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Fixed point theorems for nonself Bianchini type
contractions in Banach spaces endowed with a graph

ANDREI HORVAT-MARC and LASZLO BALOG

ABSTRACT. In this paper we present an extension of fixed point theorem for self mappings on metric spaces
endowed with a graph and which satisfies a Bianchini contraction condition. We establish conditions which
ensure the existence of fixed point for a non-self Bianchini contractions T : K ⊂ X → X that satisfy Rothe’s
boundary condition T (∂K) ⊂ K.

1. INTRODUCTION

Starting with well-known Banach contraction principle (see its complete from in [19]),
many directions have approached to study the existence of fixed points of a map T . We
remember that, for a map T : X → X the set of fixed point is

Fix (T ) = {x ∈ X; Tx = x} ,
where X is a nonempty set. Roughly speaking, the existence conditions of fixed points
are a set of rules which reflect the relations between the distances from one element to
another of the set {x, y, Tx, Ty} and some properties of the map T in the space X . In
general, (X, d) is a complete metric space, T : X → X is a self-mapping which has some
specific properties. For example:
a) classical Banach contraction condition

d (Tx, Ty) ≤ a · d (x, y) for all x, y ∈ X;

b) ([45]) Kannan contraction condition

d (Tx, Ty) ≤ b [d (x, Tx) , d (y, Ty)] for all x, y ∈ X;

c) ([24]) Bianchini contraction condition

d (Tx, Ty) ≤ a ·max {d (x, Tx) , d (y, Ty)} for all x, y ∈ X;

d) Rus-Reich contraction condition

d (Tx, Ty) ≤ α · d (x, Tx) + β · d (y, Ty) + γd (x, y) for all x, y ∈ X;

and so on, where a ∈ [0, 1), b ∈
[
0, 12
)
, respectively α, β, γ ∈ [0, 1) with α+ β + γ < 1.

In all these existence results, T is a self-mapping. More details can be found in litera-
ture, see [19], [32], [73] and reference therein.

The study of non-self mappings started with the paper of J. Caristi, see [30] for details.
The assumption that T : K → X is non-self, i.e., T maps a subset K of X not into itself
and there is at least one x ∈ K such that Tx ∈ X \ K, implies some supplementary
conditions which must hold on the boundary of subset K. A list of some type of these
conditions can be found in [42]. In this paper we choose the Rothe’s boundary condition
T (∂K) ⊂ K. There are a few other results related to the existence of fixed points for
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non-self maps, remind here two fixed point theorems for non self contractions defined
on Banach spaces endowed with a graph established by M. Păcurar in [21], while very
recently in [15] was extend these results to non-self Kannan type contractions on Banach
spaces endowed with a graph. The study of set of fixed points of mappings defined on
Banach space endowed with a graph was initiated by J. Jachymski in [44] and continued
by work of F. Bojor [25, 26, 27, 28, 29] and others [1], [33] etc.

The present work is organized in two sections. In the first one we remind a few prelim-
inary notions and results, basically taken from [20], regarding the fixed point results for
mappings defined on metric spaces endowed with a graph. In the second section there
is an existence result of fixed point for an non-self mapping which satisfies a Bianchini
contraction condition and is defined on metric spaces endowed with a graph.

2. METRIC SPACES ENDOWED WITH A GRAPH

Let (X, d) be a metric space and let ∆ denote the diagonal of the Cartesian product
X × X . Consider now a directed simple graph G = (V (G), E(G)) such that the set of
its vertices, V (G), coincides with X and E(G), the set of its edges, contains all loops, i.e.,
∆ ⊂ E(G).

By G−1 we denote the converse graph of G, i.e., the graph obtained by G by reversing its
edges, i.e.,

E(G−1) = {(y, x) ∈ X ×X : (x, y) ∈ E(G)}.
If x, y ∈ V (G) are vertices in the graph G, then a path from x to y of length N ∈ N is a

sequence {xi}Ni=1 of N + 1 vertices of G such that

x0 = x, xN = y and (xi−1, xi) ∈ E(G), i = 1, 2, . . . , N.

A graph G is said to be connected if there is at least a path between any two vertices. If
G̃ = (X,E(G̃)) is the symmetric graph obtained by putting together the vertices of both
G and G−1, i.e.,

E(G̃) = E(G) ∪ E(G−1),

then G is called weakly connected if G̃ is connected. If G = (V (G), E(G)) is a graph and
H ⊂ V (G), then the graph (H,E(H)) with E(H) = E(G)∩ (H ×H) is called the subgraph
of G determined by H . Denote it by GH .

Definition 2.1. Let (X, d,G) be a Banach space endowed with a simple directed and
weakly connected graph G. We say that the property (L) holds if for any sequence {xn}∞n=1 ⊂ X with xn → x as n→∞

and (xn, xn+1) ∈ E(G) for all n ∈ N,
there exists a subsequence {xkn

}∞n=1 satisfying (xkn
, x) ∈ E(G), for all n ∈ N.

(L)

A mapping T : X → X is said to be (well) defined on a metric space endowed with a
graph G if it has the property

∀x, y ∈ X, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G). (2.1)

For a non self mapping T : K → X we shall say that it is (well) defined on the Banach
space X endowed with the graph G if it has this property for the subgraph of G induced
by K, that is,

(x, y) ∈ E(G) with Tx, Ty ∈ K implies (Tx, Ty) ∈ E(G) ∩ (K ×K), (2.2)

for all x, y ∈ K.
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According to [44], a mapping T : X → X , which is well defined on a metric space
endowed with a graph G, is called a G-contraction if there exists a constant α ∈ (0, 1) such
that for all x, y ∈ X with (x, y) ∈ E(G) we have

d(Tx, Ty) ≤ α · d(x, y). (2.3)

Let X be a Banach space, K a nonempty closed subset of X and T : K → X a non-self
mapping. If x ∈ K is such that Tx /∈ K, then we can always choose an y ∈ ∂K (the
boundary of K) such that y = (1 − λ)x + λTx (0 < λ < 1), which actually expresses the
fact that

d(x, Tx) = d(x, y) + d(y, Tx), y ∈ ∂K = Fr (K) , (2.4)

FIGURE 1

where we use the notation

d(x, y) = ‖x− y‖ .
In general, the set Y of points y satisfy-
ing condition (2.4) from above may con-
tain more than one element.
We suppose Y is always nonempty.

In this context we shall need the following important concept first introduced and used
in [20].

Definition 2.2. ([20]) Let X be a Banach space, K a nonempty closed subset of X and
T : K → X a non-self mapping. We say that T has property (M) if for any elements x ∈ K with Tx /∈ K the inequality

d(y, Ty) ≤ d(x, Tx)
holds for at least one corresponding y ∈ Y ⊂ ∂K given by (2.4).

(M)

Examples of non-self mapping T which has property (M) can be found in work of V.
Berinde and M. Păcurar (see [20], [21]) or in the next example.

Example 2.1. Let K = [0, 1] × [0, 1] be a subset of X = R2, where X is endowed with
the Chebyshev metric, i.e., d∞ (x, y) = max {|x1 − y1| , |x2 − y2|}, for all x = (x1, x2) and
y = (y1, y2) in X . Consider the map T : K → X given by Tx = T (x1, x2) = (−x1, x2) for
all x = (x1, x2) ∈ K. Remark that Tx = x for any x ∈ {(0, b) : b ∈ [0, 1]} := K0, K0 ⊂ ∂K
and Tx /∈ K for all x ∈ K \K0. Since

d∞ (x, Tx) = 2x1 for all x = (x1, x2) ∈ K

and
d∞ (y, Ty) = 0 for all y ∈ K0,

we have
d∞ (y, Ty) < d∞ (x, Tx)

for all x ∈ K \K0 with y ∈ K0 = Y . So, T has property (M) and Y is not singleton.

In the next example we can fond another non-self mapping which satisfies some con-
traction condition and the Rothe’s boundary condition, which has the (M) properties and
iterations sequence converges to fixed point of it.
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Example 2.2. Let X = R2 endowed with the metric

d (x, y) = max {|x1 − y1|, |x2 − y2|} for all x = (x1, x2) , y = (y1, y2) ∈ X

and K = [−1, 1]× [−1, 1], i.e.,

K =
{
x = (x1, x2) ∈ R2 : max {|x1|, |x2|} ≤ 1

}
⊂ X.

Let

K1 = {(x1, x2) ∈ K : 0 > x2 ≥ x1}
K2 = {(x1, x2) ∈ K : 0 > x1 > x2}
and

K3 = K \ (K1 ∪K2) .

Let T : K → X given by FIGURE 2. The set K and the three
subsets K1(the gray one), K2 (the dark
one) and K3 with K = K1 ∪K2 ∪K3.

Tx = T (x1, x2) =


(2x1 + 2, 2x2 + 1) , (x1, x2) ∈ K1

(2x1 + 1, 2x2 + 2) , (x1, x2) ∈ K2

(αx2, αx1) , (x1, x2) ∈ K3

(2.5)

where α = 1
2 ∈ (0, 1).

The set K The set T (K)

FIGURE 3. The set K and its image by the map T .

Note here some properties of T defined by (2.5).
I. The map T has a unique fix point, Fix (T ) = {(0, 0)} .

II. The Rothe’s boundary condition T (∂K) ⊂ K holds, where

∂K =
{
x = (x1, x2) ∈ R2 : max {|x1|, |x2|} = 1

}
.

III. T is a non-self map, i.e., there are x ∈ K such that Tx /∈ K. Practically, for every x =
(x1, x2) ∈ K1 with x1 ∈

(
− 1

2 , 0
)

we have Tx = (2x1 + 2, 2x2 + 1) with 2x1 + 2 > 1,
so Tx /∈ K.
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K1 and T (K1) K2 and T (K2) K3 T (K3)

FIGURE 4. The subsets K1, K2, K3 of K and their image by the map T .

IV. T has property (M). Indeed, if x =
(
x1,

1
2x1
)
∈ K1 with x1 ∈

(
− 1

3 , 0
)
, then for any

y = (1, ε) ∈ ∂K with ε ∈ (−x1, 1) the equality

d (x, y) + d (y, Tx) = d (x, Tx) (2.6)

holds. Much more, if x =
(
x1,

1
2x1
)

with x1 ∈
(
− 1

2 ,−
1
3

)
, then for any y = (1, ε) ∈ ∂K

with ε ∈ (−x1, 2 + 3x1) we have d (x, y) = 1− x1, d (x, Tx) = 2 + x1 and d (y, Tx) =
1 + 2x1 for y = (1, ε) ∈ ∂K. So, the equality (2.6) holds. Hence, T has property (M)
and for some x the corresponding set Y is not singleton.
A similar result holds for some specific x ∈ K2.

V. T satisfies a contraction condition.
A) For x = (x1, x2) ∈ K1 and y = (y1, y2) ∈ K1 we have d (Tx, Ty) = 2 · d (x, y),
d (y, Ty) = y1 + 2 and

d (x, Tx) = max {|x1 + 2|, |x2 + 1|} =
|x1 + 2|+ |x2 + 1|+ |x1 + 2− x2 − 1|

2
= x1 + 2.

B) For x = (x1, x2) ∈ K2 and y = (y1, y2) ∈ K2 we have d (Tx, Ty) = 2 · d (x, y),
d (y, Ty) = y2 + 2 and

d (x, Tx) = max {|x1 + 1|, |x2 + 2|} =
|x1 + 1|+ |x2 + 2|+ |x1 + 1− x1 − 2|

2
= x2 + 2.

VI. Picard iterations of T .
OnK3 the map T is a classical contraction and, as we can see in first representation

from Figure 5, the sequence of Picard iteration converges.
If the initial point of the Picard iterations is situated in K1, x0 ∈ K1, then there are

two possible situations: first one has Tx0 ∈ K3 and the sequence of Picard iterations
converges and second one has Tx0 /∈ K, but we can choose x1 ∈ ∂K ∩K3, so Picard
iterations converges, too. Such situation is depicted on the left image from Figure 5.

A similar situation can be obtain if we choose the initial point from K2, see the
right image from Figure 5.

3. FIXED POINT THEOREM FOR NONSELF BIANCHINI TYPE CONTRACTIONS IN BANACH
SPACES ENDOWED WITH A GRAPH

In that follow, we establish some conditions which ensure that a nonself Bianchini type
contraction has a fixed point in (X, d,G), a Banach space endowed with a simple directed
and weakly connected graph.

Let K ⊂ X a nonempty closed subset of X . We say that T : K → X is a Bianchini
contraction if there exists a constant a ∈ [0, 1) such that

d(Tx, Ty) ≤ a ·max {d (x, Tx) , d (y, Ty)} , for all (x, y) ∈ E(GK), (3.7)
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FIGURE 5. Example of Picard iterations.

where GK is the subgraph of G determined by K.
If T maps K into K, i.e., T is self-mapping, then there are hypotheses which implie

that Fix (T ) 6= ∅. Such rezults are Bianchini fixed point theorems [24] with X = K, some
theorems establised by F. Bojor [26] and other authors.

The next theorem establishes a fixed point theorem for non-self Bianchini contractions
defined on a Banach space endowed with a graph.

Theorem 3.1. Let (X, d,G) be a Banach space endowed with a simple directed and weakly con-
nected graph G such that the property (L) holds. Let K be a nonempty closed subset of X and let
T : K → X be a Bianchini contraction. If KT := {x ∈ ∂K : (x, Tx) ∈ E(G)} 6= ∅, T has
property (M) and T satisfies the Rothe’s boundary condition T (∂K) ⊂ K, then

(i) Fix (T ) = {x∗};
(ii) Picard iteration {xn = Tnx0}∞n=1 converges to x∗, for all x0 ∈ KT , and the following

estimate holds

d (x∗, xn) ≤ an−1

a− 1
·max {d (x0, x1) , d (x1, x2)} , n = 0, 1, 2, . . . . (3.8)

Proof. If T (K) ⊂ K, then T is self-mapping and the prove is given by Bianchini fixed
point theorem, see [24]. Therefore, we consider only the case T (K) ∩ (X \K) 6= ∅, i.e.,
there is at least one x ∈ K such that Tx ∈ X \ K. The proof has two parts: first we
construct the Picard iteration and establish some properties of this sequence and after
that we prove that Picard iteration is a Cauchy sequence.

Let x0 ∈ KT . Since (x0, Tx0) ∈ E(G) and T is well defined on a metric space endowed
with the graph G, then we have (Tnx0, T

n+1x0) ∈ E(G) for all n ∈ N.
In the following, we construct the Picard iteration Ξ := {xn}n≥1. First, we denote

x1 = y1 = Tx0 and for n ≥ 2 we proceed in the following way: if Txn−1 ∈ K then
xn = yn = Txn−1, else Txn−1 /∈ K and we can choose a λn ∈ (0, 1) such that

xn = (1− λn)xn−1 + λnTxn−1 ∈ ∂K.
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Now, we can consider two disjoint subsets of the Picard iteration Ξ. One set is

P = {xk ∈ Ξ; xk = yk = Txk−1, k ∈ NP ⊂ N} ⊂ K
and other one is

Q = {xk ∈ Ξ; xk 6= Txk−1, k ∈ NQ ⊂ N} ⊂ ∂K.
By virtue of Rothe’s boundary condition, in Q there is no two consecutive terms of Ξ, but
in P we can have consecutive terms of Ξ. So, for a given n ∈ N we can have the following
three hypothetical cases: (1) xn, xn+1 ∈ P ; (2) xn ∈ P , xn+1 ∈ Q and (3) xn ∈ Q, xn+1 ∈ P .

FIGURE 6. The three hypothetical cases:
(1) xn, xn+1 ∈ P ; (2) xn ∈ P , xn+1 ∈ Q; (3) xn ∈ Q, xn+1 ∈ P .

Next, we study the influence of Bianchini condition (3.7) upon the distance between
the terms of Ξ in all three cases from above.
Case 1. Assume that xn, xn+1 ∈ P and

max {d (xn, Txn) , d (xn−1, Txn−1)} = d (xn, Txn) .

Since d (xn, Txn) = d (xn, xn+1) = d (Txn−1, Txn), by (3.7) we have

d (xn, xn+1) ≤ a · d (xn, xn+1)

which implies the inequality

(1− a) · d (xn, xn+1) ≤ 0

and this cannot be hold. So, this situation can not occurs.
Assume that xn, xn+1 ∈ P and

max {d (xn, Txn) , d (xn−1, Txn−1)} = d (xn−1, Txn−1) = d (xn−1, xn) .

In this case, d (Txn−1, Txn) = d (xn, xn+1) and (3.7) implies

d (xn, xn+1) ≤ a · d (xn−1, xn) . (3.9)

Case 2. Assume that xn ∈ P and xn+1 ∈ Q. Hence, there is λn+1 ∈ (0, 1) such that

xn+1 = (1− λn+1)xn + λn+1Txn ∈ ∂K,
which actually express the fact the

d (xn, xn+1) + d (xn+1, Txn) = d (xn, Txn) .

Hence, we have

d (xn, xn+1) = d (xn, Txn)− d (xn+1, Txn) ≤ d (xn, Txn) = d (Txn−1, Txn) .

Now, by (3.7) we obtain

d (xn, xn+1) ≤ a ·max {d (xn−1, Txn−1) , d (xn, Txn)}
≤ a ·max {d (xn−1, xn) , d (xn, Txn)} . (3.10)
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If we consider that max {d (xn−1, xn) , d (xn, Txn)} = d (xn−1, xn), then (3.10) is equivalent
to (3.9). On the other hand, if max {d (xn−1, xn) , d (xn, Txn)} = d (xn, Txn) then (3.10)
implies

d (xn, Txn) = d (xn, xn+1) ≤ a · d (xn, Txn) = a · d (Txn−1, Txn)

≤ a2 ·max {d (xn−1, Txn−1) , d (xn, Txn)}
= a2 · d (xn, Txn) .

Since a ∈ (0, 1), the last inequality implies a · d (xn, Txn) < a2 · d (xn, Txn) which is
equivalent to

a (1− a) · d (xn, Txn) < 0

and this cannot be hold in our hypotheses.
Case 3. Assume that xn ∈ Q and xn+1 ∈ P , i.e., xn 6= Txn−1 = yn, xn ∈ ∂K and

xn+1 = Txn. In this case, 0 < d (xn+1, xn) = d (xn, Txn) and the property (M) implies

d (xn, Txn) ≤ d (xn−1, Txn−1) = d (Txn−2, Txn−1) . (3.11)

Hence, by (3.7) we obtain

d (xn+1, xn) ≤ a ·max {d (xn−2, Txn−2) , d (xn−1, Txn−1)} . (3.12)

Now, if we assume that

max {d (xn−2, Txn−2) , d (xn−1, Txn−1)} = d (xn−2, Txn−2) = d (xn−2, xn−1) ,

then d (xn, xn+1) ≤ a · d (xn−2, xn−1).
Else, if we consider that

max {d (xn−2, Txn−2) , d (xn−1, Txn−1)} = d (xn−1, Txn−1) = d (Txn−2, Txn−1) ,

then

d (xn, xn+1) ≤ a · d (Txn−2, Txn−1)

≤ a2 ·max {d (xn−2, Txn−2) , d (xn−1, Txn−1)}
= a2 · d (xn−1, Txn−1) = a2 · d (Txn−2, Txn−1) .

This implies d (xn, xn+1) ≤ ak · d (Txn−2, Txn−1) for any k ∈ N and this cannot occurs.
At the end of the first part of the proof, we can say that for the elements from the

iterative sequence Ξ = {xn}n≥0 the following inequality holds

d (xn, xn+1) ≤ a ·max {d (xn−1, xn) , d (xn−2, xn−1)} , (3.13)

for all n ≥ 2. Now, using consecutively these inequalities (3.13), we obtain

d (xn, xn+1) ≤ an−1 ·max {d (x0, x1) , d (x1, x2)} , n ≥ 2. (3.14)

In the second part of this proof, we show that Ξ is Cauchy sequence and T has at least
one fixed point. For any n, p ∈ N we have

d (xn, xn+p) ≤
p−1∑
k=0

d (xn+k, xn+k+1) .
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Now, by (3.14) we obtain

d (xn, xn+p) ≤
p−1∑
k=0

an+k−1 ·max {d (x0, x1) , d (x1, x2)} (3.15)

=
an−1 (1− ap)

1− a
·max {d (x0, x1) , d (x1, x2)}

<
an−1

a− 1
·max {d (x0, x1) , d (x1, x2)} ,

for any p ∈ N and this shows that {xn}n≥1 is Cauchy sequence in closed set K. So, the
sequence {xn}n≥1 converges to some point x∗ in K. By triangle inequality we have

d (x∗, Tx∗) ≤ d (x∗, y) + d (y, Tx∗) , y ∈ K. (3.16)

Property (L) implies there is a subsequence {xkn}n≥1 of {xn}n≥1 satisfying

(xkn
, x∗) ∈ E (G) for all n ∈ N.

Hence, if we choose y = xkn+1 = Txkn
, then (3.16) implies

d (x∗, Tx∗) ≤ d (x∗, xkn+1) + d (xkn+1, Tx
∗) . (3.17)

By Bianchini’s type contraction condition (3.7) we have

d (xkn+1, Tx
∗) ≤ a ·max {d (xkn

, Txkn
) , d (x∗, Tx∗)} . (3.18)

So, the inequalities (3.17) and (3.18) imply

d (x∗, Tx∗) ≤ d (x∗, xkn+1) + a ·max {d (xkn
, Txkn

) , d (x∗, Tx∗)} .
Therefore, we can estimate the distance between x∗ and Tx∗ by

d (x∗, Tx∗) ≤ 1

1− a
· d (x∗, xkn+1) +

a

1− a
· d (xkn

, Txkn
) for all n ≥ 1.

and by (3.14) we obtain

d (x∗, Tx∗) ≤ 1

1− a
· d (x∗, xkn+1) +

an

1− a
·max {d (xk0

, xk1
) , d (xk1

, xk2
)} . (3.19)

Letting now n → ∞ in (3.19), results d (x∗, Tx∗) = 0, which shows that x∗ is a fixed
point of T .

Letting now p→∞ in (3.15), results the error estimate given by (3.8). �
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[34] Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian

J. Math., 30 (2014), No. 1, 63–70
[35] Choudhury, B. S., Das, K. and Bhandari, S. K., Cyclic contraction of Kannan type mappings in generalized Menger

space using a control function, Azerb. J. Math., 2 (2012), No. 2, 43–55
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[55] Păcurar, M., Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method,
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