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Some convergence results for nonexpansive mappings in
uniformly convex hyperbolic spaces

AYNUR ŞAHIN and METIN BAŞARIR

ABSTRACT. In this paper, we establish some strong and 4-convergence theorems of an iteration process for
approximating a common fixed point of three nonexpansive mappings in a uniformly convex hyperbolic space.
The results presented here extend and improve various results in the existing literature.

1. INTRODUCTION

Khan et al. [8] introduced the following iteration process in a Banach space:
x1 ∈ K,
yn = (1− βn)xn + βnQxn,

xn+1 = (1− αn)Txn + αnSyn, n ≥ 1,

(1.1)

where {αn} and {βn} are real sequences in [0, 1].
The following iteration process is a translation of the iteration process (1.1) from Banach

space to hyperbolic space:
x1 ∈ K,
yn =W (xn, Qxn, βn),

xn+1 =W (Txn, Syn, αn), n ≥ 1.

(1.2)

It is worth mentioning that this iteration process coincides with the iteration process (1.1)
when W (x, y, α) = (1 − α)x + αy and X is a uniformly convex Banach space. Moreover,
the iteration process (1.2) is reduced to the S-iteration process of Khan and Abbas [9] in a
CAT(0) space if W (x, y, α) = (1− α)x⊕ αy and T = S = Q. It is also reduced to Ishikawa
iteration in [7] when T = I, S = Q, Mann iteration in [16] when T = Q = I and Picard
iteration when T = S,Q = I.

Note that the iteration process given in (1.2) has three nonexpansive mappings T, S
and Q. The purpose of this paper is to get some results on strong and 4-convergence of
this iteration process in a uniformly convex hyperbolic space. Our results generalize some
recent results given in [9, 3].

2. PRELIMINARIES ON HYPERBOLIC SPACE

In 1970, Takahashi [20] introduced the concept of convex metric space as follows.
A mapping W : X ×X × [0, 1]→ X is a convex structure in X if

d(u,W (x, y, λ)) ≤ (1− λ)d(u, x) + λd(u, y),
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for all x, y, u ∈ X and λ ∈ [0, 1]. A metric space (X, d) together with a convex structure W
is called convex metric space. A subsetK of a convex metric spaceX is convex ifW (x, y, λ) ∈
K for all x, y ∈ K and λ ∈ [0, 1].

After that several authors extended this concept in many ways. One such convex struc-
ture is available in the hyperbolic space introduced by Kohlenbach [13], which is more
restrictive than the hyperbolic type in [5] and more general than the hyperbolic space
defined in [17].

A hyperbolic space (X, d,W ) (see [13]) is a metric space (X, d) together with a mapping
W : X ×X × [0, 1]→ X satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),
(W2) d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| d(x, y),
(W3) W (x, y, λ) =W (y, x, (1− λ)),
(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w),

for all x, y, z, w ∈ X and λ, λ1, λ2 ∈ [0, 1]. This class of hyperbolic spaces contains all
normed linear spaces and convex subsets thereof, R-trees, the Hilbert ball with the hy-
perbolic metric (see [6]), Cartesian products of Hilbert balls, Hadamard manifolds and
CAT(0) spaces (see [2, 21, 22]), as special cases.

The following example accentuates the importance of hyperbolic space.
Let BH be an open unit ball in a complex Hilbert space (H, 〈.〉) w.r.t. the metric (also

known as the Kobayashi distance)

kBH
(x, y) = arg tanh (1− σ (x, y))

1
2 ,

where

σ (x, y) =

(
1− ‖x‖2

)(
1− ‖y‖2

)
|1− 〈x, y〉|2

for all x, y ∈ BH .

Then (BH , kBH
,W ) is a hyperbolic space where W (x, y, λ) defines a unique point z in a

unique geodesic segment [x, y] for all x, y ∈ BH .
A hyperbolic space (X, d,W ) is said to be uniformly convex [19] if for all u, x, y ∈ X, r >

0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that d
(
W
(
x, y, 12

)
, u
)
≤ (1 − δ)r whenever

d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A mapping η : (0,∞) × (0, 2] → (0, 1] providing such a δ = η(r, ε) for given r > 0 and

ε ∈ (0, 2] is called modulus of uniform convexity. We call η monotone if it decreases with r
(for a fixed ε).

The concept of 4-convergence in a metric space was introduced by Lim [14] and its
analogue in a CAT(0) space has been investigated by Dhompongsa and Panyanak [3]. In
[11], Khan et al. continued the investigation of 4-convergence in the general setup of
hyperbolic spaces. Now, we collect some basic concepts.

Let {xn} be a bounded sequence in a hyperbolic space X . For x ∈ X , define a continu-
ous functional r(., {xn}) : X → [0,∞) by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X}.
The asymptotic radius rK ({xn}) of {xn} with respect to a subset K of X is given by

rK ({xn}) = inf {r(x, {xn}) : x ∈ K}.
The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
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The asymptotic center AK ({xn}) of {xn} with respect to a subset K of X is the set

AK ({xn}) = {x ∈ K : r (x, {xn}) = rK ({xn})}.
Recall that a sequence {xn} in X is said to be 4-convergent to x ∈ X if x is the unique

asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write
4-limn→∞ xn = x and call x as4-limit of {xn} .

In the sequel, we shall need the following results.

Lemma 2.1. [15, Proposition 3.3] Let (X, d,W ) be a complete uniformly convex hyperbolic
space with monotone modulus of uniform convexity η. Then every bounded sequence {xn} in X
has a unique asymptotic center with respect to any nonempty closed convex subset K of X .

Lemma 2.2. [11, Lemma 2.5] Let (X, d,W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for some
a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that

lim sup
n→∞

d (xn, x) ≤ r, lim sup
n→∞

d (yn, x) ≤ r, lim
n→∞

d (W (xn, yn, αn) , x) = r

for some r ≥ 0, then
lim

n→∞
d (xn, yn) = 0.

3. STRONG AND 4-CONVERGENCE THEOREMS

Let K be a nonempty subset of a metric space (X, d) and T be a self-mapping on K.
Then T is nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K. From now onward, we
denote F the set of all common fixed points of nonexpansive self mappings on K.

In this section, we prove some convergence theorems for nonexpansive mappings in
uniformly convex hyperbolic spaces. First, we give the following key lemmas.

Lemma 3.3. Let K be a nonempty, closed and convex subset of a hyperbolic space X and T, S,Q
be three nonexpansive self mappings on K with F 6= ∅. Then for the sequence {xn} defined in
(1.2), we have limn→∞ d(xn, p) exists for each p ∈ F .

Proof. For any p ∈ F , it follows from (1.2) that

d(yn, p) = d(W (xn, Qxn, βn), p)

≤ (1− βn)d(xn, p) + βnd(Qxn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p). (3.3)

Using (3.3), we have

d(xn+1, p) = d(W (Txn, Syn, αn), p)

≤ (1− αn)d(Txn, p) + αnd(Syn, p)

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

Hence limn→∞ d(xn, p) exists for each p ∈ F .

Lemma 3.4. Let K be a nonempty, closed and convex subset of a uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and T, S,Q be three nonexpansive self
mappings on K such that d(xn, Sxn) ≤ d(Txn, Sxn) and F 6= ∅. Let the sequence {xn} be as
defined in (1.2) such that {αn}, {βn} ⊂ [a, b] for some a, b ∈ (0, 1). Then

lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, Sxn) = lim
n→∞

d(xn, Qxn) = 0.
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Proof. Let p ∈ F. By Lemma 3.3, it follows that limn→∞ d(xn, p) exists. We may assume
that

lim
n→∞

d(xn, p) = r.

The case r = 0 is trivial. Next, we deal with the case r > 0. By (3.3) and the nonexpan-
siveness of S, we obtain

lim sup
n→∞

d(Syn, p) ≤ lim sup
n→∞

d(yn, p)

≤ lim
n→∞

d(xn, p) = r.

Moreover, we have
lim sup
n→∞

d(Txn, p) ≤ r.

Since
lim
n→∞

d(xn+1, p) = lim
n→∞

d(W (Txn, Syn, αn), p) = r,

Lemma 2.2 gives
lim

n→∞
d(Txn, Syn) = 0. (3.4)

Next

d(xn+1, p) ≤ (1− αn)d(Txn, p) + αnd(Syn, p)

≤ (1− αn)d(Txn, Syn) + (1− αn)d(Syn, p) + αnd(Syn, p)

≤ d(yn, p) + (1− αn)d(Txn, Syn)

yields that lim infn→∞ d(yn, p) ≥ r. But by (3.3), we have lim supn→∞ d(yn, p) ≤ r. Hence

lim
n→∞

d(yn, p) = lim
n→∞

d(W (xn, Qxn, βn), p) = r.

Since lim supn→∞ d(Qxn, p) ≤ r and limn→∞ d(xn, p) = r, Lemma 2.2 guarantees

lim
n→∞

d(xn, Qxn) = 0. (3.5)

By virtue of (3.5), we get

d(Sxn, Syn) ≤ d(xn, yn)

= d(xn,W (xn, Qxn, βn))

≤ βnd(xn, Qxn)→ 0 as n→∞. (3.6)

From the hypothesis d(xn, Sxn) ≤ d(Txn, Sxn), we have

d(xn, Sxn) ≤ d(Txn, Sxn)

≤ d(Txn, Syn) + d(Syn, Sxn).

It follows from (3.4) and (3.6) that

lim
n→∞

d(xn, Sxn) = 0.

Since
d(xn, Txn) ≤ d(xn, Sxn) + d(Sxn, Syn) + d(Syn, Txn),

we conclude that
lim
n→∞

d(xn, Txn) = 0.

The proof is completed.
Now we prove the 4-convergence theorem of the iteration process defined by (1.2) in

a uniformly convex hyperbolic space.

Theorem 3.1. Let K,X, T, S,Q and {xn} be the same as in Lemma 3.4. Then the sequence {xn}
4-converges to a point in F.
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Proof. It follows from Lemma 3.3 that the sequence {xn} is bounded. Therefore by Lemma
2.1, {xn} has a unique asymptotic center, that is, AK({xn}) = {x}. Let {un} be any subse-
quence of {xn} such that AK({un}) = {u}. By Lemma 3.4, we have

lim
n→∞

d(un, Tun) = lim
n→∞

d(un, Sun) = lim
n→∞

d(un, Qun) = 0. (3.7)

We claim that u ∈ F. So, we calculate

d(Tu, un) ≤ d(Tu, Tun) + d(Tun, un)

≤ d(u, un) + d(Tun, un).

Taking lim sup on both sides of the above inequality and using (3.7), we have

r(Tu, {un}) = lim sup
n→∞

d(Tu, un) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

The uniqueness of asymptotic center implies that Tu = u. A similar argument shows that
Su = u and Qu = u. This means that u ∈ F . Since limn→∞ d(xn, u) exists (by Lemma 3.3)
and considering the uniqueness of asymptotic center, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u)

a contradiction. Hence x = u. Thus A({un}) = {u} for all subsequences {un} of {xn} ,
that is, {xn} 4-converges to x ∈ F .

A sequence {xn} in a metric space X is said to be Fejér monotone with respect to K (a
subset of X) if d(xn+1, p) ≤ d(xn, p) for all p ∈ K and n ∈ N. �

For further development, we need the following technical result.

Lemma 3.5. [1] Let K be a nonempty closed subset of a complete metric space (X, d) and let
{xn} be Fejér monotone with respect to K. Then {xn} converges to some p ∈ K if and only if
limn→∞ d(xn,K) = 0.

Next we discuss the strong convergence of the iteration process defined by (1.2) in a
uniformly convex hyperbolic space.

Theorem 3.2. Let K,X, T, S,Q and {xn} be the same as in Lemma 3.4. Then {xn} converges
strongly to some p ∈ F if and only if lim infn→∞ d(xn, F ) = 0 where d(x, F ) = inf{d(x, p) :
p ∈ F}.

Proof. If {xn} converges to p ∈ F, then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F ) ≤ d(xn, p),
we have lim infn→∞ d(xn, F ) = 0. Conversely, suppose that lim infn→∞ d(xn, F ) = 0. It
follows from Lemma 3.3 that limn→∞ d(xn, F ) exists. Thus by hypothesis, limn→∞ d(xn, F )
= 0. Again by Lemma 3.3, {xn} is Fejér monotone with respect to F. Thus Lemma 3.5 im-
plies that {xn} converges strongly to a point p in F. �

Remark 3.1. In Theorem 3.2, the condition lim infn→∞ d(xn, F ) = 0 may be replaced with
lim supn→∞ d(xn, F ) = 0.

Example 3.1. Let R be the real line with the usual metric |.| and T, S,Q : R → R be three
mappings defined by T (x) = 1 − x, S(x) = 2x+1

4 and Q(x) = 1
2 . It is noticed in [8, p.10]

that T and S satisfy the condition d(xn, Sxn) ≤ d(Txn, Sxn). Additionally T, S and Q are
nonexpansive mappings. Clearly, F =

{
1
2

}
. Set αn = n

2n+1 and βn = 2n
3n+1 for all n ∈ N.
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Thus, the conditions of Lemma 3.4 are fulfilled. Therefore the results of Theorem 3.1 and
Theorem 3.2 can be easily seen.

Following Senter and Dotson [18], Khan and Fukhar-ud-din [10] introduced the so-
called condition (A

′
) for two mappings and gave an improved version of it in [4] as fol-

lows.
Two mappings T, S : K → K with F 6= ∅ are said to satisfy the condition (A

′
) if there

exists a non-decreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all
r ∈ (0,∞) such that either d(x, Tx) ≥ f(d(x, F )) or d(x, Sx) ≥ f(d(x, F )) for all x ∈ K.

This condition becomes condition (A) of Senter and Dotson [18] whenever S = T.
We can modify this definition for three mappings as follows.
Let T, S andQ be three nonexpansive self mappings onK with F 6= ∅. These mappings

are said to satisfy condition (B) if there exists a non-decreasing function f : [0,∞)→ [0,∞)
with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F )) or d(x, Sx) ≥
f(d(x, F )) or d(x,Qx) ≥ f(d(x, F )) for all x ∈ K.

The condition (B) is reduced to the condition (A′) when Q = T .
We use the condition (B) to study strong convergence of {xn} defined in (1.2).

Theorem 3.3. Under the assumptions of Lemma 3.4, if T, S,Q satisfy the condition (B), then
{xn} converges strongly to a point in F .

Proof. By Lemma 3.3, limn→∞ d(xn, F ) exists. Also, by Lemma 3.4, we have

lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, Sxn) = lim
n→∞

d(xn, Qxn) = 0.

Then, by using the condition (B), we get limn→∞ f (d (xn, F )) = 0. Since f is a non-
decreasing function with f(0) = 0, it follows that limn→∞ d(xn, F ) = 0. Therefore Theo-
rem 3.2 implies that {xn} converges strongly to a point in F .

Recall that a mapping T from a subset K of a metric space (X, d) into itself is semi-
compact if every bounded sequence {xn} ⊂ K satisfying d(xn, Txn) → 0 as n → ∞ has a
strongly convergent subsequence.

By using this definition, we obtain the following strong convergence theorem. �

Theorem 3.4. Under the assumptions of Lemma 3.4, if one of the mappings T, S and Q is semi-
compact or K is compact, then {xn} converges strongly to a point in F .

Proof. It is clear that the condition (B) is weaker than both the compactness of K and the
semi-compactness of one of the nonexpansive mappings T, S and Q. Therefore we have
the result of above theorem. �

Remark 3.2. (i) Theorems 3.1-3.3 extend the corresponding results of Khan and Abbas [9]
from CAT(0) space to the general setup of uniformly convex hyperbolic space.

(ii) Theorems 3.1–3.4 contain the corresponding theorems proved for the Ishikawa it-
eration when T = I, S = Q, for the Mann iteration when T = Q = I and for the Picard
iteration when T = S,Q = I . Then these theorems improve and generalize some results
of Dhompongsa and Panyanak [3].

If we take Q = T in Theorems 3.1–3.4, we get the following corollary, which is single-
valued case of the Theorems 2.4-2.7 in [12].

Corollary 3.1. Let K be a nonempty, closed and convex subset of a uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η and T, S be two nonexpansive self
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mappings on K such that F 6= ∅. Let the sequence {xn} be defined by
x1 ∈ K,
yn =W (xn, Txn, βn),

xn+1 =W (Txn, Syn, αn), n ∈ N.
(3.8)

(i) Then the sequence {xn} 4-converges to some p ∈ F.
(ii) Then {xn} converges strongly to some p ∈ F if and only if

lim inf
n→∞

d(xn, F ) = 0 or lim sup
n→∞

d(xn, F ) = 0.

(iii) If T and S satisfy the condition (A
′
), then {xn} converges strongly to a point in F .

(iv) If one of the mappings T and S is semi-compact or K is compact, then {xn} converges
strongly to a point in F .

Remark 3.3. Note that the iteration process (3.8) has two nonexpansive mappings T , S
and the condition d(xn, Sxn) ≤ d(Txn, Sxn) is not needed to get convergence of this
iteration.
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