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Comments on some fixed point theorems in metric spaces

VASILE BERINDE

ABSTRACT. In a recent paper [Pata, V., A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10
(2011), No. 2, 299–305], the author stated and proved a fixed point theorem that is intended to generalize the
well known Banach’s contraction mapping principle. In this note we show that the main result in the above
paper does not hold at least in two extremal cases for the parameter ε involved in the contraction condition used
there. We also present some illustrative examples and related results.

1. INTRODUCTION

Let (X, d) be a metric space. By selecting an arbitrary point x0 ∈ X , which we call the
zero of the metric space X , we denote, according to the terminology and notations in [19],

‖x‖ := d(x, x0), ∀x ∈ X.

We also consider an increasing function Ψ : [0, 1]→ [0,∞) which is vanishing with conti-
nuity at zero and the (vanishing) sequence

ωn(α) =
(α
n

) n∑
k=1

Ψ
(α
k

)
, (1.1)

where α ≥ 1.
The following theorem is the main result in [19].

Theorem 1.1. Let (X, d) be a complete metric space and f : X → X a self mapping of X . Let
Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be fixed constants. If the inequality

d(f(x), f(y)) ≤ (1− ε)d(x, y) + ΛεαΨ(ε) [1 + ‖x‖+ ‖y‖] (1.2)

is satisfied for every ε ∈ [0, 1] and every x, y ∈ X , then f possesses a unique fixed point
x∗=f(x∗). Furthermore, by denoting the nth iterate of f by fn, we have the estimate

d(x∗, fn(x0)) ≤ Cωn(α), (1.3)

for some positive constant C ≤ Λ(1 + 4‖x∗‖)β.

Our aim in this note is to show that Theorem 1.1 does not hold at least for two extremal
cases of the parameter ε involved in the contraction condition (1.2). We also provide a
correct version (but not fully in the spirit) of Theorem 1.1 and discuss some other related
results.
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2. PRELIMINARIES ON THE FIXED POINT THEORY OF NON-EXPANSIVE MAPPINGS

We present in this section some notions and results from the fixed point theory of non-
expansive mappings that will be needed for our discussion.

Let (X, d) be a metric space. A mapping T : X → X is said to be an α-contraction if
there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X. (2.4)

A point x ∈ X is called a fixed point of T if Tx = x. It is well known, see [20], that, under
the strict contraction condition (2.4) in a complete metric space X , there exists a unique
fixed point of T and, moreover, the Picard iteration determined by an x0 ∈ X and the
relation

xn+1 = Txn, n = 0, 1, 2, . . . , (2.5)

converges to that fixed point. In the case where α = 1 in (2.4), the mapping T is said to be
non-expansive.

As the technique of non-expansive mappings applied to functional differential equa-
tions appears to be less used in literature, for the sake of completeness we present in the
following some basic concepts and results in the fixed point theory of non-expansive op-
erators, most of them taken from [5].

Let K be a nonempty subset of a real normed linear space E and let T : K → K be a
map. In this setting, T is non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ K. (2.6)

Although the non-expansive mappings are generalizations of α-contractions, they do not
inherit properties of contractive mappings. More precisely, if K is a nonempty closed
subset of a Banach space E and T : K → K is a non-expansive mapping which is not an
α-contraction, then, as is shown by the following example, T may not have fixed points.

Example 2.1. ([11], Example 3.3, pp. 30) In the space c0(N) the isometry T defined by

T (x1, x2, . . . ) = (1, x1, x2, . . . )

maps the unit ball into its boundary but T has not fixed points.

Moreover, as is shown by the next example, even in the cases where T has a fixed point,
the Picard iteration associated to T (i.e., the sequence {xn} defined by (2.5) for an x0 ∈ K),
may fail to converge to a fixed point.

Example 2.2. Let [0, 1] be the unit interval with the usual norm. The function T : [0, 1]→
[0, 1] given by Tx = 1− x, for all x ∈ [0, 1] has a unique fixed point, x∗ = 1

2 but, except for
the trivial case x0 = 1

2 , the Picard iteration starting from x0 yields an oscillatory sequence.

For these and many other reasons, some richer geometrical properties of the ambient
space E are needed in order to ensure the existence of a fixed point or/and the conver-
gence of an iterative method (generally a more complex iterative method than Picard
iteration) to a fixed point of T . For the sake of completeness, let us recall some concepts
and results, taken mainly from [5].

One of the most important important fixed point theorems for non-expansive map-
pings, due to Browder, Göhde and Kirk, see e.g. [4], is stated as follows.

Theorem 2.2. IfK is a nonempty closed convex and bounded subset of a uniformly convex Banach
space E then any non-expansive mapping T : K → K has a fixed point.
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Remark 2.1. Theorem 2.2 provides no information on the approximation of the fixed point
of T is given. From Example 2.2, we see that the Picard iteration does not resolve this
situation, in general. Due to this fact, several other fixed point iteration procedures have
been considered (see [4], [8]). The most usual ones will be defined in the sequel in view of
their use.

Let Let K be a convex subset of a normed linear space E and let T : K → K be a
self-mapping. Given an x0 ∈ K and a real number λ ∈ [0, 1], the sequence {xn} defined
by the formula

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, · · · (2.7)
is usually called Krasnoselskij iteration, or Krasnoselskij-Mann iteration. Clearly, (2.7) reduces
to Picard iteration (2.5) for λ = 1.

For an x0 ∈ K, the sequence {xn} defined by the formula

xn+1 = (1− λn)xn + λnTxn, n = 0, 1, 2, · · · (2.8)

where {λn} ⊂ [0, 1] is a sequence of real numbers satisfying some appropriate conditions,
is called Mann iteration.

It was shown by Krasnoselskij [15] in the case λ = 1/2, and latter by Schaefer [24] for
λ ∈ (0, 1) arbitrary, that if E is a uniformly convex Banach space and K is a convex and
compact subset of E (and therefore, by Theorem 2.2), containing fixed points of T ), then
the Krasnoselskij iteration converges to a fixed point of T .

Moreover, Edelstein [9] proved that strict convexity of E suffices for the same conclu-
sion. The question of whether or not strict convexity can be removed has been answered
in the affirmative by Ishikawa [12] by the following result.

Theorem 2.3. Let K be a subset of a Banach space E and let T : K → K be a non-expansive
mapping. For arbitrary x0 ∈ K, consider the Mann iteration process {xn} given by (2.8) under
the following assumptions
(a) xn ∈ K for all positive integers n;
(b) 0 ≤ λn ≤ b < 1 for all positive integers n;
(c)
∑∞
n=0 λn =∞.

If {xn} is bounded, then xn − Txn → 0 as n→∞.

3. SOME COMMENTS ON PATA’S FIXED POINT THEOREM

First of all, we note that, if in (1.2) we have ε = 0 (or we let ε → 0), then this condition
becomes

d(f(x), f(y)) ≤ d(x, y), ∀x, y ∈ X, (3.9)
which is exactly the non expansiveness condition (2.6) in the case of a metric space.

So, in view of examples above and Remark 2.1, both conclusions of Theorem 1.1 are no
more valid in the context of a general metric space.

If in (1.2) we have ε = 1 (or we let ε→ 1), then this condition becomes

d(f(x), f(y)) ≤ L · [1 + d(x, x0) + d(y, x0)] , ∀x, y ∈ X, (3.10)

for a fixed element x0 ∈ X and a constant L = ΛΨ(1) ≥ 0. Since

d(x, y) ≤ d(x, x0) + d(x0, y) = d(x, x0) + d(y, x0),

condition (3.10) is implied by the so-called generalized Lipschitzian condition

d(f(x), f(y)) ≤ L · [1 + d(x, y)] , ∀x, y ∈ X, (3.11)

introduced by Zhou [27] and used by various authors: [16], [17], [18], [25], [26], [28], [29]
etc.
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Note that any nonexpansive mapping is Lipschitzian (with Lipschitz constant equal to
1) and, hence, generalized Lipschitzian. So, there exists a natural relationship between
the class of nonexpansive mappings, by the one hand, and the class of generalized Lips-
chitzian mappings, on the other hand.

In [16], the authors obtained convergence theorems for Ishikawa iterative scheme with
errors associated to generalized Lipschitzian andm-accretive operators in uniformly smooth
real Banach spaces.

It is then quite obvious that only a condition of the form (3.11) cannot ensure the exis-
tence of a fixed point of f in a general metric space. The next example illustrates such a
case.

Example 3.3. Let X = R be the real line with the usual norm. The function f : R → R
given by Tx = x+ 1, for all x ∈ R satisfies the inequality (3.10) with L = 1:

d(f(x), f(y)) ≤ 1 · [1 + d(x, x0) + d(y, x0)] , ∀x, y ∈ X, (3.12)

but f is fixed point free. Moreover, the Picard iteration associated to f does not converge.

However, a generalized Lipschitzian mapping may have fixed points provided some
additional conditions are also satisfied, as shown by the next example taken from [16].

Example 3.4. Let X = R be the real line with the usual norm. Define the function f : R→
R by

f(x) =


x− 1, x < −1

x−
√
−x, x ∈ [−1, 0)

x+
√
x, x ∈ [0, 1]

x+ 1, x ∈ (1,+∞).

(3.13)

Then f is not Lipschitzian, f is generalized Lipschitzian and m-accretive and, in view of
Theorem 3.1 in [16], f has a unique fixed point. Moreover, the Picard iteration associated
to f does not converge for all initial approximation x0 ∈ X but the Ishikawa iteration with
errors (see [16]) converges to the fixed point of f .

By summarizing the comments above, we conclude that Theorem 1.1 does not hold if
we have ε = 0 or ε = 1 in (1.2).

The same remarks work for the fixed point theorems obtained in [14] in the case of
Chatterjea type contraction condition and in [7] for the case of Kannan type contraction
condition. Note that the authors of [14] actually excluded the value ε = 0 in the proof of
uniqueness in their main result (Theorem 2.1).

In 2004, the first author [3] introduced the concept of weak (almost) contraction and
established a general fixed point theorem, i.e., Theorem 3.4 below.

Definition 3.1. ([3]) Let (X, d) be a metric space. A map T : X → X is called an almost
contraction if there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (3.14)

In order to be more precise, we shall also call T as a (δ, L)-almost contraction.

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → X be a (δ, L)-almost
contraction.

Then
1) Fix (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X , Picard iteration {xn}∞n=0, xn = Tnx0, converges to some x∗ ∈ Fix (T );
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3) The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.15)

If we relate the contraction conditions involved in Theorems 1.1 and 3.4, we obtain the
following interesting existence result.

Theorem 3.5. Let (X, d) be a complete metric space and f : X → X a self mapping of X . Let
Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be fixed constants. If the inequality

d(f(x), f(y)) ≤ (1− ε)d(x, y) + ΛεαΨ(ε)d(y, f(x)) (3.16)

is satisfied for some ε ∈ (0, 1) and every x, y ∈ X , then
1) Fix (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X , Picard iteration {xn}∞n=0, xn = Tnx0, converges to some x∗ ∈ Fix (T );
3) The following estimate holds

d(xn+i−1, x
∗) ≤ (1− ε)i

ε
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.17)

Proof. We denote L = ΛεαΨ(ε) ≥ 0 and apply Theorem 2.1 in [3]. �

At the end of this note, let us also mention the fact that the contraction condition (1.2)
used in Theorem 1.1 is similar to the contraction conditions that appear in the theory of
best proximity points. The first paper that tackled this topic, due to Eldred and Veeramani
[10], introduced and studied the following concept.

Let (X, d) be a complete metric space, A,B nonempty subsets ofX , and T : A∪B → X
such that T (A) ⊂ B and T (B) ⊂ A. The mapping T is called a cyclic contraction if there
exists 0 < k < 1, such that

d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(A,B), (3.18)

for all x ∈ A, y ∈ B, where dist(A,B) denotes a sort of ”distance” between the sets A and
B, defined by

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
A point x ∈ A ∪B such that d(x, Tx) = dist(A,B) is called a best proximity point of T . The
similarity mainly comes from the fact that in both contraction conditions we have a sort
of convex combination (in (3.18), a true convex combination) and that d(x, x0) + d(y, x0)
could be viewed as the distance in X2 between the points (x, x0) and (y, x0).
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