) = Gp(Txn, Txn, Txn+1)

≥ aGp(xn, xn, Txn)Gp(xn+1, xn+1, Txn+1)

Gp(xn, xn, xn+1)

+b[Gp(xn, xn, Txn) +Gp(xn+1, xn+1, Txn+1)]

+cGp(xn, xn, xn+1)

=
aGp(xn, xn, xn−1)Gp(xn+1, xn+1, xn)

Gp(xn, xn, xn+1)

+b[Gp(xn, xn, xn−1) +Gp(xn+1, xn+1, xn)]

+cGp(xn, xn, xn+1).

Then, from the above inequality, we can deduce that

(1− a− b)Gp(xn−1, xn−1, xn) ≥ (b+ c)Gp(xn, xn, xn+1).

Since b+ c > 0, we have a+ b < 1. Therefore, we have

Gp(xn, xn, xn+1) ≤ 1− a− b
b+ c

Gp(xn−1, xn−1, xn)

= qGp(xn−1, xn−1, xn),

where q =
1− a− b
b+ c

< 1. In an analogous way, we can calculate

Gp(xn−1, xn−1, xn) ≤ qGp(xn−2, xn−2, xn−1).
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By induction, we get

Gp(xn, xn, xn+1) ≤ qGp(xn−1, xn−1, xn)

≤ q2Gp(xn−2, xn−2, xn−1)

...
≤ qnGp(x0, x0, x1).

By using the same arguments as in Theorem 3.1, we can say that the sequence {xn} is a
Gp-Cauchy sequence in X , which is Gp-complete, and so Gp-converges to z ∈ X . Hence,
we obtain

lim
n→∞

Gp(z, xn, xn) = lim
n→∞

Gp(xn, z, z) = lim
n,m→∞

Gp(xn, xn, xm) = Gp(z, z, z) = 0.

Thereby, we can say that Tu = z for u ∈ X , since T is a surjective mapping. We will show
that z = u. Let’s assert the contrary, that is z 6= u. Then, from condition (3.7), we get

Gp(xn, xn, z) = Gp(Txn+1, Txn+1, Tu)

≥ aGp(xn+1, xn+1, Txn+1)Gp(u, u, Tu)

Gp(xn+1, xn+1, u)

+b[Gp(xn+1, xn+1, Txn+1) +Gp(u, u, Tu)] + cGp(xn+1, xn+1, u)

=
aGp(xn+1, xn+1, xn)Gp(u, u, z)

Gp(xn+1, xn+1, u)

+b[Gp(xn+1, xn+1, xn) +Gp(u, u, z)] + cGp(xn+1, xn+1, u).

If we take the limit as n→∞ in the last inequality, we have

0 = Gp(z, z, z) ≥ (b+ c)Gp(u, u, z),

which implies that Gp(u, u, z) = 0, that is z = u. This is a contradiction. So, our assump-
tion that z 6= u is not true. Hence, we can deduce that z = u.

Now, we denote that z is a unique fixed point of T . Assume the contrary. Let w be
another fixed point of T , in other words z 6= w and Tw = w. Then, we gain

Gp(z, z, w) = Gp(Tz, Tz, Tw)

≥ aGp(z, z, Tz)Gp(w,w, Tw)

Gp(z, z, w)
+ b[Gp(z, z, Tz) +Gp(w,w, Tw)]

+cGp(z, z, w)

=
aGp(z, z, z)Gp(w,w,w)

Gp(z, z, w)
+ b[Gp(z, z, z) +Gp(w,w,w)] + cGp(z, z, w).

This means that (c− 1)Gp(z, z, w) ≤ 0, which is possible with Gp(z, z, w) = 0 since c > 1.
This results in a contradiction and so we get z = w. �

We now present a concrete example in support of previous result.

Example 3.4. X = [0,∞) and Gp(x, y, z) = max{x, y, z}. Then (X,Gp) is a Gp-complete
Gp-metric space. Define the surjective self mapping T : X → X by Tx = 2x. Without loss
of generality assume that x > y. Then for all x, y ∈ [0,∞) with x > y we have

Gp(Tx, Tx, Ty) = 2x >
7x

4

> a
Gp(x, x, Tx)Gp(y, y, Ty)

Gp(x, x, y)

+b[Gp(x, x, Tx) +Gp(y, y, Ty)] + cGp(x, x, y)
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where a = b =
1

32
and c =

3

2
. Thus T satisfies all the conditions of Theorem 3.3 and hence

T has a unique fixed point. Clearly, x = 0 is a unique fixed point of T .

Now, we introduce a common fixed point theorem for expansive mappings by using
the notion of weakly compatibility in Gp-metric spaces.

Theorem 3.4. Let (X,Gp) be a Gp-metric space and S and T be weakly compatible self mappings
of X satisfying

Gp(Sx, Sy, Sz) ≥ aGp(Tx, Ty, Tz) + bGp(Tx, Tx, Sx) + cGp(Ty, Ty, Sy)

+dGp(Tz, Tz, Sz) (3.8)

for all x, y, z ∈ X , where b, c, d ≥ 0, a > 1 with a+ b+ c+ d > 1. If T (X) ⊆ S(X) and one of
the subspaces T (X) or S(X) is Gp-complete, then S and T have a unique common fixed point in
X .

Proof. Let x0 ∈ X be an arbitrary point. Due to T (X) ⊆ S(X), we can pick a point x1 ∈ X
such that Tx0 = Sx1 = y1 and for this point x1, there exists a point x2 ∈ X such that
Tx1 = Sx2 = y2. So, there exists a sequence of points {xn} such that Txn = Sxn+1 = yn+1.
Note that, if Txn = Txn−1 for some n ≥ 1, then Txn = Sxn and xn is a coincidence point
of T and S. Hence, let us suppose that yn 6= yn+1 for all n ∈ N. Now, using equation (3.8),
we get

Gp(yn−1, yn, yn) = Gp(Sxn−1, Sxn, Sxn)

≥ aGp(Txn−1, Txn, Txn) + bGp(Txn−1, Txn−1, Sxn−1)

+cGp(Txn, Txn, Sxn) + dGp(Txn, Txn, Sxn)

= aGp(yn, yn+1, yn+1) + bGp(yn, yn, yn−1) + cGp(yn+1, yn+1, yn)

+dGp(yn+1, yn+1, yn).

Thus, we can conclude that

Gp(yn, yn+1, yn+1) ≤ qGp(yn−1, yn, yn),

where q =
1− b

a+ c+ d
∈ (0, 1).

By induction, we get

Gp(yn, yn+1, yn+1) ≤ qGp(yn−1, yn, yn)

≤ q2Gp(yn−2, yn−1, yn−1)

...
≤ qnGp(y0, y1, y1).

Therefore, for all n,m ∈ N, n < m, we obtain

Gp(yn, ym, ym) ≤ Gp(yn, yn+1, yn+1) +Gp(yn+1, yn+2, yn+2) + . . .

+Gp(ym−1, ym, ym)

≤ [qn + qn+1 + · · ·+ qm−1]Gp(y0, y1, y1)

≤ qn

1− q
Gp(y0, y1, y1)→ 0 as n→∞.

Hence, {yn} is a Gp-Cauchy sequence in X . Since T (X) ⊆ S(X) and T (X) or S(X) is a
complete subspace of X , there exists z ∈ S(X) such that

lim
n→∞

Gp(yn, yn, z) = lim
n→∞

Gp(yn, z, z) = lim
n,m→∞

Gp(yn, ym, ym) = Gp(z, z, z) = 0.
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As a consequence, we can find u ∈ X such that Su = z. Now, we show that Tu = z. We
have by (3.8),

Gp(Txn−1, Su, Su) = Gp(Sxn, Su, Su)

≥ aGp(Txn, Tu, Tu) + bGp(Txn, Txn, Sxn) + cGp(Tu, Tu, Su)

+dGp(Tu, Tu, Su)

= aGp(yn+1, Tu, Tu) + bGp(yn+1, yn+1, yn) + cGp(Tu, Tu, z)

+dGp(Tu, Tu, z).

Taking the limit as n→∞, we gain

0 = Gp(z, z, z) ≥ (a+ c+ d)Gp(z, Tu, Tu),

which means that Gp(z, Tu, Tu) = 0 since a + c + d 6= 0, that is z = Tu. Hence, we have
z = Su = Tu. Because S and T are weakly compatible, we can say that STu = TSu, in
other word Sz = Tz.

Now, let us prove that z is a common fixed point of S and T . From (3.8),

Gp(Sz, Sxn, Sxn) ≥ aGp(Tz, Txn, Txn) + bGp(Tz, Tz, Sz) + cGp(Txn, Txn, Sxn)

+dGp(Txn, Txn, Sxn)

= aGp(Tz, yn+1, yn+1) + bGp(Tz, Tz, Sz) + cGp(yn+1, yn+1, yn)

+dGp(yn+1, yn+1, yn).

If we take the limit as n→∞ in the previous inequality, we obtain

Gp(Sz, z, z) ≥ aGp(Tz, z, z) + bGp(Tz, Tz, Sz)

≥ aGp(Tz, z, z) = aGp(Sz, z, z).

This leads to Gp(Sz, z, z) = 0 since a > 1, which means that Sz = z. Hence, we get
Sz = Tz = z.

To prove uniqueness, suppose that z 6= w is another common fixed point of S and T ,
then we get Sw = Tw = w. By using (3.8),

Gp(z, w,w) = Gp(Sz, Sw, Sw)

≥ aGp(Tz, Tw, Tw) + bGp(Tz, Tz, Sz) + cGp(Tw, Tw, Sw)

+dGp(Tw, Tw, Sw)

= aGp(z, w,w) + (c+ d)Gp(w,w,w)

≥ aGp(z, w,w),

which need that z = w. This completes the proof. �

We give an example to illustrate Theorem 3.4.

Example 3.5. X = [0, 1] and Gp(x, y, z) = max{x, y, z}. Let S(x) =
x

2
and T (x) =

x

6
for all x ∈ X . It is clear that T (X) ⊆ S(X) and S(X) is Gp-complete. Further, for all
x, y, z ∈ [0, 1] with x ≥ y ≥ z, we obtain

Gp(Sx, Sy, Sz) = max
{x
2
,
y

2
,
z

2

}
=
x

2

≥ 4x

9
≥ aGp(Tx, Ty, Tz) + bGp(Tx, Tx, Sx) + cGp(Ty, Ty, Sy)

+dGp(Tz, Tz, Sz)
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for a = 2, b = c = d =
2

27
. Moreover, mappings S and T are weakly compatible at

x = 0. Consequently, all assumptions of Theorem 3.4 are satisfied and hence 0 is the
unique common fixed point.

Taking a = λ and b = c = d = 0 in Theorem 3.4, we get the following corollary
generalizing the results of Daffer and Kaneko [6] and Rhoades [17] to weakly compatible
mappings in a Gp-metric space.

Corollary 3.3. Let (X,Gp) be aGp-metric space and S and T be weakly compatible self mappings
of X satisfying

Gp(Sx, Sy, Sz) ≥ λGp(Tx, Ty, Tz)

for all x, y, z ∈ X , where λ > 1 is a constant. If T (X) ⊆ S(X) and one of the subspaces T (X) or
S(X) is Gp-complete, then S and T have a unique common fixed point in X .

Now, we shall construct an example and show that the necessary condition of weakly
compatible can not be removed.

Example 3.6. Let X = [0, 1] with the Gp-metric Gp(x, y, z) = max{x, y, z}. Define the
mappings

S(x) = 1− x and T (x) =
1− x
2

for all x ∈ X . Then T (X) ⊆ S(X) and S(X) is Gp-complete. Furthermore, for all x, y, z ∈
[0, 1] we get

Gp(Sx, Sy, Sz) = max{1− x, 1− y, 1− z}

≥ amax

{
1− x
2

,
1− y
2

,
1− z
2

}
= aGp(Tx, Ty, Tz)

where 1 < a ≤ 2 and b = c = d = 0. Also, S1 = T1 = 0 but ST1 = 1 and TS1 =
1

2
. Hence, S and T are not weakly compatible mappings. It follows that except for the

weakly compatibility of S and T , all other hypothesis of Theorem 3.4 and Corollary 3.3
are satisfied. But, the mappings S and T do not have a common fixed point. This shows
that the weakly compatibility of S and T in Theorem 3.4 and Corollary 3.3 is an essential
condition.

Acknowledgements. The authors would like to thank the reviewers for pointing out
some mistakes and misprints in the earlier version of this paper. So, They would like to
express their pleasure to the reviewers for their careful reading and making some useful
comments which improved the presentation of the paper. M. Kaya has been supported
by the Scientific and Technological Research Council of Turkey (TUBITAK Programme,
2211-A).

REFERENCES

[1] Abbas, M. and Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone
metric spaces, J. Math. Anal. Appl., 341 (2008), 416–420

[2] Aydi, H., Karapınar, E. and Salimi, P., Some fixed point results in Gp-metric spaces, J. Appl. Math., 2012 (2012),
Article ID 891713, 15 pages, doi:10.1155/2012/891713

[3] Barakat, M. A. and Zidan, A. M., A common fixed point theorem for weak contractive maps in Gp-metric spaces,
J. Egyptian Math. Soc., 23 (2015), 309–314

[4] Bilgili, N., Karapınar, E. and Salimi, P., Fixed point theorems for generalized contractions on Gp-metric spaces, J.
Inequal Appl., 2013:39 (2013), 1–13

[5] Ciric, L., Alsulami, S. M., Parvaneh, V. and Roshan, R., Some fixed point results in ordered Gp-metric spaces,
Fixed Point Theory Appl., 2013:317 (2013), 1–25



308 Meltem Kaya and Hasan Furkan

[6] Daffer, P. Z. and Kaneko, H., On expansive mappings, Math. Japon, 37 (1992), 733–735
[7] Huang, X., Zhu, C. and Wen, X., Fixed point theorems for expanding mappings in partial metric spaces, An. Şt.
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