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Tripled coincidence point theorems for mixed
g-R-monotone operators in metric spaces endowed with a
reflexive relation

MELÁNIA-IULIA DOBRICAN

ABSTRACT. In this paper we present some results regarding tripled coincidence points of mixed g−R−monotone
operators in the framework of metric spaces endowed with a reflexive relation. Our results extend and general-
ize some famous results obtained by Berinde, Borcut, Ćirić and Lakshmikantham.

1. INTRODUCTION

Tripled fixed points were first introduced by Berinde and Borcut in [4], in 2011, for the
case of mixed-monotone operators, then extended for monotone operators in [6] in par-
tially ordered metric spaces. Not much later, tripled coincidence points were introduced
by Borcut in [7] and [8], extending the results of Berinde, Ćirić and Lakshmikantham.
Inspired by the remarks of Samet and Turinici in [11], Ben-el-Mechaiekh in [5], Asgari and
Mousavi in [1], who emphasize the fact that not all of the properties of the partial order
relation are being used in the proofs of some famous results in the field, our purpose is to
extend and generalize the results of Borcut regarding mixed-monotone operators, in the
case of metric spaces endowed with a reflexive relation, based on the results obtained for
coupled coincidence points in [10]. To prove the utility of the theorems presented in the
next section, we will also provide an illustrative example. First, we will recall some of the
most important results which lead to the ones we obtained in this paper.

Definition 1.1. [7] Let (X,≤) a partially ordered space , the operator F : X ×X ×X →
X and the mapping g : X → X. We say that F is mixed-g-monotone if F (x, y, z) is g-
monotone increasing in x and z and it is g-monotone decreasing in y, i.e., for any x, y, z ∈
X, we have

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y, z) ≤ F (x2, y, z),

y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y1, z) ≥ F (x, y2, z)

and
z1, z2 ∈ X, g(z2) ≤ g(z1)⇒ F (x, y, z2) ≤ F (x, y, z1).

Definition 1.2. [9] Let X be a nonempty set and let f : X2 → X and g : X → X . We say
that f and g commute if g(f(x, y)) = f(g(x), g(y)).

Definition 1.3. [8] An element (x, y) ∈ X ×X is called tripled coincidence point for the
mixed-g-monotone operator F : X ×X × x→ X and g : X → X if

F (x, y, z) = g(x), F (y, x, y) = g(y) and F (z, y, x) = g(z).
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Theorem 1.1. [7] Let (X,≤) a partially ordered space and let d be a metric onX such that (X, d)
is a complete metric space. Letg : X → X and F : X × X × X → X be a mixed-g-monotone
mapping.
Suppose there exist j, k, l ∈ [0, 1), j + k + l < 1, such that

d(F (x, y, z), F (u, v, w)) ≤ j · d(g(x), g(u)) + k · d(g(y), g(v)) + l · d(g(z), g(w)) (1.1)

for all x, y, z, u, v, w ∈ X with g(x) ≤ g(u), g(y) ≥ g(v) and g(z) ≤ g(w).
We suppose that F (X×X) ⊆ g(X), g is continuous and it commutes with F and also suppose

either:
(1) F is continuous or
(2) X has the following properties:

• if there exists an increasing sequence {xn} → x, then xn ≤ x for all n;
• if there exists a decreasing sequence {yn} → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that

g(x0) ≤ F (x0, y0, z0), g(y0) ≥ F (y0, x0, y0) and g(z0) ≤ F (z0, y0, x0)

then there exist x, y ∈ X such that
g(x) = F (x, y, z) and g(y) = F (y, x, y) and g(z) = F (z, y, x), that is, F and g have a coupled
coincidence point.

Theorem 1.2. [7] In addition to the hypothesis of Theorem 1.1, suppose that for every (x, y, z),
(x∗, y∗, z∗) ∈X×X there exists (u, v, w) ∈X×X×X, such that (F (u, v, w), F (v, u, w), F (w, v, u))
is comparable to (g(x), g(y), g(z)) and to (g(x∗), g(y∗), g(z∗)). Then F and g have a unique co-
incidence point, i.e., there exists a unique point (x, y) ∈ X ×X, such that

x = g(x) = F (x, y, z), y = g(y) = F (y, x, y) and z = g(z) = F (z, y, x).

The author also presents many variations of this result, based on this last theorem,
by replacing the contractive condition by weaker ones, using one constant instead of
three.(see [8]).
Another important result is provided in [2] by Aydi, Karapinar and Postolache, in the case
of mixed−g−monotone operators. The improvement they brought to the results of Borcut
is the symmetrization of the contractive condition, following the idea of Berinde in [3].

Theorem 1.3. [2] Let (X,≤) a partially ordered set and let d be a metric on X such that (X, d)
is a complete metric space. Letg : X → X and F : X × X × X → X be a mixed-g-monotone
mapping Suppose there exist ϕ ∈ Φ, such that

d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

≤ 3 · ϕ

(
d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(w))

3

)
(1.2)

for all x, y, z, u, v, w ∈ X with g(x) ≤ g(u), g(y) ≥ g(v) and g(z) ≤ g(w).
We suppose that F (X ×X ×X) ⊂ g(X), g is continuous and it commutes with F and F is

continuous;
If there exist x0, y0, z0 ∈ X such that

g(x0) ≤ F (x0, y0, z0), g(y0) ≥ F (y0, x0, y0) and g(z0) ≤ F (z0, y0, x0)

then there exist x, y ∈ X such that
g(x) = F (x, y, z) and g(y) = F (y, x, y) and g(z) = F (z, y, x), that is F and g have a coupled
coincidence point.



Tripled coincidence point theorems 23

Further on, we will recall some of the results regarding coupled fixed points and cou-
pled coincidence points in metric spaces endowed with a reflexive relation:

Definition 1.4. [12] Let A and B be two sets. An ordered triple r = (A,B,R) is called a
binary relation, where R is a subset of the cartesian product A×B. The set A is called the
domain of the relation and B, the codomain of the relation.
If r = (A,B,R) is a relation, we say that x ∈ A is related to y ∈ B by R, i.e. (x, y) ∈ R,
also written as xRy.

Definition 1.5. [1] Let X be a nonempty set and let R be a reflexive relation on X , f : X2 → X .
An element (x, y) ∈ X2 is called R−coupled fixed point of f , if f × f(x, y) ∈ XR(x, y), where
XR(x, y) = {(z, t) ∈ X2 : zRx ∧ yRt}, ∀(x, y) ∈ X2.

Definition 1.6. [10] Let X be a nonempty set and let R be a reflexive relation on X , f :
X2 → X , g : X → X . An element (x, y) ∈ X2 is called lower-R−coupled coincidence
point for f and g, if (f × g)(x, y) ∈ XR(x, y).

Definition 1.7. [1] Let X be a nonempty set and let R be a reflexive relation on X , f : X2 → X .
The mapping f has the mixed R−monotone property on X if (f × f)(XR(x, y)) ⊆ XR(f ×
f(x, y)), for all (x, y) ∈ X2.

Definition 1.8. [10] Let X be a nonempty set and let R be a reflexive relation on X , f :
X2 → X , g : X → X . The mapping f has the mixed g − R−monotone property on X if
(f × g)(XR(x, y)) ⊆ XR((f × g)(x, y)), for all (x, y) ∈ X2.

Definition 1.9. [1] A sequence {(xn, yn)}n∈N ⊆ X2 is called R−monotone sequence if
(xn, yn) ∈ XR(xn−1, yn−1) for all n ∈ N.

Definition 1.10. [1] Let X be a topological space and let f : X2 → X be a mapping.
The mapping f is called orbitally continuous if (x, y), (a, b) ∈ X × X and fnk(x, y) →
a, fnk(y, x) → b, when k → ∞, implies fnk+1(x, y) → f(a, b) and fnk+1(y, x) → f(b, a),
when k →∞.

Definition 1.11. [10] The mapping f is called orbitally g-continuous if (x, y), (a, b) ∈
X2 and fnk(x, y) → a, fnk(y, x) → b, when k → ∞, implies fnk+1(x, y) → g(a) and
fnk+1(y, x)→ g(b) when k →∞.

2. MAIN RESULTS

First, we will extend the mixed g − R monotone property of a mapping, presented in
[10] in the case of mapping defined on a metric space endowed with a reflexive relation:

Definition 2.12. Let X be a nonempty set and let R be a reflexive relation on X , f :
X ×X ×X → X , g : X → X . The mapping f has the mixed g − R−monotone property
on X if (f × g)(XR(x, y, z)) ⊆ XR((f × g)(x, y, z)), for all (x, y, z) ∈ X × X × X , where
XR(t, u, v) = {(x, y, z) ∈ X3 : xRt ∧ uRy ∧ zRv} .

The definition for lower-R-tripled coincidence points is the following:

Definition 2.13. An element (x, y, z) ∈ X×X×X is called lower-R−tripled coincidence
point for f and g, if (f × g)(x, y, z) ∈ XR(x, y, z).

Next, starting from the orbital continuity presented in [1], we will define the orbital
g-continuity of a mapping f .

Definition 2.14. The mapping f is called orbitally g-continuous if (x, y, z), (a, b, c) ∈
X ×X ×X and fnk(x, y, z) → a, fnk(y, x, y) → b, fnk(z, y, x) → c when k → ∞, implies
fnk+1(x, y, z)→ g(a) and fnk+1(y, x, y)→ g(b) and fnk+1(z, y, x)→ g(c) when k →∞.
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Our first result follows the general idea in [7] and [9], extending Theorem 1.1 in the
framework of metric spaces endowed with a reflexive relation:

Theorem 2.4. Let (X, d) be a complete metric space, R be a binary reflexive relation on X such
that R and d are compatible. If f : X3 → X and g : X → X are two mappings such that

(1) f is mixed g −R-monotone;
(2) f is orbitally g-continuous;
(3) there exist k, l,m ∈ [0, 1), k + l +m < 1 such that

d(f(x, y, z), f(t, u, v)) ≤ k · d(g(x), g(t)) + l · d(g(y), g(u)) +m · d(g(z), g(v)), (2.3)

∀(x, y, z) ∈ XR(t, u, v);

(4) f and g have a lower-R-tripled coincidence point;
(5) f(X3) ⊆ g(X);
(6) g is continuous ;
(7) f and g commute.

Then f and g have a tripled coincidence points, i.e., there exists (x, y, z) ∈ X3 such that f(x, y, z) =
g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof. Since f and g have a lower-R-tripled coincidence point, let (x0, y0, z0) be it. Thus,
(f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we have that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(z0, y0, x0))

∈ XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0))gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) = f(y0, x0, y0),
g(z1) = f(z0, y0, x0) and so on. Step by step, we obtain the sequences {xn}, {yn} and {zn}
such that

g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, yn), g(zn+1) = f(zn, yn, xn). (2.4)

Now, using (iii), we have that

d(f(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(z0, y0, x0)),

f(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn−1(f(z0, y0, x0))))

≤ kn · d(g(gn(f(x0, y0, z0))), g(gn−1(f(x0, y0, z0))))+

ln · d(g(gn(f(y0, x0, y0))), g(gn−1(f(y0, x0, y0))))

+mn · d(g(gn(f(z0, y0, x0))), g(gn−1(f(z0, y0, x0))))

⇔ d(f(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(f(z0, y0, x0))),

f(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn(f(z0, y0, x0))))

≤ kn · d(gn+1(f(x0, y0, z0)), gn(f(x0, y0, z0)), gn(f(x0, y0, z0)))+

ln · d(gn+1(f(y0, x0, y0)), gn(f(y0, x0, y0)), gn(f(y0, x0, y0)))

+mn · d(gn+1(f(z0, y0, x0)), gn(f(z0, y0, x0)), gn(f(z0, y0, x0)))

⇔ d(f(gn(g(x1)), gn(g(y1)), gn(g(z1))), f(gn−1(g(x1)), gn−1(g(y1)), gn−1(g(z1))))

≤ kn·d(gn+1(g(x1)), gn(g(x1)))+ln·d(gn+1(g(y1)), gn(g(y1)))+mnd(gn+1(g(z1)), gn(g(z1)))

⇔ d(f(gn+1(x1), gn+1(y1), gn+1(z1)), f(gn(x1), gn(y1)gn(z1)))

≤ kn · d(gn+2(x1), gn+1(x1)) + ln · d(gn+2(y1), gn+1(y1)) +mn · d(gn+2(z1), gn+1(z1))
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This implies that {gn(x1)}n∈N is a Cauchy sequence in X .
Now, because X is a complete metric space, there exist x, y, z ∈ X such that

lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y, lim
n→∞

g(zn) = z. (2.5)

From the continuity of g, we get

lim
n→∞

g(g(xn)) = g(x), lim
n→∞

g(g(yn)) = g(y), lim
n→∞

g(g(zn)) = g(z).

Because f and g commute, and from (2.4), we have

g(g(xn+1)) = g(f(xn, yn, zn)) = f(g(xn), g(yn), g(zn)),

g(g(yn+1)) = g(f(yn, xn, yn)) = f(g(yn), g(xn), g(yn)

and
g(g(zn+1)) = g(f(zn, yn, xn)) = f(g(zn), g(yn), g(xn)

From (2.5) and the orbital continuity of f we get

g(x) = f(x, y, z), g(y) = f(y, x, y) and g(z) = f(z, y, x).

�

Corollary 2.1. Let (X, d) be a complete metric space, R be a binary reflexive relation on X such
that R and d are compatible. If f : X3 → X and g : X → X are two mappings such that

(1) f is mixed g −R-monotone;
(2) f is orbitally g-continuous;
(3) there exist α ∈ [0, 1) such that

d(f(x, y, z), f(t, u, v)) ≤
α

3
· [d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(t))], (2.6)

∀(x, y, z) ∈ XR(t, u, v);

(4) f and g have a lower-R-tripled coincidence point;
(5) f(X3) ⊆ g(X);
(6) g is continuous ;
(7) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that f(x, y, z) =
g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof. From the proof of Theorem 2.4, for k = l = m =
α

3
, α ∈ [0, 1), there exist x, y, z ∈ X

such that
g(x) = f(x, y, z), g(y) = f(y, x, y) and g(z) = f(z, y, x).

�

Next, let’s recall the definition of a mapping ϕ introduced in [9] by Ćirić and Laksh-
mikantham: Let ϕ : [0,∞)→ [0,∞) satisfying :

(1) ϕ(t) < t,∀t ∈ (0,∞);
(2) lim

r→t+
ϕ(r) < t,∀t ∈ (0,∞);

The set of all these mappings ϕ is denoted by Φ.
The following result is obtained by replacing the contraction (2.3) with one that uses

the mapping ϕ defined above, following the idea in [9]. Thus, we obtain :

Theorem 2.5. Let (X, d) be a complete metric space, R be a binary reflexive relation on X such
that R and d are compatible. If f : X3 → X and g : X → X are two mappings such that

(1) f is mixed g −R-monotone;
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(2) f is orbitally g-continuous;
(3)

d(f(x, y, z), f(t, u, v)) ≤ ϕ

(
d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))

3

)
, (2.7)

∀(x, y, z) ∈ XR(t, u, v);

(4) f and g have a lower-R-tripled coincidence point;
(5) f(X3) ⊆ g(X);
(6) g is continuous ;
(7) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that f(x, y, z) =
g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof. From the hypothesis, we know that f and g have a lower-R-triple coincidence
point; let (x0, y0, z0) be it. Thus, using the definition of the lower-R-tripled coincidence
point, it follows that (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we know that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(f(z0, y0, x0)))

∈ XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) = f(y0, x0, y0),
g(z0) = f(z0, y0, x0) and so on. Thus, we obtain the sequences {xn},{yn} and {zn} such
that

g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, yn) and g(zn+1 = f(zn, yn, xn). (2.8)

Let’s consider the nonnegative sequence {ηn}n∈N∗ such that ηn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)) + d(g(zn+1, g(zn)), n ∈ N∗.
Now, using (2.7), (2) and letting x := xn, y := yn and z := zn, t := xn−1, u := yn−1 and
v := zn−1, we obtain

d(g(xn+1), g(xn)) = d(f(xn, yn, zn), f(xn−1, yn−1, zn−1)) ≤

ϕ

(
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))

3

)
= ϕ

(
ηn−1

3

)
,

d(g(yn+1), g(yn)) = d(f(yn, xn, yn), f(yn−1, xn−1, yn−1)) ≤

ϕ

(
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))

3

)
= ϕ

(
ηn−1

3

)
.

and
d(g(zn+1), g(zn)) = d(f(zn, yn, xn), f(zn−1, yn−1, xn−1)) ≤

ϕ

(
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))

3

)
= ϕ

(
ηn−1

3

)
.

By summing up the last three relations, we obtain that

d(g(xn+1), g(xn)) + d(g(yn+1), g(yn)) + d(g(zn+1), g(zn)) = ηn ≤ 3 · ϕ

(
ηn−1

3

)
.
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Now, using the properties of ϕ, we have that

ηn ≤ 3 · ϕ

(
ηn−1

3

)
< 3 ·

ηn−1

3
= ηn−1. (2.9)

Thus, {ηn}n∈N∗ is a decreasing and positive sequence. Therefore, there exists ε0 ≥ 0 such
that

lim
n→∞

ηn = ε0.

Now, we will prove that ε0 = 0. In (2.9), let n→∞. Using (1), we have

ε0 = lim
n→∞

ηn ≤ 3 · lim
n→∞

ϕ

(
ηn−1

3

)
= 3 · lim

ηn→ε0+
ϕ

(
ηn−1

3

)
< ε0,

which is a contradiction. Thus, lim
n→∞

ηn = 0 and, consequently, lim
n→∞

d(g(xn+1), g(xn)) =

0, lim
n→∞

d(g(yn+1), g(yn)) = 0 and lim
n→∞

d(g(zn+1), g(zn)) = 0.

Next, we will prove that {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences.
Suppose that at least one of them is not a Cauchy sequence. Then, there exists a constant
δ > 0 and two integer sequences {n1(k)} and {n2(k)}, such that

sk := d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k))) ≥ δ, (2.10)

where n1(k) > n2(k) ≥ k, k ∈ Z∗. We chose n1(k) to be the smallest integer satisfying
n1(k) > n2(k) ≥ k and (2.10). Then, we have

d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) + d(g(zn2(k)), g(zn1(k)−1) < δ. (2.11)

Now, using the triangle inequality and the last two inequalities ((2.10) and (2.11)), we have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn1(k)), g(xn1(k)−1)) + d(g(xn1(k)), g(xn2(k)))

+d(g(yn1(k)), g(yn1(k)−1)) + d(g(yn1(k)), g(yn2(k)))

d(g(zn1(k)), g(zn1(k)−1)) + d(g(zn1(k)), g(zn2(k)))

≤ d(g(xn1(k)), g(xn1(k)−1)) + d(g(yn1(k)), g(yn1(k)−1)) + +d(g(zn1(k)), g(zn1(k)−1)) + δ.

For k →∞we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k)))] = δ.

Next, we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k)))

+d(g(yn1(k)), g(yn1(k)+1)) + d(g(yn1(k)+1), g(yn2(k)))

+d(g(zn1(k)), g(zn1(k)+1)) + d(g(zn1(k)+1), g(zn2(k)))

= ηn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k))) + d(g(zn1(k)+1), g(zn2(k)))

= 2ηn1(k) + 2ηn2(k) + d(g(xn1(k)+1), g(xn2(k)+1)) (2.12)

+d(g(yn1(k)+1), g(yn2(k)+1)) + d(g(zn1(k)+1), g(zn2(k)+1)).

But

d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1))d(g(zn1(k)+1), g(zn2(k)+1))

= d(f(xn1(k), yn1(k), zn1(k)), f(xn2(k), yn2(k), zn2(k)))

+d(f(yn1(k), xn1(k), yn1(k)), f(yn2(k), xn2(k), yn2(k)))
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+d(f(zn1(k), yn1(k), xn1(k)), f(zn2(k), yn2(k), xn2(k)))

≤ 2 · ϕ

(
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k)) + d(g(zn1(k)), g(zn2(k))

3

)
+

≤ 2 · ϕ

(
sk

3

)
.

Now, returning to (2), we have sk ≤ 2ηn1(k) + 2ηn2(k) + 2 ·ϕ

(
sk

3

)
. Let k →∞. We obtain

δ ≤ 3 · lim
k→∞

ϕ

(
sk

3

)
< δ,

a contradiction. Consequently, {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy se-
quences in the complete metric space (X, d). Since X is complete, there exist x,y and
z such that gn(xn) → x, gn(yn) → y and gn(zn) → y as n → ∞. Which means that
fn−1(xn, yn, zn) → x, fn−1(yn, xn, yn) → y and fn−1(zn, yn, xn) → z, as n → ∞. Using
the orbital g-continuity of f , we get that fn(xn, yn, zn) → g(x), fn(yn, xn, yn) → g(y) and
fn(zn, yn, xn)→ g(z), as n→∞, i.e., (x, y, z) is a tripled coincidence point of f and g. �

In order to obtain the uniqueness of the tripled coincidence point, the following as-
sumption has to be added to the hypotheses of Theorem 2.5:

Theorem 2.6. In addition to the hypotheses of Theorem 2.5, suppose that for every (x∗, y∗, z∗),
(x, y, z) ∈ X×X×X , there exists (t, u, v) ∈ X×X×X such that (g(x∗), g(y∗), g(z∗)), (g(x), g(y),
g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)). Then f and g have a unique tripled coincidence
point.

Proof. From Theorem 2.5, there exist x, y, z ∈ X such that f(x, y, z) = g(x), f(y, x, y) =
g(y) and f(, z, y, x) = g(z). We have to show that, if (x∗, y∗, z∗) is another coincidence
point for f and g,

d((g(x), g(y), g(z)), (g(x∗), g(y∗), g(z∗))) = 0.

Since (x∗, y∗, z∗) and (x, y, z) are both tripled coincidence points, it follows that

g(x∗) = f(x∗, y∗, z∗), g(y∗) = f(y∗, x∗, y∗), g(z∗) = f(z∗, y∗, x∗)

and
g(x) = f(x, y, z), g(y) = f(y, x, y), g(z) = f(z, y, x).

Now, using the hypothesis of Theorem 2.5, from f(X3) ⊆ g(x), there exist t1, u1, v1 ∈ X3

such that g(t1) = f(t0, u0, v0), g(u1) = f(u0, t0, u0), g(v1) = f(v0, u0, t0) . Using the same
procedure as in the proof of Theorem 2.4, we build the sequences {un}n∈N and {vn}n∈N,
where

g(tn+1) = f(tn, un, vn), g(un+1) = f(un, tn, un) and g(vn+1) = f(vn, un, tn).

Next, let x0 = x∗, y0 = y∗, z0 = z∗ and x0 = x, y0 = y, z0 = y. Thus, we obtain the
sequences {x∗n}n∈N , {y∗n}n∈N , {z∗n}n∈N {xn}n∈N, {yn}n∈N and {zn}n∈N such that

g(x∗n) = f(x∗, y∗, z∗), g(y∗n) = f(y∗, x∗, y∗), g(z∗n) = f(z∗, y∗, x∗)

and
g(xn) = f(x, y, z), g(yn) = f(y, x, y), g(zn) = f(z, y, x).

From the hypothesis, we know that there exists (t, u, v) ∈ X ×X ×X such that

(g(x∗), g(y∗), g(z∗), (g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)).
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From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)) and the completeness of the
metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(x0), g(y0)), fn(g(z0), g(y0), g(x0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, u), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) ≤

ϕ

(
d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))

3

)
,

d(fn(g(y0), g(x0), g(y0)), fn+1(u, t, u)) ≤

ϕ

(
d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))

3

)
and

d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤

ϕ

(
d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))

3

)
.

By summing up, we obtain that

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d(fn(g(y0), g(x0), g(y0)), fn+1(u, t, u))

+d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t))

≤ 3 · ϕ

(
d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))

3

)
.

But x0 = x∗, y0 = y∗ and z0 = z∗. We obtain

d(fn(g(x∗), g(y∗), g(z∗)), fn+1(t, u, v)) + d(fn(g(y∗), g(x∗), g(y∗)), fn+1(u, t, u))

+d(fn(g(z∗), g(y∗), g(x∗)), fn+1(v, u, t)) ≤

3 · ϕ

(
d(g(x∗), f(t, u, v)) + d(g(y∗), f(u, t, u)) + d(g(z∗), f(v, u, t))

3

)
.

Letting n→∞we obtain that

lim
n→∞

d(g(x∗), f(t, u, v)) = 0, lim
n→∞

d(g(y∗), f(u, t, u)) = 0 and lim
n→∞

d(g(z∗), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(z), f(u, t, u)) = 0 and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y∗), g(y)) ≤ d(g(y∗), f(u, t, u)) + d(f(u, t, u), g(y))→ 0, when n→∞,
and

d(g(z∗), g(z)) ≤ d(g(z∗), f(v, u, t)) + d(f(v, u, t), g(z))→ 0, when n→∞,

so the proof of the theorem is complete. �
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Example 2.1. Let X = R, d = |x− y|, the relation R on X given by

(x, y, z)R(t, u, v)⇔ xRt ∧ yRu ∧ zRv,
where xRt⇔ x2 + x = t2 + t.

Let f : X ×X ×X → X , g : X → X be defined by

f(x, y, z) =
x− y + 3z − 2

6
, g(x) = x− 1,

So, ∀(x, y, z) ∈ X3, we have :

XR(x, y, z) = {(x, y, z), (x,−y − 1, z), (−x− 1, y, z), (−x− 1,−x− 1, z), (x, y,−z − 1),

(−x− 1,−y − 1,−z − 1), (−x− 1, y,−z − 1), (x,−y − 1,−z − 1)}.
f × g(XR(x, y, z)) ⊆ XR(f × g(x, y, z))

So, f has the mixed g − R−monotone property. It can easily be checked that f and g satisfy all
the other conditions of Theorem 2.5, whereas Theorems 1.3, 1.1, 1.2 cannot be applied because the

relation R considered is not antisymmetric. The contraction also holds for ϕ(t) =
kt

3
, k ∈ [0, 1).

Note that the additional assumption in Theorem 2.6 also holds. Thus, f and g have a unique tripled

coincidence point,

(
4

3
,

4

3
,

4

3

)
, obtained by solving the following system

f(x, y, z) = g(x), f(y, x, y) = g(y), f(z, y, x) = g(z).
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