CREAT. MATH. INFORM. Volume **27** (2018), No. 1, Pages 63 - 70 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2018.01.09

Fixed points of nearly weak uniformly *L*-Lipschitzian mappings in real Banach spaces

ADESANMI ALAO MOGBADEMU

ABSTRACT. Let K be a nonempty convex subset of a real Banach space X. Let T be a nearly weak uniformly L-Lipschitzian mapping. A modified Mann-type iteration scheme is proved to converge strongly to the unique fixed point of T. Our result is a significant improvement and generalization of several known results in this area of research. We give a specific example to support our result. Furthermore, an interesting equivalence of T-stability result between the convergence of modified Mann-type and modified Mann iterations is included.

1. INTRODUCTION

Let *X* be an arbitrary real normed space with the dual X^{*}. We denote by *J* the normalized duality mapping from *X* into 2^{X^*} by

$$J(x) = \{ f \in \mathsf{X}^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \},\$$

where $\langle ., . \rangle$ denotes the generalized duality pairing between elements of *X* and *X*^{*}. We first recall and define some concepts as follows.

Definition 1.1. Let *K* be a nonempty subset of a real normed linear space *X*. Let $T : K \rightarrow K$. *T* is called asymptotically nonexpansive if for each $x, y \in K$

$$||T^n x - T^n y|| \le k_n ||x - y||^2, \forall n \ge 1,$$

where $(k_n) \subset [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$. *T* is called asymptotically pseudocontractive with the sequence $(k_n) \subset [1, \infty)$ if and only if $\lim_{n \to \infty} k_n = 1$, and for all $n \in N$ and all $x, y \in K$, there exists $j(x - y) \in J(x - y)$ such that

$$< T^n x - T^n y, j(x - y) > \leq k_n ||x - y||^2, \forall n \geq 1.$$

Remark 1.1. An asymptotically nonexpansive mapping is asymptotically pseudocontractive. However, the converse may not be true in general (see [2], [3]).

Definition 1.2. Let *K* be a nonempty subset of a real normed linear space *X*. Let $T : K \rightarrow K$. A mapping *T* is called uniformly *L*− Lipschitzian if, for any $x, y \in K$, there exists a constant L > 0 such that

$$||T^n x - T^n y|| \le L ||x - y||, \forall n \ge 1.$$

Let $\{\sigma_n\}_{n\geq 0}$ be a sequence in $[0,\infty)$ such that $\lim_{n\to\infty}\sigma_n=0$.

A mapping $T : K \to K$ is called nearly Lipschitzian with respect to $\{\sigma_n\}$ if for each $n \in \mathbb{N}$, there exists a constant $k_n \ge 0$ such that

$$||T^{n}x - T^{n}y|| \le k_{n}(||x - y|| + \sigma_{n}), \forall x, y \in K.$$
(1.1)

Received: 18.09.2017. In revised form: 31.01.2018. Accepted: 07.02.2018

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10, 46A03L.

Key words and phrases. modified Mann-type iteration process, Banach space, fixed point, nearly weak uniformly L-Lipschitzian.

A nearly Lipschitzian mapping *T* with sequence $\{\sigma_n\}$ is said to be nearly uniformly *L*-Lipschitzian if $k_n = L$, for all $n \in \mathbb{N}$.

Observe that the class of nearly uniformly *L*-Lipschitzian mapping is more general than the class of uniformly *L*-Lipschitzian mappings.

The class of nearly uniformly *L*-Lipschitzian have been studied extensively by many authors: for results in this regard, see e.g. Sahu [16], Kim et al. [8] and Mogbademu [10], [11]; for uniformly *L*-Lipschitzian mappings, see e.g. Chang [2], Chang et al. [3], Goebel [6], Ofoedu [12] and Rafiq [13]; see also Berinde [1] and the references therein.

Now, we discuss the following new concept.

Definition 1.3. Let *K* be a subset of a real normed linear space *X* and $\{a_n\}_{n\geq 1}$ be a sequence in $[0,\infty)$ such that $\lim_{n\to\infty} a_n = 0$. A mapping $T: K \to K$ is called nearly weak uniformly Lipschitzian with respect to the sequence $\{a_n\}$ if for each $n \in N$, there exists a constant $L \geq 1$ such that

$$||T^n x - T^n y|| \le L(||x - y|| + a_n), \forall x \in K, \ y \in F(T).$$
(1.2)

It is easy to see that if T has a bounded range, then it is nearly weak uniformly Lipschitzian. In fact, since $R(T^n) \subset R(T)$, then $\sup_{x \in K} ||T^nx|| \le \sup_{x \in K} ||T^{n-1}x|| \le \cdots \le$ $\sup_{x \in K} ||Tx|| \le x$, thus $||T^nx - T^ny|| \le ||Tx - Ty|| \le (||x - y||) \le L(||x - y|| + a_n)$, where $x \in K$, $y \in F(T)$. On the contrary, it may not be true in general. Therefore it is of interest to study the class of mappings in fixed point theory and its applications.

Example 1.1. Let X = R, K = [0, 1]. Define $T : K \to K$ by

$$Tx = \begin{cases} \frac{x}{2}, & x \in [0, 1], \\ 0, & x > 1. \end{cases}$$

Then $T\rho = \rho$ if and only if $\rho = 0$. In fact, for a real sequence $\{\sigma_n\}_{n \ge 1}$ such that $\sigma_n \to 0$ as $n \to \infty$, we easily compute to have

$$||T^n x - T^n \rho|| \le \frac{1}{2}(||x - \rho|| + \frac{1}{2^n}), \quad \forall \ x \in K, \quad \rho = 0.$$

Hence, T satisfies the nearly Lipschitzian condition.

Remark 1.2. It is obvious that every nearly Lipschitz map with a fixed point satisfies inequality (1.2). Clearly, the class of nearly weak uniformly *L*-Lipschitzian mappings is a generalization of the class of nearly uniformly *L*-Lipschitzian mappings which in turn is a generalization of the class of uniformly *L*-Lipschitzian mappings (see [5].

It is the interest of this paper to discuss the following modified Mann-type iteration scheme associated with nearly weak uniformly *L*-Lipschitzian mappings to have a strong convergence in the real Banach spaces setting.

Let $x_1 \in K$ be a nonempty convex subset of a real normed linear space X and $T : K \to K$ be a map. For a sequence $\{v_n = f(x_n)\}$ in K where $f : K \to K$ is a mapping, define $\{x_n\}_{n=1}^{\infty}$ by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n v_n, \quad n \ge 1,$$
(1.3)

where $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in (0, 1). We observe that the iteration process (1.3) is well defined and is a generalization of the modified Mann and modified Ishikawa iterations used by several authors (see [2]-[16]). This is true in the sense that, when $v_n = f(x_n) = x_n$, then (1.3) reduces to the modified Mann iteration define by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \tag{1.4}$$

where $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in (0, 1). If in (1.3), $v_n = f(x_n) = (1 - \beta_n)x_n + \beta_n T^n x_n$ where β_n is a sequence in (0, 1), then it will reduce to the modified Ishikawa iteration method (see [14]).

2. PRELIMINARIES

In the sequel, we shall need the following lemmas.

Lemma 2.1. [4]. Let X be real Banach Space and $J : X \to 2^{X^*}$ be the normalized duality mapping. Then, for any $x, y \in X$

$$|x + y||^2 \le ||x||^2 + 2 < y, j(x + y) >, \forall j(x + y) \in J(x + y).$$

Lemma 2.2. [4, 10] Let $\Phi : [0, \infty) \to [0, \infty)$ be an increasing function with $\Phi(x) = 0 \Leftrightarrow x = 0$ and let $\{b_n\}_{n=1}^{\infty}$ be a positive real sequence satisfying

$$\sum_{n=1}^{\infty} b_n = +\infty \quad and \quad \lim_{n \to \infty} b_n = 0$$

Suppose that $\{a_n\}_{n=1}^{\infty}$ is a nonnegative real sequence. If there exists an integer $N_0 > 0$ satisfying

$$a_{n+1}^2 < a_n^2 + o(b_n) - b_n \Phi(a_{n+1}), \quad \forall n \ge \mathbb{N}_0$$

where $\lim_{n \to \infty} \frac{o(b_n)}{b_n} = 0$, then $\lim_{n \to \infty} a_n = 0$.

3. MAIN RESULTS

Theorem 3.1. Let K be a nonempty convex subset of a real Banach space X. Let $T : K \to K$ be a nearly weak uniformly L-Lipschitzian mapping with sequence $\{a_n\}$ as defined in equation (1.2). Let $\{\epsilon_n\} \in (0,1)$ and $\{k_n\} \subset [1,\infty)$ be sequences with $\lim_{n\to\infty} \epsilon_n = 0$ and $\lim_{n\to\infty} k_n = 1$. For a sequence $\{v_n\}$ in K, define a sequence $\{x_n\}$ in K satisfying $\lim_{n\to\infty} ||v_n - x_n|| = 0$ by $x_1 \in K$,

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n v_n, \ n \ge 1,$$

where $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in (0,1) such that $(i)\sum_{n\geq 1} \alpha_n = \infty$ (ii) $\lim_{n\to\infty} \alpha_n = 0$. There exists $\tau_0 > 0$ such that $\alpha_n \leq \tau_0 \forall n \geq n_0$, for some $n_0 \in N$. Suppose there exists a strictly increasing function $\Phi : [0,\infty) \to [0,\infty)$ with $\Phi(0) = 0$ such that

$$< T^n x - T^n \rho, j(x - \rho) > \le k_n ||x - \rho||^2 - \Phi(||x - \rho||) + \epsilon_n$$

for all $x \in K$, $\rho \in F(T)$. Then $\{x_n\}_{n \ge 1}$ converges strongly to the unique fixed point of T.

Proof. Let $\rho \in F(T)$, it is easy to see that ρ is unique. For, if ρ' is another fixed point of T, then $T^n \rho = \rho$ and $T^n \rho' = \rho'$, $\forall n \ge 1$. That is, $\|\rho - \rho'\|^2 \le k_n \|\rho - \rho'\|^2 - \Phi(\|\rho - \rho'\|) + \epsilon_n$, $\forall n \ge 1$. Taking limits of bothsides as $n \to \infty$, we get

$$\|\rho - \rho'\|^2 \le \|\rho - \rho'\|^2 - \Phi(\|\rho - \rho'\|) < \|\rho - \rho'\|^2,$$

a contradiction. Hence, ρ is unique.

Since *T* is nearly weak uniformly Lipschitzian and $\Phi : [0, \infty) \to [0, \infty)$ with $\Phi(0) = 0$ is a strictly increasing continuous function such that

$$\langle T^n x - T^n \rho, j(x-\rho) \rangle \le k_n \|x-\rho\|^2 - \Phi(\|x-\rho\|) + \epsilon_n,$$
 (3.5)

for $x \in K$, $\rho \in F(T)$, implying that

$$\Phi(\|x-\rho\|) \le k_n \|x-\rho\|^2 + L(\|x-\rho\|+a_n)\|x-\rho\|+\epsilon_n.$$

Taking limit of both sides as $n \to \infty$, we get

$$\Phi(\|x - \rho\|) \le (1 + L)\|x - \rho\|^2.$$

If $||x - \rho|| = 0 \ \forall n \in N$, then we are done. So, we assume $x_1 \neq Tx_1$ for some $x_1 \in K$ such that

$$\epsilon_n + (k_n + L) \|x_1 - \rho\|^2 + L \|x_1 - \rho\|^2 \in R(\Phi)$$

and denote that $a_0 = \epsilon_n + (k_n + L) ||x_1 - \rho||^2 + L ||x_1 - \rho||^2$, $R(\Phi)$ is the range of Φ . Indeed, if $\Phi(a) \to +\infty$ as $a \to \infty$, then $a_0 \in R(\Phi)$; if $\sup\{\Phi(a) : a \in [0,\infty]\} = a_1 < +\infty$ with $a_1 < a_0$, then for $\rho \in K$, there exists a sequence $\{u_n\}$ in K such that $u_n \to \rho$ as $n \to \infty$ with $u_n \neq \rho$. Clearly, $Tu_n \to T\rho$ as $n \to \infty$ thus $\{u_n - Tu_n\}$ is a bounded sequence. Therefore, there exists a natural number n_0 such that

$$\epsilon_n + (k_n + L) \|u_n - \rho\|^2 + L \|u_n - \rho\|^2 < \frac{a_1}{2}$$

for $n \ge n_0$, then we redefine $x_1 = u_{n_0}$ and

$$\epsilon_n + (k_n + L) \|x_1 - \rho\|^2 + L \|x_1 - \rho\|^2 \in R(\Phi).$$

Step 1. We first prove that the sequence $\{x_n\}_{n=1}^{\infty}$ is bounded. Set $R = \Phi^{-1}(a_0)$, then from above (3.5), we obtain that $||x_1 - \rho|| \le R$.

Denote

$$B_1 = \{ x \in K : \|x - \rho\| \le R \}, \quad B_2 = \{ x \in K : \|x - \rho\| \le 2R \}.$$
(3.6)

Now, we want to prove that $x_n \in B_1$. If n = 1, then $x_1 \in B_1$. Now, assume that it holds for some n, that is, $x_n \in B_1$. Suppose that, it is not the case, then $||x_{n+1} - \rho|| > R > \frac{R}{2}$. Since $\{a_n\} \in [0, \infty]$ with $a_n \to 0$ as $n \to \infty$, set $M = \sup\{a_n : n \in N\}$. Define $\tau_0 \in R^+$ by

$$\tau_{0} = min \left\{ 1, \frac{R}{L(2R+M)}, \frac{R}{(L(2R+M)+R)}, \frac{\Phi(\frac{R}{2})}{32R^{2}}, \frac{\Phi(\frac{R}{2})}{16R[2(L(2R+M)+R)+M]}, \frac{\Phi(\frac{R}{2})}{16R[L(2R+M)+R]}, \frac{\Phi(\frac{R}{2})}{8} \right\}.$$
(3.7)
Since $\lim_{k \to \infty} |k| = 0$ and $\lim_{k \to \infty} |k| = 1$. Without loss of generality, let $0 \le \alpha, k = 1$.

Since $\lim_{n\to\infty} \alpha_n = 0$ and $\lim_{n\to\infty} k_n = 1$. Without loss of generality, let $0 \le \alpha_n, k_n - 1$, $\epsilon_n \le \tau_0$ for any $n \ge 1$. We get

$$||x_{n+1} - \rho|| \leq (1 - \alpha_n) ||x_n - \rho|| + \alpha_n ||T^n v_n - \rho||$$

$$\leq R + \tau_0 L(2R + M)$$

$$\leq 2R,$$

$$||x_{n+1} - x_n|| \leq \alpha_n ||T^n v_n - x_n||$$

$$\leq \alpha_n (||T^n v_n - \rho|| + ||x_n - \rho||)$$

$$\leq \tau_0 (L(2R + M) + R),$$

$$||v_n - x_{n+1}|| \leq ||v_n - x_n|| + \alpha_n ||T^n v_n - x_n||$$

$$\leq ||v_n - x_n|| + \alpha_n (||T^n v_n - \rho|| + ||x_n - \rho||)$$

$$\leq R + \tau_0 (L(2R + M) + R).$$
(3.8)

66

Using Lemma 2.1 and the above estimates, we compute

$$\begin{aligned} \|x_{n+1} - \rho\|^2 &\leq (1 - \alpha_n)^2 \|x_n - \rho\|^2 + 2\alpha_n < T^n v_n - x_n, j(x_{n+1} - \rho) > \\ &= (1 - \alpha_n)^2 \|x_n - \rho\|^2 + 2\alpha_n < T^n x_{n+1} - x_{n+1}, j(x_{n+1} - \rho) > \\ &+ 2\alpha_n < x_{n+1} - x_n, j(x_{n+1} - \rho) > \\ &+ 2\alpha_n < T^n v_n - T^n x_{n+1}, j(x_{n+1} - \rho) > \\ &\leq \|x_n - \rho\|^2 + 2\alpha_n (k_n \|x_{n+1} - \rho\|^2 - \Phi(\|x_{n+1} - \rho\|) + \epsilon_n) \\ &- 2\alpha_n \|x_{n+1} - \rho\|^2 + 2\alpha_n L(\|v_n - x_{n+1}\| + a_n) \|x_{n+1} - \rho\| \\ &+ 2\alpha_n \|x_{n+1} - x_n\| \|x_{n+1} - \rho\| \\ &\leq \|x_n - \rho\|^2 - 2\alpha_n \Phi(\frac{R}{2}) + 2\alpha_n \frac{\Phi(\frac{R}{2})}{32R^2} 4R^2 + 2\alpha_n \frac{\Phi(\frac{R}{2})}{8} \\ &+ 2\alpha_n L \frac{\Phi(\frac{R}{2})}{16R[2(L(2R + M) + R) + M]} 2R[2(L(2R + M) + R) + M] \\ &+ 2\alpha_n \frac{\Phi(\frac{R}{2})}{16R[L(2R + M) + R]} 2R[L(2R + M) + R] \\ &\leq \|x_n - \rho\|^2 - \alpha_n \Phi(\frac{R}{2}) \\ &\leq R^2. \end{aligned}$$

which is a contradiction. Hence $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence.

Step 2. We want to prove that $||x_n - \rho|| \to 0$ as $n \to \infty$. By step 1, we obtain that $\{||x_n - \rho||\}$ is a bounded sequence. Let $M_1 = \sup\{||x_n - \rho||\} + \sup\{||v_n - \rho||\}$. Observe that

$$||x_{n+1} - \rho|| \leq (1 - \alpha_n) ||x_n - \rho|| + \alpha_n ||T^n v_n - \rho||$$

$$\leq R + \tau_0 L(2R + M)$$

$$\leq 2R,$$

$$||x_{n+1} - x_n|| \leq \alpha_n ||T^n v_n - x_n||$$

$$\leq \alpha_n (||T^n v_n - \rho|| + ||x_n - \rho||)$$

$$\leq \alpha_n (L(||v_n - \rho|| + a_n) + ||x_n - \rho||)$$

$$\leq \alpha_n (L(M_1 + a_n) + M_1),$$

$$||v_n - x_{n+1}|| \leq ||v_n - x_n|| + \alpha_n ||T^n v_n - x_n||$$

$$\leq ||v_n - x_n|| + \alpha_n (||T^n v_n - \rho|| + ||x_n - \rho||)$$

$$\leq ||v_n - x_n|| + \alpha_n (L(M_1 + a_n) + M_1).$$
(3.10)

Since $\lim_{n\to\infty} \alpha_n = 0$, $\lim_{n\to\infty} k_n = 1$ and $\{x_n\}_{n=1}^{\infty}$ is bounded. From (3.9), we observed that

$$\lim_{n \to \infty} L \|v_n - x_{n+1}\| = 0.$$
(3.11)

So from (1.3), we have

0

$$||x_{n+1} - \rho||^{2} \leq (1 - \alpha_{n})^{2} ||x_{n} - \rho||^{2} + 2\alpha_{n} < T^{n}v_{n} - x_{n}, j(x_{n+1} - \rho) >$$

$$= (1 - \alpha_{n})^{2} ||x_{n} - \rho||^{2} + 2\alpha_{n} < T^{n}x_{n+1} - x_{n+1}, j(x_{n+1} - \rho) >$$

$$+ < x_{n+1} - x_{n}, j(x_{n+1} - \rho) >$$

$$\leq ||x_{n} - \rho||^{2} + 2\alpha_{n}(k_{n}||x_{n+1} - \rho||^{2} - \Phi(||x_{n+1} - \rho||) + \epsilon_{n})$$

$$- 2\alpha_{n}||x_{n+1} - \rho||^{2} + 2\alpha_{n}L(||v_{n} - x_{n+1}|| + a_{n})||x_{n+1} - \rho||$$

$$+ 2\alpha_{n}||x_{n+1} - x_{n}|||x_{n+1} - \rho||$$

$$\leq ||x_{n} - \rho||^{2} + 2\alpha_{n}(k_{n} - 1)M_{1}^{2}$$

$$- 2\alpha_{n}\Phi(||x_{n+1} - \rho||) + 2\alpha_{n}\epsilon_{n}$$

$$+ 2\alpha_{n}L(||v_{n} - x_{n}|| + \alpha_{n}(L(M_{1} + a_{n}) + M_{1})) + a_{n})M_{1}$$

$$+ 2\alpha_{n}(\alpha_{n}(L(M_{1} + a_{n}) + M_{1}))M_{1}$$

$$= ||x_{n} - \rho||^{2} - 2\alpha_{n}\Phi(||x_{n+1} - \rho||) + o(\alpha_{n}),$$
(3.12)

where

$$2\alpha_n(k_n - 1)M_1^2 + 2\alpha_n L(||v_n - x_n|| + \alpha_n(L(M_1 + a_n) + M_1)) + a_n)M_1 + 2\alpha_n(\alpha_n(L(M_1 + a_n) + M_1))M_1 + 2\alpha_n\epsilon_n = o(\alpha_n).$$

Thus, by Lemma 2.2, we obtain that $\lim_{n\to\infty} ||x_n - \rho|| = 0$. This completes the proof.

From Theorem 3.1, we have the following corollary.

Corollary 3.1. Let K be a nonempty convex subset of a real Banach space X. Let $T: K \to K$ be a nearly weak uniformly L-Lipschitzian mapping with sequence $\{a_n\}$ as defined in equation (1.2). Let $\{\epsilon_n\} \in (0,1)$ and $\{k_n\} \subset [1,\infty)$ be sequences with $\lim_{n\to\infty} \epsilon_n = 0$ and $\lim_{n\to\infty} k_n = 1$. For some $x_0 \in K$, define the modified Mann iterative sequence $\{x_n\}$ by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n, \ n \ge 1,$$

where $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in (0,1) such that (i) $\sum_{n>1} \alpha_n = \infty$ (ii) $\lim_{n\to\infty} \alpha_n = 0$. Then, there exists $\tau_0 > 0$ such that $\alpha_n \leq \tau_0 \ \forall n \geq n_0$, for some $n_0 \in N$. Suppose there exists a strictly increasing function $\Phi: [0,\infty) \to [0,\infty)$ with $\Phi(0) = 0$ such that

$$< T^n x - T^n \rho, j(x - \rho) > \le k_n ||x - \rho||^2 - \Phi(||x - \rho||) + \epsilon_n$$

for all $x \in K$, $\rho \in F(T)$. Then $\{x_n\}_{n>0}$ converges strongly to the unique fixed point of T.

Proof. By letting $v_n = x_n$ in Theorem 3.1, we get the convergence of modified Mann iteration (1.4). \Box

Remark 3.3. Unlike as in several existing results in the literature (see [2, 3, 6], [10]-[16]), Theorem 3.1 and Corollary 3.1 are applicable for any nearly weak uniformly L-Lipschitzian mapping. It is also well known that whenever a theorem is proved using Mann-type iteration (without error term), the method of proof follows easily to the case of Mann-type iteration process with error term.

Now, we give an example to support practical application of our main result.

Example 3.2. Let X = R be the set of real numbers with the usual norm, $K = [0, \infty)$ and $T: K \to K$ be a mapping define by

$$Tx = \frac{x^2}{1+x^3}, \forall x \in K.$$

It is easy to show that *T* is nearly weak uniformly *L*-Lipschitzian with sequence $\{a_n\}$ having fixed point $\rho = 0$ and strictly monotonic increasing. Observe that for any $x \in K$, $T^n x \leq T^{n-1} x \leq ... \leq T x$. Let define a function $\Phi : [0, \infty) \to [0, \infty)$ by $\Phi(t) = \frac{t^2}{1+t^2}$. Then Φ is a strictly increasing continuous function with $\Phi(0) = 0$. For all $x \in K$ and $\rho \in F(T)$, set $k_n = 1 + \frac{1}{n}$, $\epsilon_n = \frac{1}{1+n}$, $a_n = \frac{1}{2^n}$ and $L \geq 1$, then we get

$$\begin{array}{rcl} < T^n x - T^n 0, j(x - 0) > & \leq & < Tx - 0, j(x - 0) > \\ & \leq & |x - 0|^2 - \Phi(|x - 0|) + 0 \\ & \leq & k_n |x - 0|^2 - \Phi(|x - 0|) + \epsilon_n, \forall n \ge 1 \end{array}$$

and

$$\begin{array}{rcl} |T^n x - T^n 0| & \leq & |Tx - 0| \\ & \leq & L(|x - 0| + 0) \\ & \leq & L(|x - 0| + a_n), \forall n \geq 1 \end{array}$$

Clearly, *T* is nearly weak uniformly *L*-Lipschitzian and applicable to Theorem 3.1 and Corollary 3.1.

Prototype. An example of our control sequence α_n in our Theorem 3.1 and Corollary 3.1 is $\alpha_n = \frac{1}{1+n}$.

4. The equivalence of stability between modified Mann-type and modified Mann iterations M

The following definition is well known (see [7]).

Definition 4.4. Let *X* be a real Banach space. Suppose that F(T), the fixed point set of *T*, is nonempty and that the sequence $\{x_n\}$ converges to a point $\rho \in F(T)$.

(i). Let $\{y_n\} \subset X$, and define $\epsilon_n = ||y_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n f(y_n)||$. If $\lim_{n\to\infty} \epsilon_n = 0$ implies $\lim_{n\to\infty} y_n = \rho$, then the modified Mann-type iteration scheme (1.3) is said to be *T*-stable or stable with respect to *T*.

(ii). Let $\{y_n\} \subset X$, and define $\epsilon_n = ||y_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n y_n||$. If $\lim_{n\to\infty} \epsilon_n = 0$ implies $\lim_{n\to\infty} y_n = \rho$, then the modified Mann iteration scheme (1.4) is said to be *T*-stable or stable with respect to *T*.

According to Definition 4.4, we shall prove that the modified Mann-type and modified Mann iterations are equivalent for a nearly weak uniformly *L*-Lipschitzian map:

$$\|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T^n v_n\| = 0 \implies \lim_{n \to \infty} u_n = \rho.$$
(4.13)

$$\|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n x_n\| = 0 \implies \lim_{n \to \infty} x_n = \rho.$$
(4.14)

Theorem 4.2. Let X be a real Banach space. Let T be a nearly weak uniformly L-Lipschitzian self mapping with sequence $\{a_n\}$ as defined in equation (1.2), $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence in (0, 1) such that $\lim_{n\to\infty} \alpha_n = 0$, then the following are equivalent: (i). The modified Mann-type iteration is T stable. (ii). The modified Mann iteration is T stable.

Proof. Firstly, we prove that (4.13) \implies (4.14).

Suppose $\lim_{n\to\infty} ||u_{n+1} - (1-\alpha_n)u_n - \alpha_n T^n u_n|| = 0$, then

$$\begin{aligned} \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T^n v_n\| &\leq \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T^n u_n\| + \|\alpha_n T^n u_n - \alpha_n T^n v_n\| \\ &\leq \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T^n u_n\| + \alpha_n L(\|u_n - v_n\| + a_n) \\ &\to 0. \end{aligned}$$

So according to (4.13), we have $\lim_{n\to\infty} u_n = \rho$. Conversely, we prove that (4.14) \implies (4.13). Suppose $\lim_{n\to\infty} ||x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n v_n|| = 0$, then $||x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n x_n|| \le ||x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n v_n|| + ||\alpha_n T^n v_n - \alpha_n T^n x_n||$ $\le ||x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T^n v_n|| + \alpha_n L(||v_n - x_n|| + a_n)$ $\to 0.$

By (4.14), we obtain $\lim_{n \to \infty} x_n = \rho$.

Acknowlegments. The author acknowledge the referees and Professor Z. Xue for his useful suggestions and comments to improve this paper.

 \square

REFERENCES

- [1] Berinde, V., Iterative approximation of fixed points, Lecture Notes in Math., 1912 (2007), Springer Berlin
- [2] Chang, S. S., Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129 (2000), 845–853
- [3] Chang, S. S., Cho, Y. J. and Kim, J. K., Some results for uniformly L-Lipschitzian mappings in Banach spaces, Appl. Math. Lett., 22 (2009), 121–125
- [4] Chidume, C. E., Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Math., 1965 (2009), Springer-Verlag series
- [5] Chidume, C. E. and Chidume, C. O., Convergence theorems for fixed points of uniformly continuous generalized Φ hemicontractive mappings, J. Math. Anal. Appl., 303 (2005), 545–554
- [6] Goebel, K. and Kirk, W. A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174
- [7] Harder, A. M. and Hicks, T. L., Stability results for fixed point iteration procedures, Math. Japon., 33 (1988), 693–706
- [8] Kim, J. K., Sahu, D. R. and Nam, Y. M., Convergence theorem for fixed points of nearly uniformly L-Lipschitzian asymptotically generalized Φ-hemicontractive mappings, Nonl. Anal., 71 (2009), e2833– e2838
- [9] Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-610
- [10] Mogbademu, A. A., A convergence theorem for multistep iterative scheme for nonlinear maps, Publ. Inst. Math. (Beograd) (N. S.), 98 (112) (2015), 281–285
- [11] Mogbademu, A. A., Strong convergence results for nonlinear mappings in Banach spaces, Creat. Math. Inform., 25 (2016), No. 1, 85–92
- [12] Ofoedu, E. U., Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl., 321 (2006), 722–728
- [13] Rafiq, A., Fixed point iterations of three asymptotically pseudocontractive mappings, Demonstratio Math., 46 (2013), No. 3, 563–573
- [14] Rhoades, B. E. and Soltuz, S. M., The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Anal., 58 (2004), No. 1-2, 218–228
- [15] Sahu, D. R., Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolin., 46 (2005), No. 4, 653–666
- [16] Schu, J., Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1999), 407–413

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LAGOS LAGOS, NIGERIA *Email address*: amogbademu@unilag.edu.ng