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q-Greens’ s formula on the complex plane in the sense of
Harman

KERİM KOCA, İLKER GENÇTÜRK and MUSTAFA AYDIN

ABSTRACT. In this work, we proved the q-Green’s identity in the sense of Harman for the discrete functions
f(z), g(z) which are defined on the square discrete set D ⊂ C. We also presented q -analogue of Cauchy integral
formula by using discrete q-analytic f(z) and p-analytic g(z) functions.

1. INTRODUCTION

Based on a discrete set in complex plane, interesting results for q-discrete functions
were given by defining q-derivatives and q-integrals. For instance; Cauchy theorem which
is well known in Complex Analysis, Cauchy integral formula and q-analogues of Green
formula were obtained. For this, see [1], [2], [3], [6], [7] and [9]. For 0 < q < 1, q-analyticity
can be defined in various ways. See [5], [6] and [11]. Also, for q = 1 instead of q-analytic
function, monodiffric discrete functions were studied. For this see [2] and [3].

C. J. Harman, for discrete function in [6] has defined q-line integral differently than
Jackson integral, and with the help of this integral, for two discrete functions he has found
q-analogues of Cauchy integral formula and Green formula discrete domain D ⊂ C.

In this study, we obtained a different form of q-Green formula for discrete functions
f(z), g(z) which are defined on the square discrete domain D ⊂ C with the help of mul-
tiple Jackson series by using the definition of Harman’s q-line integral. In addition, by
using discrete q-analytic f(z) and p-analytic g(z) functions, we presented q-analogue of
Cauchy integral formula which is a little different from one in [6].

2. SOME NOTATIONS

Now, let’s give some definitions and concepts of q-analysis that we are going to use in
this study. Here, the parameter q will be 0 < q < 1.

For a ∈ R,

[a]q =
1− qa

1− q
and it is called q-analogue of a.

For x ∈ R, n ∈ N

(1 + x)n = (1 + x)(1 + qx)...(1 + qn−1x) , (1 + x)0 = 1

and for m,n ∈ N

[n]q! =
(1− q)n
(1− q)n

,

(
n

m

)
q

=
(1− q)n

(1− q)m(1− q)n−m
;n ≥ m

representations exist. See [4].
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Let’s consider a fixed point z = x+ iy ∈ C and define in complex plane the discrete set
of Q as following;

Q = {(qmx, qny) = qmx+ iqny ∈ C : m,n ∈ Z} . (2.1)

For instance, let z = x + iy be an initial point in Q. Then the discrete set Q is showed
geometrically below and Figure 1:

Q =

{
z = (x, y), z1 = (qx, y), z2 = (qx, qy), z3 = (x, qy), z4 = (q−1x, qy),
z5 = (q−1x, y), z6 = (q−1x, q−1y), z7 = (x, q−1y), z8 = (qx, q−1y)

}
.
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FIGURE 1. Q discrete set

Definition 2.1. [6] Let the point zi = (xi, yi) ∈ Q, i ∈ N be given. If the point zi+1 is one
of the following points

(qxi, yi), (q
−1xi, yi), (xi, qyi), (xi, q

−1yi)

then the points zi and zi+1 are called adjacent.

For instance, in Figure 1, the points z1, z3, z5, z7 are adjacent points of z.

Definition 2.2. [6] Let the adjacent points zi, zi+1 ∈ Q be given. Then the following line γ
is called a discrete q-curve in discrete set Q

γ =< z0, z1, ..., zn > . (2.2)

For i 6= j, if it is zi 6= zj then, γ curve is called a simple q-curve in Q.

Definition 2.3. [6] If γ =< z0, z1, ..., zn > is a simple q-curve and z0 = zn, then this line is
called simple closed q-curve.

Definition 2.4. For z ∈ Q, the following set

S(z) = {z = (x, y), z1 = (qx, y), z2 = (qx, qy), z3 = (x, qy)} (2.3)

is called simple basic set based on z.

According to this definition, any finite subset D1 ⊂ Q can be written as a combination
of simple basic sets.
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3. q−ANALYTIC FUNCTIONS

A function defined on a discrete set in complex plane is called a discrete function.
Let xi 6= 0 and yi 6= 0 be. For zi ∈ Q, let’s take the set T (zi) = {(xi, yi), (qxi, yi), (xi, qyi)}
into consideration. Let’s define the discrete subset D1 =

n⋃
i=1

T (zi) ⊂ Q. On this set a

discrete function f(z) is given.

Definition 3.5. [6], [8] Let f(z) be a complex valued discrete function on D1. The follow-
ing operators Dq,x and Dq,y are called the complex partial q-derivative operators

Dq,xf(z) =
f(z)− f(qx, y)

(1− q)x
, Dq,yf(z) =

f(z)− f(x, qy)
(1− q)iy

, x 6= 0, y 6= 0. (3.4)

Definition 3.6. [6], [8] Let f(z) be a discrete function defined onD1. If following equation
is satisfied at the point z ∈ D1, then f(z) is called q−analytic at z

Dq,xf(z) = Dq,yf(z). (3.5)

If the equation in (3.5) is satisfied on each point of D1, then f(z) is called q-analytic in D1.

Remark 3.1. In [11], the q-analyticity of a complex valued function f(z) is defined with
the following identity

Dzf(z) =
1

2
(D∗q,x + iMy

1
q

D∗q,y)f(z) ≡ 0. (3.6)

Here

D∗q,xf(z) =
f(z)− f(qx, y)

(1− q)x
, D∗q,yf(z) =

f(z)− f(x, qy)
(1− q)y

,

My
q f(x, y) = f(x, qy). (3.7)

Remark 3.2. It is clear that there is a relationship between operators in (3.4) and (3.7) such
as Dq,x = D∗q,x and Dq,y = −iD∗q,y .

Let f(z) be a discrete function on D1 and let’s define operator L by

Lf(z) = zf(z)− xf(x, qy) + iyf(qx, y). (3.8)

Then, with a simple calculation, it can be seen that

f(z) is q-analytic on D1 ⇔ Lf(z) = 0. (3.9)

Let S(z) be as in (2.3), let’s define the set D for zi ∈ Q as

D =

n⋃
i=1

S(zi). (3.10)

Also let subset D2 be as following

D2 = {zj : zj ∈ S(zi); i = 1, 2, ..., n; zi ∈ D}. (3.11)

If f(z) is a q-analytic in D, then Dq,xf(z) = Dq,yf(z) and the operator Dq can be used
where Dq,x = Dq,y = Dq .

Remark 3.3. If f(z) is q-analytic in D2, then Dn
q f(z) is also q-analytic. Here is n = 1, 2, ... .

Remark 3.4. If u(x, y) is a real valued discrete function then the partial real q-derivatives
of u(x, y) with respect to x and y are given by

D∗q,xu(x, y) =
u(x, y)− u(qx, y)

(1− q)x
, D∗q,yu(x, y) =

u(x, y)− u(x, qy)
(1− q)y

.
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Let the function f(z) is a q-analytic on discrete setD and f(z) = u(x, y)+ iv(x, y). Then
from (3.9) the q-Cauchy-Riemann equations are

D∗q,xu = D∗q,yv , D
∗
q,xv = −D∗q,yu. (3.12)

and q-Laplace equations are obtained as following

D∗
2

q,xu+D∗
2

q,yu = 0 , D∗
2

q,xv +D∗
2

q,yv = 0.

See [10].

Let γ =< z0, z1, ..., zn > be a simple closed curve in D and f(z) is a function on γ.
Then the line q-integral of f(z) along γ is defined by∫

γ

f(t)dqt =

zn∫
z0

f(t)dqt =

n−1∑
j=0

zj+1∫
zj

f(t)dqt (3.13)

where
zj+1∫
zj

f(t)dqt =

{
(zj+1 − zj)f(zj); zj+1 = (qxj , yj) or (xj , qyj),
(zj+1 − zj)f(zj+1); zj+1 = (q−1xj , yj) or (xj,q−1yj).

(3.14)

See [6] for some properties of (3.13).

Theorem 3.1. [6] A function f(z) is q-analytic inD if and only if the discrete line integral around
every discrete closed curve in D is zero.

Proof. Let f(z) q-analytic in D, then for every z ∈ D can be written

Lf(z) = zf(z)− xf(x, qy) + iyf(qx, y) = 0.

Without loss of generality, we will chose the simple closed curve γ =< z, z1, z2, z3, z > as
elements of set S(z). Then we get∫

γ

f(ζ)dqζ = z1f(z) + (z2 − z1)f(z1) + (z3 − z2)f(z3)− z3f(z)

= (qx+ iy)f(z) + (q − 1)iyf(qx, y) + (1− q)xf(x, qy)− (x+ iqy)f(z)

= (qz − z)f(z) + iqyf(qx, y)− iyf(qx, y)− qxf(x, qy) + xf(x, qy)

= (q − 1)[zf(z)− xf(x, qy) + iyf(qx, y)]

= (q − 1)Lf(z)

= 0.

The same result can be found for the closed discrete curves γ that have more elements. �

4. A q−ANALOGUE OF GREEN FORMULA

Let’s consider the sets D,D2 which are respectively defined in (3.10) and (3.11), in
previous sections and show that simple closed discrete boundary of D as ∂D := γ =<
z0, z1, ..., zn = z0 >.
In this case, the following theorem is valid:

Theorem 4.2. Let f(z) be any discrete function on D, then∫
∂D

f(ζ)dqζ = (q − 1)
∑
z∈D2

Lf(z).
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FIGURE 2. D discrete set

Proof. Without loss of generality, let us take set D specifically as D = {z, z1, z2, z3, z4,
z5, z6, z7, z8}.

∂D = γ =< z, z1, z2, z3, z4, z5, z6, z7, z >,

S(z) = {z, z1, z7, z8},
S(z1) = {z1, z2, z3, z8},
S(z8) = {z3, z4, z5, z8},
S(z7) = {z5, z6, z7, z8},

D = S(z) ∪ S(z1) ∪ S(z7) ∪ S(z8) = {z, z1, ..., z7, z8},
D2 = {z, z1, z7, z8}.

Here it is clear thatD = S(z)∪S(z1)∪S(z7)∪S(z8) = {z, z1, ..., z8}. Beside, z = x+iy, z1 =
qx+ iy, z2 = q2x+ iy, z3 = q2x+ iqy, z4 = q2x+ iq2y, z5 = qx+ iq2y, z6 = x+ iq2y, z7 =
x+ iqy, z8 = qx+ iqy. From (3.13) and (3.14), it can be written∫
∂D

f(ζ)dqζ = (z1 − z)f(z) + (z2 − z1)f(z1) + (z3 − z2)f(z2) + (z4 − z3)f(z3)

+(z5 − z4)f(z5) + (z6 − z5)f(z6) + (z7 − z6)f(z7) + (z − z7)f(z)
= (q − 1)[xf(z) + qxf(z1) + iyf(z2) + iqyf(z3)− qxf(z5)− xf(z6)−

iqyf(z7)− iyf(z)]. (4.15)

On the other hand, from (3.8), for any discrete function f(z), the following identities can
be written;

Lf(z) = zf(z)− xf(z7) + iyf(z1),

Lf(z1) = z1f(z1)− qxf(z8) + iyf(z2),

Lf(z7) = z7f(z7)− xf(z6) + iqyf(z8),

Lf(z8) = z8f(z8)− qxf(z5) + iqyf(z3).

If these identities are used in (4.15), at the end of an arrangement, we get∫
∂D

f(ζ)dqζ =
q − 1

q
[z8f(z) + z3f(z1) + z5f(z7) + z4f(z8)]
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+(q − 1)[Lf(z)− zf(z) + Lf(z8)− z8f(z8) + Lf(z7)− z7f(z7)
+Lf(z1)− z1f(z1)].

When we consider 1
q z8 = z, 1

q z3 = z1, 1
q z5 = z7, 1

q z4 = z8 and after some simplifications,
it can be written as∫

∂D

f(ζ)dqζ = (q − 1)[Lf(z) + Lf(z1) + Lf(z7) + Lf(z8)]

= (q − 1)
∑
z∈D2

Lf(z).

�

Let f(z) be a discrete function in discrete set D and p = q−1. The operators Dp,x, Dp,y

are defined by (as in (3.4))

Dp,xf(z) =
f(z)− f(px, y)

(1− p)x
, Dp,yf(z) =

f(z)− f(x, py)
(1− p)iy

;x 6= 0, y 6= 0. (4.16)

Definition 4.7. [6] Let g(z) be a discrete function in D. If g(z) satisfies

Dp,xg(z) = Dp,yg(z), (4.17)

then the function g(z) is called p−analytic at z.

Remark 4.5. Let g(z) be a discrete function on D and let’s define the operator B as

Bg(z) = zg(z)− xg(x, py) + iyg(px, y). (4.18)

Then, it can be seen that g(z) is p−analytic on D if and only if Bg(z) = 0 in D.

Let the discrete curve γ =< z0, z1, ..., zn > be in discrete setD and the discrete functions
f(z) and g(z) be on this curve. Then, conjoint line integral along γ is defined as∫

γ

(f ∗ g)(ζ)dqζ =

zn∫
z0

(f ∗ g)(ζ)dqζ =

n−1∑
j=0

zj+1∫
zj

(f ∗ g)(ζ)dqζ, (4.19)

where
zj+1∫
zj

(f ∗ g)(ζ)dqζ =

{
(zj+1 − zj)f(zj)g(zj+1); zj+1 = (qxj , yj) or(xj , qyj),
(zj+1 − zj)f(z(j+1))g(zj); zj+1 = (pxj , yj) or (xj , pyj).

(4.20)

See [6].

Theorem 4.3. Let’s choose the simple closed discrete curve γ =< z0, z1, ..., zn−1, zn = z0 >
as boundary points of finite discrete set D, i.e. ∂D = γ. If f(z) and g(z) are discrete complex
functions in D, then∫

γ

(f ∗ g)(ζ)dqζ =
1− q
q

∑
z∈D2

[f(z)Bg(qz)− qg(qz)Lf(z)]. (4.21)

Proof. Without loss of generality, let’s take the set D as in Theorem 4.2. From (4.19), we
can write∫
γ

(f ∗ g)(ζ)dqζ = (z1 − z)f(z)g(z1) + (z2 − z1)f(z1)g(z2) + (z3 − z2)f(z2)g(z3)

+(z4 − z3)f(z3)g(z4) + (z5 − z4)f(z5)g(z4) + (z6 − z5)f(z6)g(z5)



q-Greens’ s formula on the complex plane in the sense of Harman 315

+(z7 − z6)f(z7)g(z6) + (z − z7)f(z)g(z7)
= (q − 1)xf(z)g(z1) + (q − 1)qxf(z1)g(z2) + (q − 1)iyf(z2)g(z3)

+(q − 1)iqyf(z3)g(z4) + (1− q)xf(z6)g(z5) + (1− q)iqyf(z7)g(z6)
+(1− q)iyf(z)g(z7). (4.22)

On the other hand, we can write by using (3.8) and (4.18)

Bg(qz) = Bg(z8) = z8g(z8)− qxg(z1) + iqyg(z7),

Bg(qz1) = Bg(z3) = z3g(z3)− q2xg(z2) + iqyg(z8),

Bg(qz7) = Bg(z5) = z5g(z5)− qxg(z8) + iq2yg(z6),

Bg(qz8) = Bg(z4) = z4g(z4)− q2xg(z3) + iqyg(z5),

Lf(z) = zf(z)− xf(z7) + iyf(z1),

Lf(z1) = z1f(z1)− qxf(z8) + iyf(z2),

Lf(z7) = z7f(z7)− xf(z6) + iqyf(z8),

Lf(z8) = z8f(z8)− qxf(z5) + iqyf(z3).

And if these identities are used in (4.22), by simple calculations, we get∫
γ

(f ∗ g)(ζ)dqζ =
∑
z∈D2

{
1− q
q

f(z)[Bg(qz)− (qz)g(qz)]− (1− q)g(qz)[Lf(z)− zf(z)]
}

=
1− q
q

∑
z∈D2

[f(z)Bg(qz)− qg(qz)Lf(z)].

So, this completes the proof of theorem. �

Remark 4.6. Under the conditions of Theorem 4.3, (4.21) was given as∫
γ

(f ∗ g)(ζ)dqζ =
∑
z∈D2

[f(z)Bg(qz)− g(qz)Lf(z)] (4.23)

without proof in [6], and this result was used in the same paper. We think that this result
(4.23) is incorrect. See [[6], Theorem 8.2].

Remark 4.7. Let γ = z(t) = x(t) + iy(t) be a continuous curve on C with t ∈ [0, a] and
f(z) = u(x, y) + iv(x, y) be a complex valued function on the curve γ. If x(t) and y(t)
have q-derivative, then with the help of Jackson series the line q-integral of f(z) along γ
is given as∫

γ

f(z)dqz =

a∫
0

f(z(t))Dqz(t)dqt = (1− q)a
∞∑
n=0

qnf(z(aqn))Dqz(aq
n). (4.24)

See [10].
Here is

Dqz(t) =
z(t)− z(qt)
(1− q)t

, t 6= 0.

We note that (3.13) and (4.24) q-line integrals are different.

Let’s choose the discrete set D3 where a is a constant (a > 0), as

D3 = {zmn = aqm + iaqn = (aqm, aqn) : 0 ≤ m,n <∞;m,n ∈ N}. (4.25)

In this case, the discrete boundary of D3

∂D3 = C1 ∪ C2 ∪ C3 ∪ C4, (4.26)
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where

C1 = {aqn : n = 0, 1, 2, ...}, (4.27)
C2 = {a+ iaqn : n = 0, 1, 2, ...},
C3 = {aqn + ia : n = 0, 1, 2, ...},
C4 = {iaqn : n = 0, 1, 2, ...}.

Definition 4.8. Let f(z) be given a discrete function in D3 in (4.25). If the limits

lim
n→∞

f(x, aqn) = f(x, 0), 0 < x ≤ a,

lim
n→∞

f(aqn, y) = f(0, y); 0 < y ≤ a

exist, then the f(z) is called q−regular on γ1 and γ4, respectively.
Also, if the limit

lim
m,n→∞

f(qma, qna) := lim
m→∞

[
lim
n→∞

f(qma, qna)
]
= lim
n→∞

[
lim
m→∞

f(qma, qna)
]
= f(0, 0)

exists, then the f(z) is called q-regular at the origin. See [10].

Lemma 4.1. Let D3 be as in (4.25). If the function f(z) is q-analytic in D3 and q-regular on
∂D3, then ∫

∂D3

f(ζ)dqζ = 0. (4.28)

Proof. From the definition (3.13), we get∫
∂D3

f(ζ)dqζ = (1− q)a
∞∑
n=0

qn[f(aqn, 0)− f(aqn, a) + if(a, aqn)− if(0, aqn)]

= (1− q)a
∞∑
n=0

[qnf(aqn, 0)− qnf(aqn, a) + iqnf(a, aqn)− iqnf(0, aqn)].

(4.29)

On the other hand, because the f(ζ) is q-analytic,

Lf(a, aqn) = (a− iaqn)f(a, aqn)− f(a, aqn+1) + iaqnf(aq, aqn) = 0,

Lf(aqn, a) = (aqn − ia)f(aqn, a)− aqnf(aqn, aq) + iaf(aqn+1, a) = 0.

can be written. From these equations, we get

iqnf(a, aqn) = f(a, aqn)− f(a, aqn+1) + iqnf(aq, aqn), (4.30)
−qnf(aqn, a) = −if(aqn, a)− qnf(aqn, aq) + if(aqn+1, a). (4.31)

By using (4.30) and (4.31) in (4.29), we get∫
∂D3

f(ζ)dqζ = (1−q)a
∞∑
n=0

[f(a, aqn)−f(a, aqn+1)]−(1−q)ia
∞∑

n=0

[f(aqn, a)−f(aqn+1, a)]

+ (1− q)a
∞∑

n=0

[qnf(aqn, 0)− iqnf(0, aqn) + iqnf(aq, aqn)− qnf(aqn, aq)]

= (1− q)a lim
n→∞

[f(a, a)− f(a, aqn+1)]− (1− q)ia lim
n→∞

[f(a, a)− f(aqn+1, a)]

+ (1− q)a
∞∑

n=0

[qnf(aqn, 0)− iqnf(0, aqn) + iqnf(aq, aqn)− qnf(aqn, aq)]
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= (1−q)a[f(a, a)−f(a, 0)−if(a, a)+if(0, a)+f(a, 0)−if(0, a)+if(aq, a)−f(a, aq)]

+ (1− q)a
∞∑

n=1

[qnf(aqn, 0)− iqnf(0, aqn) + iqnf(aq, aqn)− qnf(aqn, aq)]

=(1−q)aLf(a, a)+(1−q)a
∞∑

n=1

[qnf(aqn, 0)−iqnf(0, aqn)+iqnf(aq, aqn)−qnf(aqn, aq)]

= (1− q)a
∞∑

n=1

[qnf(aqn, 0)− iqnf(0, aqn) + iqnf(aq, aqn)− qnf(aqn, aq)]. (4.32)

Beside, from hypothesis

Lf(aqn, aq) = (aqn − iaq)f(aqn, aq)− aqnf(aqn, aq2) + iaqf(aqn+1, aq) = 0,

Lf(aq, aqn) = (aq − iaqn)f(aq, aqn)− aqf(aq, aqn+1) + iaqnf(aq2, aqn) = 0

and from here

qnf(aqn, aq) = iqf(aqn, aq) + qnf(aqn, aq2)− iqf(aqn+1, aq), (4.33)
iqnf(aq, aqn) = qf(aq, aqn)− qf(aq, aqn+1) + iqnf(aq2, aqn) (4.34)

can be written. By rewriting (4.33) and (4.34) in (4.32) and if the same operations are
repeated, then it follows∫
∂D3

f(ζ)dqζ = (1− q)a
∞∑
n=2

[qnf(aqn, 0)− iqnf(0, aqn) + iqnf(aq2, aqn)− qnf(aqn, aq2)].

If these steps are repeated k times, finally we get∫
∂D3

f(ζ)dqζ = (1− q)a
∞∑
n=k

qn[f(aqn, 0)− if(0, aqn) + if(aqk, aqn)− f(aqn, aqk)].

Since n→∞ for k →∞, so we get ∫
∂D3

f(ζ)dqζ = 0.

�

Theorem 4.4. Let D3 and ∂D3 be as in (4.25) and (4.26) respectively. Also, let the discrete
functions f(z) and g(z) are q-regular on γ1, γ4 and at the origin. Then∫

∂D3

(f ∗ g)(ζ)dqζ =
1− q
q

∞∑
m=0

∞∑
n=0

[f(zmn)Bg(qzmn)− qg(qzmn)Lf(zmn)]. (4.35)

Proof. From the additivity property of q-line integral in (4.19) [see [6]], we can write∫
∂D3

(f ∗ g)(ζ)dqζ =

∫
C1

(f ∗ g)(ζ)dqζ +
∫
C2

(f ∗ g)(ζ)dqζ

+

∫
C3

(f ∗ g)(ζ)dqζ +
∫
C4

(f ∗ g)(ζ)dqζ

= (1− q)a
∞∑

n=0

qnf(aqn, 0)g(aqn+1, 0) + (1− q)ia
∞∑

n=0

qnf(a, aqn)g(a, aqn+1)

+(q − 1)a

∞∑
n=0

qnf(aqn, a)g(aqn+1, a) + (q − 1)ia

∞∑
n=0

qnf(0, aqn)g(0, aqn+1)
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= (1− q)a
∞∑

n=0

qn[f(aqn, 0)g(aqn+1, 0) + if(a, aqn)g(a, aqn+1)

−f(aqn, a)g(aqn+1, a)− if(0, aqn)g(0, aqn+1)]. (4.36)

Also, from (3.8) and (4.18),

Lf(zmn) = Lf(aqm, aqn)

= (aqm − iaqn)f(aqm, aqn)− aqmf(aqm, aqn+1)

+iaqnf(aqm+1, aqn)

= aqmf(aqm, aqn)− iaqnf(aqm, aqn)
−aqmf(aqm, aqn+1) + iaqnf(aqm+1, aqn),

Bg(qzmn) = Bg(aqm+1, aqn+1)

= (aqm+1 − iaqn+1)g(aqm+1, aqn+1)− aqm+1g(aqm+1, aqn)

+iaqn+1g(aqm, aqn+1)

= aqm+1g(aqm+1, aqn+1)− iaqn+1g(aqm+1, aqn+1)

−aqm+1g(aqm+1, aqn) + iaqn+1g(aqm, aqn+1)

can be written.
If these identities are used on the right side of the equation in (4.35), it follows

1− q
q

∞∑
m=0

∞∑
n=0

[f(zmn)Bg(qzmn)− qg(qzmn)Lf(zmn)]

= (1− q)a
∞∑

n=0

∞∑
m=0

f(aqm, aqn)
[
qmg(aqm+1, aqn+1)− iqng(aqm+1, aqn+1)

−qmg(aqm+1, aqn) + iqng(aqm, aqn+1)
]

−(1− q)a
∞∑

n=0

∞∑
m=0

g(aqm+1, aqn+1) [qmf(aqm, aqn)− iqnf(aqm, aqn)

−qmf(aqm, aqn+1) + iqnf(aqm+1, aqn)
]

= (1− q)a
∞∑

n=0

∞∑
m=0

{qm[f(aqm, aqn+1)g(aqm+1, aqn+1)− f(aqm, aqn)g(aqm+1, aqn)]

+iqn[f(aqm, aqn)g(aqm, aqn+1)− f(aqm+1, aqn)g(aqm+1, aqn+1)]}. (4.37)

On the other hand,
∞∑

m=0

∞∑
n=0

qm[f(aqm, aqn+1)g(aqm+1, aqn+1)− f(aqm, aqn)g(aqm+1, aqn)]

=
∞∑

m=0

qm[f(aqm, aq)g(aqm+1, aq)− f(aqm, a)g(aqm+1, a)

+f(aqm, aq2)g(aqm+1, aq2)− f(aqm, aq)g(aqm+1, aq)

+f(aqm, aq3)g(aqm+1, aq3)− f(aqm, aq2)g(aqm+1, aq2)

+f(aqm, aq4)g(aqm+1, aq4)− f(aqm, aq3)g(aqm+1, aq3)

...
+f(aqm, aqk)g(aqm+1, aqk)− f(aqm, aqk−1)g(aqm+1, aqk−1)

+f(aqm, aqk+1)g(aqm+1, aqk+1)− f(aqm, aqk)g(aqm+1, aqk)

+f(aqm, aqk+2)g(aqm+1, aqk+2)− f(aqm, aqk+1)g(aqm+1, aqk+1) + ...]
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=

∞∑
m=0

qm[f(aqm, 0)g(aqm+1, 0)− f(aqm, a)g(aqm+1, a)]. (4.38)

Similarly, we can find
∞∑
n=0

∞∑
m=0

iqn[f(aqm, aqn)g(aqm, aqn+1)−f(aqm+1, aqn)g(aqm+1, aqn+1)]

=

∞∑
n=0

iqn[f(a, aqn)g(a, aqn+1)− f(aq , aqn)g(aq , aqn+1)

+f(aq, aqn)g(aq, aqn+1)− f(aq2, aqn)g(aq2, aqn+1)

+f(aq2, aqn)g(aq2, aqn+1)− f(aq3, aqn)g(aq3, aqn+1)

+f(aq3, aqn)g(aq3, aqn+1)− f(aq4, aqn)g(aq4, aqn+1)

...
+f(aqk−1, aqn)g(aqk−1, aqn+1)− f(aqk, aqn)g(aqk, aqn+1)

+f(aqk, aqn)g(aqk, aqn+1)− f(aqk+1, aqn)g(aqk+1, aqn+1)

+f(aqk+1, aqn)g(aqk+1, aqn+1)− f(aqk+2, aqn)g(aqk+2, aqn+1) + ...]

=

∞∑
n=0

iqn[f(a, aqn)g(a, aqn+1)− f(0, aqn)g(0, aqn+1)]. (4.39)

If (4.38) and (4.39) are replaced in (4.37) and by considering (4.36), we get

1− q
q

a

∞∑
m=0

∞∑
n=0

[f(zmn)Bg(qzmn)− qg(qzmn)Lf(zmn)]

= (1− q)a
∞∑
n=0

qn
[
f(aqn, 0)g(aqn+1, 0) + if(a, aqn)g(a, aqn+1)

−f(aqn, a)g(aqn+1, a)− if(0, aqn)g(0, aqn+1)
]

=

∫
∂D3

(f ∗ g)(ζ)dqζ. (4.40)

So this completes the theorem. �

Remark 4.8. If the discrete function f is q-analytic and the discrete function g is p-analytic
in D3, then Lf(zmn) = 0, Bg(qzmn) = 0 and from (4.35)∫

∂D3

(f ∗ g)(ζ)dqζ = 0.

Remark 4.9. (4.35) is called a q-analogue of Green identity on the complex plane.

Corollary 4.1. If the function f(z) is q-analytic in D3, then Lf(zmn) = 0 and∫
∂D3

(f ∗ g)(ζ)dqζ =
1− q
q

∞∑
m=0

∞∑
n=0

f(zmn)Bg(qzmn); 0 < q < 1.

Definition 4.9. [6] Let D3 be a discrete set as (4.25) and B the operator in (4.18). For z, ζ ∈
D3, the discrete function Gζ is called q-singularity function if it satisfies the following
condition:
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B[Gz(ζ)] =

{
1;
0;

ζ = z,
ζ 6= z.

(4.41)

As an example for (4.41), the following example is given in [6] for z = (x, y) ∈ Q

Gz(ζ) = Gz(q
mx, qny) =

{
(m+n

n )
q
xnym(y+ix)

(x−iy)n+1(y+ix)m+1
;

0,

m ≥ 0, n ≥ 0,
m, n = −1,−2, ...,

where Q discrete set defined as in (2.1).
Then, for m ≥ 0, n ≥ 0, it follows BGz(z) = 1 and for ζ 6= z, BGz(ζ) = 0. From here, by
using (4.35) we get ∫

∂D3

(f ∗Gz)(ζ)dqζ =
1− q
q

f(pz) (4.42)

and it is a q-analogue of classical Cauchy integral formula.

Corollary 4.2. If the function f(z) is q-analytic on discrete domainD3 andGz(ζ) is a q-singularity
function, then ∫

∂D3

(f ∗Gqz)(ζ)dqζ =

{ 1−q
q f(z);

0;

z ∈ D3,
z /∈ D3.

(4.43)

5. CONCLUSION

In [6], Harman defined a discrete contour integral and found analogues for Cauchy
integral theorem. Harman obtained the results in [6] for a set which is in the form as
(3.10). In this paper, differently from Harman, we obtained the results for set which is in
the form as (4.25). For these results, we used q-regularity which is defined in Definition
4.8.
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