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Constant ratio timelike curves in pseudo-Galilean 3-space
G1

3

İLIM KIŞI, SEZGIN BÜYÜKKÜTÜK and GÜNAY ÖZTÜRK

ABSTRACT. In this paper, we consider unit speed timelike curves in pseudo-Galilean 3-space G1
3 as curves

whose position vectors can be written as linear combination of their Serret-Frenet vectors. We obtain some
results of constant ratio curves and give an example of these curves. Further, we show that there is no T -constant
curve and we obtain some results of N -constant type of curves in pseudo-Galilean 3-space G1

3.

1. INTRODUCTION

The basic concepts of Euclidean plane geometry are points and straight lines. But in
nature, every surface is not a plane and every line is not a straight line. Ömer Hayyam and
Tusi were the first scholars studying Euclid’s postulate. However, in the 19th century by
C. F. Gauss, N. I. Lobachevsky and J. Bolyai, non-Euclidean geometries were set forth with
the discovery of hyperbolic geometry, which accepts a new postulate (infinite number of
parallels can be drawn to a line from a point outside the given line) instead of parallel
postulate. G. F. B. Riemann laid the foundations of a new geometry called the elliptic
geometry afterwards. F. Klein generalized those geometries, and showed the existence of
the nine geometries including the Euclidean, hyperbolic and elliptic ones [20]. Galilean
geometry is a non-Euclidean geometry and associated with Galilei principle of relativity.
This principle can be explained briefly as ” in all inertial frames, all law of physics are
the same.” (Except for the Euclidean geometry in some cases), Galilean geometry is the
easiest of all Klein geometries, and it is revelant to the theory of relativity of Galileo and
Einstein. For a comprehensive study of Galilean geometry, one can have a look at the
studies of Yaglom [21] and Röschel [19].

In [17], the author explained the projective signature (0,0,+,-) of the pseudo-Galilean
geometry which is one of the real Cayley-Klein geometries. Pseudo-Galilean space G1

3

has been explained in details [9, 10]. Furthermore many works related to pseudo-Galilean
space have been done by [1, 12, 16] etc...

For a regular curve α(x), the position vector α can be decomposed into its tangential
and normal components at each point:

α = αT + αN . (1.1)

A curve α in En or in Ent is said to be of constant ratio if the ratio
∥∥αT∥∥ :

∥∥αN∥∥ is constant
on α(I) where

∥∥αT∥∥ and
∥∥αN∥∥ denote the length of αT and αN , respectively [5, 6].

Moreover, a curve in En or in Ent is called T -constant (N -constant) if the tangential com-
ponent αT (the normal component αN ) of its position vector α is of constant length [7, 8].

Recently, in [13, 18], the authors give the necessary and sufficient conditions for curves
in Euclidean spaces to become T -constant and N -constant. In [2, 3, 15], authors study the
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Corresponding author: İlim Kişi; ilim.ayvaz@kocaeli.edu.tr

57
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same curves according to Bishop frame in E3, E3
1, and E4. Further, in [4] authors consider

these types curves in Galilean 3-space G3.
In the present study, we consider unit speed timelike curves whose position vectors

satisfy the parametric equation

α(x) = m0(x)t(x) +m1(x)n(x) +m2(x)b(x), (1.2)

for some differentiable functions, mi(x), 0 ≤ i ≤ 2 in pseudo-Galilean space G1
3. We

characterize the curves in terms of their curvature functions κ, τ, and give the necessary
and sufficient conditions for these curves to become constant ratio, T -constant and N -
constant.

2. BASIC NOTATIONS

The geometry of the pseudo-Galilean space is similar (but not the same) to the Galilean
space which is presented in [19].

In [17], the author explained the projective signature (0,0,+,-) of the pseudo-Galilean
geometry which is one of the real Cayley-Klein geometries. The absolute of the pseudo-
Galilean geometry is an ordered triple {w, f, I} where w is the ideal (absolute) plane, f is
line in w and I is the fixed hyperbolic involution of the points of f .

A vector v = (x, y, z) in G1
3 is said to be non-isotropic if x 6= 0. All unit non-isotropic

vectors have the form (1, y, z). For isotropic vectors x = 0 holds. There are four types of
isotropic vectors: spacelike (y2− z2 > 0), timelike (y2− z2 < 0) and two types of lightlike
vectors (y = ±z). A non-lightlike isotropic vector is unit vector if y2 − z2 = ±1.

A trihedron (T0, e1, e2, e3), with a proper origin T0(x0, y0, z0) ∼ (1 : x0 : y0 : z0) is
orthonormal in pseudo-Galilean sense iff the vectors e1, e2, e3 have the following form:
e1 = (1, y1, z1), e2 = (0, y2, z2), e3 = (0, εz2, εy2) with y2 − z2 = δ, where each of ε, δ is of
+1 or −1. An above trihedron (T0, e1, e2, e3) is called positively oriented if for its vectors
det(e1, e2, e3) = 1, i.e. y22 − z22 = ε stand.

The scalar product between two vectors v1 = (x1, y1, z1) and v2 = (x2, y2, z2) in G1
3 is

defined as

〈v1, v2〉 =
{

x1x2, if x1 6= 0 ∨ x2 6= 0
y1y2 − z1z2 if x1 = 0 ∧ x2 = 0

(2.3)

[9].
The length of the vector v = (x, y, z) is defined as

‖v‖ =
{

x if x 6= 0√
|y2 − z2| if x = 0

[11].

Definition 2.1. [9] Let α(x) = (α1(x), α2(x), α3(x)) be a spatial curve with the three times
continuously differentiable functions α1(x), α2(x), α3(x) and x run through a real interval.
α is called admissible if α′1(x) 6= 0. Then the curve α can be given by α(x) = (x, y(x), z(x))

and we assume in addition that y′′
2 − z′′2 6= 0.

The curvature κ(x) and the torsion τ(x) of an admissible curve are given by the follow-
ing formulas

κ(x) =
√∣∣y′′2(x)− z′′2(x)∣∣,

τ(x) = det
(α′(x), α′′(x), α′′′(x))

κ2(x)
.
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Furthermore, the associated moving trihedron is given by

t(x) = α′(x) = (1, y′(x), z′(x)) , (2.4)

n(x) =
α′′(x)

κ(x)
=

1

κ(x)
(0, y′′(x), z′′(x)) ,

b(x) =
1

κ(x)
(0, εz′′(x), εy′′(x)) ,

where t, n and b are called the vectors of tangent, principal normal and binormal line of
the curve α, respectively. Then, the curve α is timelike (spacelike) if n(x) is a spacelike
(timelike) vector. The principal normal vector is spacelike if ε = 1 and timelike if ε = −1.
Consequently, the following Frenet’s formulas are true

t′ = κn, n′ = τb, b′ = τn, (2.5)

where t is spacelike, n is spacelike and b is a timelike vector [9, 10, 14].

3. CHARACTERIZATION OF CURVES IN G1
3

In the present section, we characterize the unit speed timelike curves given with the
invariant parameter x in G1

3 in terms of their curvatures. Let α : I ⊂ R → G1
3 be a unit

speed timelike curve with curvatures κ(x) ≥ 0 and τ(x). The position vector of the curve
(also defined by α) satisfies the vectorial equation (1.2) for some differentiable functions
mi(x), 0 ≤ i ≤ 2. Differentiating (1.2) with respect to the arclength parameter x, and using
the Serret-Frenet equations (2.5),

α′(x) = m′0(x)t(x) + (m′1(x) + κ(x)m0(x) + τ(x)m2(x))n(x) (3.6)

+ (m′2(x) + τ(x)m1(x))b(x).

It follows that

m′0(x) = 1, (3.7)
m′1(x) + κ(x)m0(x) + τ(x)m2(x) = 0,

m′2(x) + τ(x)m1(x) = 0

[16].

3.1. Curves of constant-ratio in G1
3. In [5, 6], B. Y. Chen introduced the curves of constant

ratio. Similarly, we give the following definition:

Definition 3.2. Let α : I ⊂ R→ G1
3 be a unit speed timelike curve given with the invariant

parameter x in pseudo-Galilean space G1
3. Then the position vector α can be decomposed

into its tangential and normal components at each point as in (1.1). If the ratio
∥∥αT∥∥ :∥∥αN∥∥ is constant on α(I), then α is said to be of constant ratio.

Clearly, for a constant ratio curve in pseudo-Galilean space G1
3, we have

m2
0

m2
1 −m2

2

= c1 (3.8)

for some constant c1.

Theorem 3.1. Let α : I ⊂ R → G1
3 be a unit speed timelike constant ratio curve given with the

invariant parameter x in G1
3. Then, α is of constant ratio if and only if(

κ′ + c1κ
3(x+ c)

c1κ2τ

)′
= − τ

c1κ

holds.
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Proof. Let α : I ⊂ R → G1
3 be a unit speed timelike constant ratio curve given with the

invariant parameter x in G1
3. Then from the equality (3.8), the curvature functions satisfy

m1m
′
1 −m2m

′
2 =

x+ c

c1
.

Substituting the last equality into the second and the third equalities of (3.7), we get
m1 = − 1

c1κ
,m2 = −κ

′+c1κ
3(x+c)

c1κ2τ and m′2 = τ
c1κ

. �

Example 3.1. Let us consider the timelike curve (general helix) α : I ⊂ R→ G1
3,

α(x) =

(
x,
x4 + 3

12x
,
x4 − 3

12x

)
.

The Frenet vectors of the curve α are as follows:

t(x) =

(
1,
x4 − 1

4x2
,
x4 + 1

4x2

)
,

n(x) =

(
0,
x4 + 1

2x2
,
x4 − 1

2x2

)
,

b(x) =

(
0,
x4 − 1

2x2
,
x4 + 1

2x2

)
.

By a direct computation, we obtain the following curvature functions

m0 = x, m1 =
x

3
, m2 = −2x

3
,

which means
m2

0

m2
1 −m2

2

= −3.

Therefore, α is a timelike curve of constant-ratio.

3.2. T-constant Curves in G1
3.

As in [7, 8], we define T -constant curves in pseudo-Galilean space G1
3.

Definition 3.3. Let α : I ⊂ R → G1
3 be a unit speed curve in G1

3. If
∥∥αT∥∥ is constant,

then α is called a T -constant curve in G1
3. Further, a T -constant curve α is called first kind

if
∥∥αT∥∥ = 0, otherwise second kind.

As a consequence of (1.2) with (3.7), we get the following result.

Proposition 3.1. There is no unit speed timelike T-constant curve in pseudo-Galilean space G1
3.

Proof. Let α : I ⊂ R → G1
3 be a unit speed timelike T -constant curve in G1

3. Then from
definition,

∥∥αT∥∥ = m0 is zero or a nonzero constant. However, we know that m0 = x+ c
from the equalities (3.7), a contradiction. Thus, we say that there is no unit speed timelike
T -constant curve in pseudo-Galilean space G1

3. �

3.3. N-constant curves in G1
3.

As in [7, 8], we define N -constant curves in pseudo-Galilean space G1
3.

Definition 3.4. Let α : I ⊂ R→ G1
3 be a unit speed curve in G1

3. If
∥∥αN∥∥ is constant, then

α is called a N -constant curve. For a N -constant curve α, either
∥∥αN∥∥ = 0 or

∥∥αN∥∥ = µ
for some non-zero smooth function µ. Further, a N -constant curve α is called first kind if∥∥αN∥∥ = 0, otherwise second kind.



Constant ratio timelike curves in pseudo-Galilean 3-space G1
3 61

Note that, for a N -constant curve α in G1
3, we can write;∥∥αN (x)

∥∥2 = m2
1(x)−m2

2(x) = c1, (3.9)

where c1 is a real constant.
As a consequence of (1.2), (3.7) and (3.9), we get the following result.

Lemma 3.1. Let α : I ⊂ R → G1
3 be a unit speed curve in G1

3. Then α is a N -constant curve if
and only if

m′0(x) = 1,
m′1(x) + κ(x)m0(x) + τ(x)m2(x) = 0,

m′2(x) + τ(x)m1(x) = 0,
m1(x)m

′
1(x)−m2(x)m

′
2(x)= 0

(3.10)

hold, where mi(x), 0 ≤ i ≤ 2 are differentiable functions.

Proposition 3.2. Let α : I ⊂ R → G1
3 be a unit speed curve in G1

3. Then α is a N−constant
curve of first kind if and only if α is a straight line.

Proof. Suppose that α is N -constant curve of first kind in G1
3. Then m2

1 − m2
2 = 0. If

m1 = m2 = 0, then κ = 0, which means α is a straight line. If we use m2
1 −m2

2 = 0, then
from the equalities (3.7), we get

m1m
′
2 −m′1m2 − κm0m2 = 0,

which means (
m1(x)

m2(x)

)′
m2(x) = −κ(x+ c). (3.11)

Sincem1(x) = ±m2(x), we get κ = 0 from the equality (3.11). Thus, α is a straight line. �

Proposition 3.3. Let α : I ⊂ R → G1
3 be a unit speed curve in G1

3. If α is a N−constant curve
of second kind, then the position vector of α has one of the following parametrizations:

i)
α(x) = (x+ c) t(x) + c0b(x), (3.12)

ii)

α(x) = (x+ c) t(x)− 1

2c2

(
c22e

∫
τ(x)dx + c1e

−
∫
τ(x)dx

)
n(x)

+
1

2c2

(
−c1e−

∫
τ(x)dx + c22e

∫
τ(x)dx

)
b(x),

iii)

α(x) = (x+ c) t(x) +
1

2c2

(
e−

∫
τ(x)dx + c1c

2
2e

∫
τ(x)dx

)
n(x)

+
1

2c2

(
−c1c22e

∫
τ(x)dx + e−

∫
τ(x)dx

)
b(x).

Proof. Let α be N -constant curve of second kind in G1
3. Then m2

1 − m2
2 = c1, where c1

is a real constant. By multiplying the second and the third equalities of (3.10) with m1

and −m2, respectively, and combining them, we get κm0m1 = 0. Therefore there are two
possibilities; κ = 0 or m1 = 0. Furthermore, we differ three cases. Case 1: If κ = 0 and
m1 = 0, then the curve is congruent to a N -constant curve of first kind. Case 2: If κ 6= 0
and m1 = 0, then from the equalities (3.10), we get m2 = c0 which is constant. Case 3:
If κ = 0 and m1 6= 0, then using the equalities (3.9) and (3.10), we get the differential
equation

m′22 − τ2m2
2 − τ2c1 = 0,
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which has two following solutions:

m2 =
1

2c2

(
−c1e−

∫
τ(x)dx + c22e

∫
τ(x)dx

)
and m2 =

1

2c2

(
−c1c22e

∫
τ(x)dx + e−

∫
τ(x)dx

)
.

Then writing these solutions in the third equation of (3.10), we get m1 in two different
cases given in the parametrizations ii) or iii). �
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[1] Akyiğit, M., Azak, A. Z. and Tosun, M., Admissible Manheim Curves in Pseudo-Galilean Space G1
3, Afr. Dias-

pora J. Math., 10 (2010), No. 2, 75–80
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Academiei de Ştiinţe a Republicii Moldova, Matematica, 83 (2017), No. 1, 39–50
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