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A note on the morphism theorems for (n,m)−semirings

ADINA POP and MONICA LAURAN

ABSTRACT. In this paper, some properties of subtractive ideal of (n,m)−semirings are investigated. In ad-
dition, we study the morphisms of (n,m)−semirings starting from the definitions given in the case of univer-
sal algebras. We will present several theorems of correspondence for sub-(n,m)-semirings, ideals, subtractive
ideals that represent the generalization of the morphism theorems of the binary case.

1. INTRODUCTION

Algebraic polyadic structures are applied in many disciplines such as theoretical physics,
computer sciences, coding theory, automata theory and other. The concept of n−ary
group was introduced by Dörnte [2] and developed by E. Post [14] , J. Timms [17] for
commutative case. The m−semigroups are studied by F. M. Siosson [16], M. S. Pop [12],
A. Pop [8]. I. Purdea [13] and G. Crombez [1] extended the usual ring concept to the
case where the underlying group and semigroup is an commutative n−ary group and
an m−ary semigroup, respectively. In some recently appeared papers, various authors
continue the study of ordinary semigroups introduced by H. S. Vandiver [18] to the case
where the underlying commutative additive semigroup and multiplicative semigroup are
not binary but an n−ary and one m−ary respectively. The new obtained structures are
called (n,m)−semirings [7], [9], [19].

We begin with some preliminaries about them−semigroups, n−groups, (n,m)− semir-
ings and (n,m)−rings.

Traditionally in the theory of n−groups we use the following abbreviated notation: the
sequence xi, . . . , xj is denoted by xji (for j < i this symbol is empty). If xi+1 = xi+2 =

. . . = xi+k = x, then instead of xi+ki+1 we write
(k)
x . The algebra (S, ( )+) is called an

n−semigroup if for any i ∈ {2, 3, . . . , n} and all x1, . . . , x2n−1 ∈ S, the following asso-
ciativity laws are true i.e

((xn1 )+, x
2n−1
n+1 )+ = (xi−11 , (xi+n−1i )+, x

2n−1
i+n )+.

An n−semigroup (S, ( )+) is called n−group if for any i ∈ {1, 2, . . . , n} and all a1, . . . , an ∈
S, the equation (ai−11 , x, ani+1)+ = ai has a unique solution in S. In some n-groups there is

an element e ∈ S (called identity or neutral element) such that (
(i−1)
e x

(n−i)
e )+ = x holds

for all x ∈ S and for all i ∈ {1, . . . , n}. It is interesting that there are n-groups with two or
more neutral elements or which do not contain such elements [2],[14]. From the definition
of the n-group (S, ( )+) we can see that for every x ∈ S there is only one y ∈ S, satisfying

the equation (
(n−1)
x y)+ = x. This element, denoted by x, so called querelement of x, defines

the power x[−1]. W. Dörnte [2] proved that in any n-group for all a, x ∈ A; 2 ≤ i, j ≤ n,

we have (
(i−2)
x x

(n−i)
x a)+ = a and (a

(n−j)
x x

(j−2)
x )+ = a.
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An n−semigroup A will be called:
-semicommutative [2], if for any a1, . . . , an ∈ A we have (a1, a

n−1
2 , an)+ = (an, a

n−1
2 , a1)+;

-commutative [2], if (xn1 )+ = (x
σ(n)
σ(1) )+,(∀)xn1 ∈ A and for each permutation σ of {1, 2, ..., n}.

-entropic (medial)[2], if for all n2 elements of A, aij ∈ A, i, j ∈ {1, 2, . . . , n}we have

((a1n11 )◦, (a
2n
21 )◦, . . . , (a

nn
n1 )◦)◦ = ((an111 )◦, (a

n2
12 )◦, . . . , (a

nn
1n )◦)◦.

2. IDEALS, SUBTRACTIVE IDEALS

Definition 2.1. ([7]) The algebra (S, ( )+, ( )◦) where ( )+ : Sn → S; ( )◦ : Sm → S;
m,n ∈ N; m,n ≥ 2 is called an (n,m)−semiring if:

1) (S, ( )+) is a commutative n−semigroup;
2) (S, ( )◦) is an m−semigroup ;
3) the ”m−ary multiplication” is distributive with respect to ”n−ary addition”, i.e.

(yi−11 , (xn1 )+, y
m
i+1)◦ = ((yi−11 x1 y

m
i+1)◦, . . . , (y

i−1
1 xn y

m
i+1)◦)+,

for all x1, . . . , xn, y1, . . . , ym ∈ S and all i ∈ {1, 2, . . . ,m}.

An (n,m)−semiring in which (S, ( )+) is a commutative m−group is called an
(n,m)−ring. An (n,m)−semiring ((n,m)−ring) in which the m−ary operation is semi-
commutative (commutative) is called a semicommutative (commutative) (n,m)−semiring
((n,m)−ring). For n = m = 2, the (2, 2)−semiring ((2, 2)−ring) is ordinary semiring
(ring). For n = 2 and m = 3, the (2, 3)−semiring is the ternary semiring introduced by
Dutta and Kar [3].

Definition 2.2. An (n,m)−semiring (S, ( )+, ( )◦) is called:
a) Additively idempotent, if x[1] = x, for all x ∈ S;
b) Multiplicatively idempotent, if x<1> = x, for all x ∈ S.
c) Idempotent, if it is additively idempotent and multiplicatively idempotent
(n,m)−semiring.

Further, we put x[0] = x; x[1] = (
(n)
x )+ and x[k] = (x[k−1],

(n−1)
x )+ for all x ∈ S and

k ∈ N∗, x[k] having (n− 1)k + 1 terms.

Similarly, for m−ary operation we put x<0> = x; x<1> = (
(m)
x )◦ and

x<k> = (x<k−1>,
(m−1)
x )◦ for all x ∈ S, x<k> having (m− 1)k + 1 terms.

We denote the set of additively idempotents and the set of multiplicatively idempotents
of (n,m)−semiring, with Ida(S) and Idm(S), respectively. We observe that an
(n,m)−semiring (S, ( )+, ( )◦) is additively idempotent (multiplicatively idempotent), if
and only if Ida(S) = S (Idm(S) = S). An (n,m)−semiring (S, ( )+, ( )◦) is idempotent if
and only if Ida(S) = S =Idm(S).

Definition 2.3. The subset H ⊆ S of an (n,m)−semiring is called a sub-(n,m)-semiring
if (xn1 )+, (xm1 )◦ ∈ H for all x1, . . . , xp ∈ H , p = max(m,n). An element e ∈ S is called

aditive neutral element or identity if (
(n−1)
e x)+ = x, for every x ∈ S. An element z is said

to be zero element (multiplicative absorbing) if (xi−11 z xmi+1)◦ = z for all x1, . . . , xm ∈ S
and i ∈ {1, . . . ,m}.

Definition 2.4. ([11]) An (n,m)−semiring(S, ( )+, ( )◦) is called:
a) additively cancellative, if the n−ary semigroup (S, ( )+) is cancellative, i.e.,

(xi−11 a xni+1)+ = (xi−11 b xni+1)+ ⇒ a = b,
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for all x1, x2, .., xn ∈ S \ {0} (if zero element, 0 exists) and for every a, b ∈ S
b) multiplicatively cancellative, if the m−semigroup (S, ( )◦) is cancellative, i.e.,

(xi−11 a xmi+1)◦ = (xi−11 b xmi+1)◦ ⇒ a = b,

for all x1, x2, .., xm ∈ S \ {0} (if zero element, 0 exists) and for every a, b ∈ S

An element u ∈ S is called multiplicative neutral element or unity if (
(i−1)
u x

(m−i)
u )◦ = x

for all x ∈ S and i ∈ {1, . . . ,m}.
Note that, unlike the case of usual semirings there are (n,m)-semirings which have

more identities (only one of which is zero) and / or more units.

Definition 2.5. A semidomain is an additively and multiplicatively cancellative
(n,m)−semiring with additive neutral element which is also zero element and with mul-
tiplicative neutral element.

Definition 2.6. An integral semidomain is a semidomain that has no divisors of zero.

Example 2.1. ([11]) Let n,m be the positive integers, n,m ≥ 2. The (n,m)−semiring

(N, ( )+, ( )◦) (kn1 )+ = k1 + . . . + kn + 1 and (km1 )◦ =

m∏
j=1

((n−1)kj+1)−1

n−1 , k1, . . . , kp ∈ N,
p = max(m,n), has no zero element, but it has multiplicative neutral element, namely 0.

Example 2.2. ([10]) The set of all integers Z endowed with the above defined n−ary op-
eration with n = 2, k1 ∗ k2 = k1 + k2 +1 and 2m+1−ary operation, m ≥ 2, m ∈ N defined

by (k2m−11 )◦ =
2m+1∏
i=1

(ki + 1)− 1, k1, . . . , kp ∈ N, p = max(m,n), is a commutative and

multiplicatively cancellative (2, 2m+ 1)−ring. It has a neutral aditive element, −1 which
is also the zero element, and two neutral multiplicative elements, namely 0 and −2.

Definition 2.7. Let (S, ( )+, ( )◦) be an (n,m)−semiring, Then an i−idealA of (S, ( )+, ( )◦),
i ∈ {1, 2, ..., n} is defined as a sub-n-semigroup (A, ( )+) of (S, ( )+) (i.e. A[1] ⊆ A) satis-

fying (
(i−1)
S A

(m−i)
S )◦ ⊆ A. If A is an i−ideal of S for every i, then it is called an ideal of

S.

Remark 2.1. If (S, ( )+, ( )◦) is an (n,m)−semiring, then:
1) An ideal I of S is a sub-(n,m)−semiring of (n,m)−semiring (S, ( )+, ( )◦;
2) If S has a zero element, then it belongs to all i−ideals and ideal of S, too. In addition,

the subset {0} ⊆ S is an ideal, called null ideal and noted (0).

Definition 2.8. Let A be an ideal of an (n,m)−semiring (S, ( )+, ( )◦). The set

cl(A) = {x ∈ S | there are a1, . . . , an−1 ∈ A such that (xan−11 )+ ∈ A}
is called the k−closure of A.

Proposition 2.1. Let A and B be (n,m)−semiring ideals of an (n,m)−semiring (S, ( )+, ( )◦).
Then

1) cl(A) is an (n,m)−semiring ideal of S and A ⊆cl(A);
2) If A ⊆ B, then clA ⊆ clB;
3) cl(clA) =clA.

Proof. 1) For all x1, . . . , xn ∈ clA, there are ai1, . . . , ai,n−1 ∈ A such that (xia
i,n−1
i1 )+ ∈ A,

for i ∈ {1, 2, . . . , n}. Since A is an (n,m)−semiring ideal, by commutativity and associa-
tivity of n−ary operation, we have:

((xn1 )+(a
n1
11 )+ · · · (a

n,n−1
1,n−1 )+)+ = ((x1a

1,n−1
11 )+, . . . , (xna

n,n−1
n1 )+)+ ∈ A[1] ⊆ A
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Also, for all s1, . . . , sm ∈ S, x ∈ clA and i ∈ {1, ..., n}, there are a1, . . . , an−1 ∈ A such that
(xan−11 )+ ∈ A and (si−11 ajs

m
i+1)◦ ∈ A for every j ∈ {1, 2, . . . , n− 1}.

But (
(si−11 x smi+1)◦, (s

i−1
1 a1 s

m
i+1)◦, . . . , (s

i−1
1 an−1 s

m
i+1)◦

)
+
=

= (si−11 (x an−11 )+ s
m
i+1)◦ ∈ A.

Consequently, (si−11 x smi+1)◦ ∈ clA and so clA is an ideal of S.
From A[1] ⊆ A results A ⊆ clA.

2) If A ⊆ B and x ∈ clA there are a1, . . . , an−1 ∈ A ⊆ B such that (xan−11 )+ ∈ A ⊆ B,
hence x ∈ clB.

3) By 2) the inclusion A ⊆ clA implies clA ⊆cl(clA).
If x ∈ cl(clA), then there are x1, . . . , xn−1 ∈ clA such that

(
xxn−11

)
+
∈ clA. Hence, there

are y1, . . . yn−1 ∈ A such that
(
(xxn−11 )+y

n−1
1

)
+
∈ A. Since (xn−11 y1)+ ∈ A and using

the associativity of the n-ary operation ”( )+” we have
(
x(xn−11 y1)+y

n−1
2

)
+
∈ A, whence

x ∈ clA. From this it follows that cl(clA) ⊆ clA and clA =cl(clA). �

Definition 2.9. In the special case where A =clA holds, the ideal A is called subtractive
ideal, k−closed or k−ideal of (S, ( )+, ( )◦). The k−closure, clA, of an (n,m)−semiring
ideal is always a k−ideal.

An equivalent definition of subtractive ideal is the following:

Definition 2.10. ([19]) The ideal A of an (n,m)−semiring (S, ( )+, ( )◦) is a subtractive
ideal if a2, . . . an, (an1 )+ ∈ A implies a1 ∈ A.

Example 2.3. ([10]) For the commutative (n,m)−semiring

(
N∗,

n∑
i=1

,
m∏
j=1

)
, whereN∗=N\{0},

derived from the semiring (N∗,+, ·), by repeating the binary operations, each sub-n-

semigroup of (N∗,
n∑
i=1

), kN∗ is an (n,m)−semiring ideal of

(
N∗,

n∑
i=1

,
m∏
j=1

)
, too. Moreover

kN∗ is a subtractive ideal.
Also, for every k, b ∈ N∗ the subset kN∗; Ab = {a ∈ N∗; a ≥ b} and Ak,b = kN∗ ∩ Ab

are examples of (n,m)−semiring ideals, but there are various others. We note that unlike
kN∗, Ab and Ak,b are not subtractive ideals.

Example 2.4. The set A = {0, 1, 2, 3}with the operations ( )+ : A3 → A, ◦ : A2 → A

(a31)+ =

{
a1 + a2 + a3 if a1 + a2 + a3 ≤ 3

r ≡ a1 + a2 + a3(mod2); 2 ≤ r < 4 if a1 + a2 + a3 ≥ 4

respectively,

a1 ◦ a2 =

{
a1 · a2 if a1 · a2 ≤ 3

r ≡ a1 · a2(mod2); 2 ≤ r < 4 if a1 · a2 ≥ 4

is a commutative (3, 2)-semiring with zero element 0 and one multiplicative identity 1.
The set of all additive idempotents Ida(A) = {0, 2, 3} is an ideal of (3, 2)−semiring A, but
is not subtractive ideal since cl{0, 2, 3} = S 6=Ida(S) .

Remark 2.2. In general, the set of all additive idempotents Ida(A) is not necessarily sub-
tractive ideal.
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Example 2.5. Let Z−0 be the set of all negative integers with zero. Then Z−0 endowed with
the usual binary addition and (2m+1)−ary multiplication (x2m+1

1 )◦ = x1 ·x2 · . . . ·x2m+1,
form a commutative (2, 2m+ 1)−semiring with zero and identity element. For m = 1 we
obtain the (2, 3)−semiring, so called ”ternary semiring” defined by Kar S [6]. The subsets
kZ−0 ; where k ∈ N are subtractive ideals of this (2, 2m+ 1)−semiring.

Proposition 2.2. ([9]) Let (S, ( )+, ( )◦) be an (n,m)−semiring. If U is a sub−(n,m)−semiring
of S and A is an ideal of (n,m)−semiring (S, ( )+, ( )◦) , then:
i) U ∩A is either empty set or a (n,m)−semiring ideal of the (n,m)−semiring (U, ( )+, ( )◦).
ii) If A is a subtractive ideal and U ∩A 6= ∅, then U ∩A is also subtractive.

Proof. i) Assume that U ∩ A 6= ∅. Since (U, ( )+) and (A, ( )+) are, in particular
sub-n-semigroups of S, if x1, x2, . . . , xn ∈ U ∩A it follows that (xn1 )+ ∈ U ∩A.

Let u1, u2, . . . , ui−1, ui+1, . . . um ∈ U be any elements in U and x ∈ U ∩A. Since (U, ( )◦)

is a sub-n-semigroup, we will have (ui−11 xumi+1) ∈ U.
But A is an ideal of the (n,m)− semiring S and U ⊆ S. It follows that (ui−11 xumi+1)◦ ∈ A.
Consequently, (ui−11 xumi+1)◦ ∈ U ∩A.

ii) Assume that U ∩ A = ∅. If y2, ..., ym ∈ U ∩ A, and x ∈ U with (x ym2 )+ ∈ U ∩ A,
considering that A is an k− ideal, it results that x ∈ A. Therefore x ∈ U ∩ A which shows
that U ∩A is an subtractive ideal of the (n,m)− semiring U . �

Remark 2.3. The intersection of k−ideals is again a k−ideal, whereas the semiring ideal

A ∪ B
n−1⋃
i=1

(
(i)

A,
(n−i)
B )+ need not be k−ideal. Indeed in Example 2.3, if we consider the

k−ideals 2N∗,3N∗, then the subset 2N∗∪3N∗∪ (
(i)

2N∗,
(n−i)
3N∗ )+ = N∗ \{1} is not a subtractive

ideal.

3. MORPHISM OF (n,m)− SEMIRINGS

Definition 3.11. Let (S, ( )+, ( )◦) and (S′, ( )∗, ( )•) be (n,m)−semirings. The function f :
S → S′ is called the morphism of (n,m)−semirings, if for any xi ∈ S with
i ∈ {1, 2, . . . ,max(n,m)} the following statements are true:

f((xn1 )+) = (f(x1), . . . , f(xn))∗,

f((xm1 )◦) = (f(x1), . . . , f(xm))•.

A morphism from the semiring S into the semiring S is called endomorphism. A semir-
ing isomorphism is both injective and surjective . The semirings S and S′ will be called
isomorphic semirings if there exists an isomorphism from S onto S′. In this case we will
write (S, ( )+, ( )◦) ∼= (S′, ( )∗, ( )•).

Next, for simplification, we will write the operations of the two (n,m)−semirings in
the same way.

Theorem 3.1. Let (S, ( )+, ( )◦) and (S′, ( )+, ( )◦), be (n,m)−semirings and f : S → S′ a
morphism of (n,m)−semirings.

i) If f is a surjective morphism and the (n,m)−semiring (S, ( )+, ( )◦) has a zero element 0,
then f(0) = 0′ is a zero element in the (n,m)−semiring (S′, ( )+, ( )◦).

ii) If a ∈ S is an additive (multiplicative) idempontent of (n,m)−semiring (S, ( )+, ( )◦), then
f(a) is an additive (multiplicative) idempontent in the (n,m)−semiring (S′, ( )+, ( )◦).

iii) If the (n,m)− semiring (S, ( )+, ( )◦) has an additive (multiplicative) neutral element, and
f is surjective, then f(e) is an additive (multiplicative) neutral element.
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iv) If an element x ∈ S admits an additive querelement x ∈ S (multiplicative querelement
x ∈ S), then there exists a querelement of f(x) and the following applies:

f(x) = f(x) (f(x) = f(x)).

Proof. i) Since f is a surjective morphism, then for every y1, y2, ..., ym ∈ S′ there exists
x1, x2, ..., xm ∈ S such that f(xi) = yi, i ∈ {1, 2, ...,m}. If we denote by f(0) = 0′, we will
have: (

yi−11 0′ ymi+1

)
◦ = (f(x1), ..., f(xi−1), f(0), f(xi), ..., f(xm))◦

= f
(
(xi−11 0 xmi+1)◦

)
= f(0) = 0′.

ii) If a ∈ S is an additive (multiplicative) idempotent in (n,m)−semiring (S, ( )+, ( )◦),
that is, a[1] = a (respectively a<1> = a) then

f(a) = f(a[1]) =
(n)

(f(a))+ = f(a)[1]
(
f(a) = f(a<1>) = f(a)<1>

)
.

iii) If e ∈ S is a neutral additive (multiplicative) element, then for any x ∈ S and any
i ∈ {1, 2, ..., p}, p = max(n,m) we have:

(
(i−1)
e x

(n−i)
e )+ = x

(
(
(i−1)
e x

(m−i)
e )◦ = x

)
Since f is a morphism, then

f(x) = f((
(i−1)
e x

(n−i)
e )+) = (f

(i−1)
(e) , f(x), f

(n−i)
(e) )+.(

f(x) = f((
(i−1)
e x

(m−i)
e )◦) = (f

(i−1)
(e) , f(x), f

(m−i)
(e) )◦

)
.

From the definition of the additive (multiplicative) neutral element, it follows that f(e) is
an additive (multiplicative) neutral element.

iv) If x ∈ S has an additive querelement x ∈ S, then x is unique and (
(n−1)
x x)+ = x.

Considering the properties of morphism f and the uniqueness of the querelement ele-

ment, it follows that f(x) = f((
(n−1)
x x)+) = (f

(n−1)
(x) f(x))+. Consequently, we obtain

f(x) = f(x).
�

It is easy to prove the following:

Theorem 3.2. Let (S, ( )+, ( )◦) , (T, ( )+, ( )◦) and (R, ( )+, ( )◦) be (n,m)−semirings.
i) If f : S → T and ϕ : T → R are morphisms of (n,m)−semirings, then ϕ ◦ f : S → R is a

morphism of (n,m)−semirings.
ii) The identity function on S, 1S : S → S, 1S(x) = x for any x ∈ S is an isomorphism of the

(n,m)−semiring (S, ( )+, ( )◦).
iii) If f : S → T is an isomorphism of (n,m)−semirings, then the inverse function f−1 : T →

S is an isomorphism of (n,m)−semirings, too.

Using the properties of universal algebras we obtain:

Proposition 3.3. Let (S, ( )+, ( )◦) and (S′, ( )+, ( )◦) be two universal algebras of the same type,
with the n−ary operation ”()+”, the m−ary operation ”()◦”, and f : S → S′ a morphism.

i) If (S, ( )+, ( )◦) is an (n,m)−semiring, then the subalgebra (f(S), ( )+, ( )◦) of S′ is an
(n,m)−semiring. If (n,m)−semiring (S, ( )+, ( )◦) is semicomutative (commutative), respec-
tively with multiplicative neutral element, then (n,m)−semiring (f(S), ( )+, ( )◦) is semicomuta-
tive (commutative) with a multiplicative neutral element. Generally, ifA is a sub-(n,m)-semiring
of (S, ( )+, ( )◦), then the homomorphic image f(A) is a sub-(n,m)-semiring of (S′, ( )+, ( )◦).



A note on the morphism theorems for (n,m)−semirings 85

ii) If (S, ( )+, ( )◦) and (S′, ( )+, ( )◦) are (n,m)−semirings and A′ is a sub-(n,m)-semiring of

(S′, ( )+, ( )◦) , then the inverse image of A′ by f ,
−1
f (A′), is either the empty set or a sub-(n,m)-

semiring of (S, ( )+, ( )◦).

Proof. (i) Immediately verified

(ii) Let us observe that
−1
f (A′) =

−1
f (A′ ∩ f(S)). Notice that

−1
f (A′) = ∅ if and only if

A′ ∩ f(S) = ∅. Otherwise, since A′ and f(S) are sub-(n,m)-semirings , it follows that A′ ∩

f(S) is a sub-(n,m)-semiring of (n,m)−semiring (S′, ( )+, ( )◦). If a1, a2, . . . , ap ∈
−1
f (A′),

p = max(n,m), then f(a1), f(a2), ..., f(ap) ∈ A′ ∩ f(S).
It follows that (f(a1), . . . , f(an))+ ∈ A′ ∩ f(S), respectively (f(a1), . . . , f(am))◦ ∈ A′ ∩
f(S).

Therefore f((an1 )+) ∈ A′ ∩ f(S) and f((am1 )◦) ∈ A′ ∩ f(S) which yields to (an1 )+ ∈
−1
f (A′),

respectively (am1 )◦ ∈
−1
f (A′). �

If (n,m)−semirings are (n,m)−rings, then we find the Theorem 2 of I. Purdea ([13]).

Corollary 3.1. The algebraic structure (Imf, ()+()◦) is a sub-(n,m)-semiring of (n,m)−semiring
(S′, ( )+, ( )◦).

Corollary 3.2. Let (S, ( )+, ( )◦) be an (n,m)−semiring with zero element 0, (S′, ( )+, ( )◦) an
universal algebra.

(i) If (n,m)−semiring (S, ( )+, ( )◦) has no divisors of zero and the morphism f : S → S′ is
injective, then f(S) has no divisors of zero.

(ii) If (n,m)−semiring (S, ( )+, ( )◦) is an integral semidomain and the morphism f : S → S′

is injective, then (f(S), ( )+( )◦) is an integral semidomain.
(iii) If the morphism f : S → S′ is surjective, then the universal algebra (S′, ( )+, ( )◦) is an

(n,m)−semiring.

Proof. i) Indeed, for any y1, y2, . . . , ym ∈ f(S) there are x1, x2, . . . , xm ∈ S with the prop-
erty that f(xi)=yi, i∈{1, 2,. . .,m}. If (ym1 )◦ = f(0), then we obtain (f(x1), . . . , f(xm))◦=
f(0), respectively f((xm1 )◦) = f(0). Since the morphism f is injective, it results (xm1 )◦ = 0.
But (n,m)−semiring (S, ( )+, ( )◦) has no divisors of zero, so there exists an i ∈ {1, 2, . . . ,m}
such that xi = 0. It follows that f(xi) = f(0), f(0) being zero element in (S′, ( )+, ( )◦) in
accordance with Theorem 3.1. (i). Therefore there exists i ∈ {1, 2, . . . ,m} such that yi =
f(0), which shows us that (n,m)−semiring (f(S), ( )+, ( )◦) has no divisors of zero. �

It is easy to prove the following:

Theorem 3.3. Let (S, ( )+) be the n−semigrup comutative of (n,m)−semiring (S, ( )+, ( )◦).
Then the set of endomorphisms of this n−semigrup, denoted End(S, ( )+), forms an
(n,m)−semiring endowed with operations

[f1, f2, . . . , fn]+(x) = (f1(x), . . . , fn(x))+,

respectively
(g1, g2, . . . , gn)?(x) = (g1(g2(. . . (gm(x)) . . .)))

where fi, gj ∈ End(S, ( )+); i ∈ {1, 2 . . . , n}, j ∈ {1, 2, . . . ,m}. The identity function 1S : S →
S, 1S(x) = x is a multiplicative neutral element in (n,m)−semiring (End(S, ( )+), [ ]+, ( )?).

The following theorem is a generalization of Theorem 6 ([13])
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Theorem 3.4. If (S, ( )+, ( )◦) is an (n,m)−semiring, c1, c2, . . . , cm−2 ∈ S are fixed elements,
not necessarily distinct, then:

i) the function ϕ : (S, ( )+)→ End(S, ( )+), ϕ(a) = ta with ta : S → S, ta(x) = (a cm−21 x)◦
is a morphism of n−semigroups.

ii) If (n,m)−semiring S is commutative and c1, c2, . . . , cm−2 ∈ Idm(S), then ϕ is a morphism
of (n,m)−semirings. If S is a multiplicatively cancellative (n,m)−semiring , then the ϕ is an
injective morphism.

Proof. i) Let the elements a1, a2, . . . , an ∈ S be. Then

ϕ((an1 )+) = t(an1 )+ and t(an1 )+(x) = ((an1 )+, c
m−2
1 , x)◦, for any x ∈ S.

Applying the distributivity law, we will have

t(an1 )+(x) = ((a1 c
m−2
1 x)◦, . . . , (an c

m−2
1 x)◦)+ = (ta1(x), . . . , tan(x))+

for any x ∈ S. Therefore ϕ((an1 )+) = (ϕ(a1), . . . , ϕ(an))+ for all a1, a2, . . . , an ∈ S, so ϕ is
a morphism of n−semigroups.

ii) If we consider the elements a1, a2, . . . , am ∈ S, then we have

ϕ((am1 )◦) = t(am1 )◦ and t(am1 )◦(x) = ((am1 )◦ c
m−2
1 x)◦, for any x ∈ S.

Using the commutativity and the associativity of the m−ary operation and also the fact
that c<1>

i = ci for any i ∈ {1, 2, . . . ,m− 2}, it follows

t(am1 )◦(x) = ((am1 )◦, c
<1>
1 , . . . , c<1>

m−2, x)◦ = (a1, c
m−2
1 , (a2c

m−2
1 , (. . . (am c

m−2
1 x)◦ . . .)))◦

= ta1(ta2(. . . (tam(x)) . . .)) = (ta1 ◦ ta2 ◦ . . . ◦ tam)(x),

for any x ∈ S. Therefore ϕ((am1 )◦) = (ϕ(a1), ϕ(a2), . . . ϕ(am))?.
Next we want to show that the morphism ϕ is injective. If we assume that ϕ(a) = ϕ(b)

it follows that ta = tb and so ta(x) = tb(x) for any x ∈ S. Since S is a multiplicatively
cancellative (n,m)−semiring, it follows that (a cm−21 x)◦ = (b cm−21 x)◦ ⇒ a = b.

�

In the particular case of (n, 2)−semirings, a generalization of the Theorem 7 ([13]) is
obtained.

Corollary 3.3. If (S, ( )+, ·) is an (n, 2)−semiring, then function ϕ : S → End (S, ( )+), ϕ(a) =
ta, ta : S → S, with ta(x) = a · x is a morphism of (n, 2)−semirings. If (n, 2)−semiring S has a
multiplicative neutral element, then function ϕ is an injective morphism.

Remark 3.4. Theorem 3.3 and Theorem 3.4 are true even when we consider a generaliza-
tion of (n,m)−semiring , namely the n−ary operation ( )+ is not commutative, but it is
entropic (medial) ( see [9]).

Proposition 3.4. Let (S, ( )+, ( )◦) and (S′, ( )+, ( )◦) be (n,m)−semirings and f : S → S′ a
surjective morphism of (n,m)−semirings. If A and A′ are ideals in (n,m)−semirings S and S′,
then:

i) The set f(A) = {f(a)|a ∈ A} is an ideal in the (n,m)−semiring (S′, ( )+, ( )◦).

ii) the inverse image of A′ by f ,
−1
f (A′) = {a ∈ A| f(a) ∈ A′} is either the empty set or an

ideal in (n,m)−semiring (S, ( )+, ( )◦). In addition, if A′ is a subtractive ideal, then its inverse

image
−1
f (A′) is a subtractive ideal (if it is not the empty set).

Proof. i) Since f(A) is in particular a sub-(n,m)-semiring of (S, ()+, ()◦), the pair (f(A), ()+)
is a sub-n-semigroup of the n−semigroup (S, ( )+). We will further show that f(A) is an
ideal in (n,m)−semiring (S′, ( )+, ( )◦).



A note on the morphism theorems for (n,m)−semirings 87

Let a′ ∈ f(A) and s′1, . . . , s
′
i−1, s

′
i+1, . . . , s

′
m ∈ S′.. Considering that f is a surjective

morphism, it follows that there exists a ∈ A and s1, . . . , si−1, si+1, . . . , sm ∈ S with
the property that f(a) = a′ and f(sj) = s′j , for any j ∈ {1, 2, . . . , i − 1, i + 1, . . . ,m}.
Since A is an ideal in (n,m)−semiring S, it follows that (si−11 a smi+1)◦ ∈ A and we will
have (s′i−11 a′ s′mi+1)◦ = (f(s1), . . . , f(si−1), f(a), f(si+1), . . . , f(sm))◦ = f((si−11 a smi+1)◦) ∈
f(A).

ii) Let
−1
f (A′) 6= ∅ and x1, x2, . . . , xn ∈

−1
f (A′). It follows that f(x1), . . . , f(xn) ∈ A′.

Since, in particular, A′ is a sub-n-semigrup of the semigroup (S′, ( )+) we have
(f(x1), . . . , f(xn))+ ∈ A′ . The function f is a morphism of (n,m)−semirings, therefore

f((xn1 )+) ∈ A′. In conclusion (xn1 )+ ∈
−1
f (A′).

If a ∈
−1
f (A′) and s1, s2, . . . , si−1, si+1, . . . , sm ∈ S, considering that A′ is an ideal in S′,

then
f((si−11 a smi+1)◦) = (f(s1), . . . , f(si−1), f(a), f(si+1), . . . , f(sm))◦ ∈ A′.

It follows that (si−11 a smi+1)◦ ∈
−1
f (A′). Therefore,

−1
f (A′) is an ideal of (n,m)−semiring

(S, ( )+, ( )◦).

Further we will show that
−1
f (A′) is a subtractive ideal. Indeed, if x ∈ S and a2, . . . , am ∈

−1
f

(A′) with the property that (x am2 )+ ∈
−1
f (A′), then f((x am2 )+) ∈ A′. Considering the fact

that f is a morphism of (n,m)−semirings, it follows (f(x), f(a2), . . . , f(am))+ ∈ A′. But
A′ is a subtractive ideal in (n,m)−semiring (S, ( )+, ( )◦). Hence f(x) ∈ A′ and therefore

x ∈
−1
f (A′). In conclusion,

−1
f (A′) is a subtractive ideal in (n,m)−semiring S. �

Remark 3.5. If A is a subtractive ideal of (n,m)−semiring (S, ( )+, ( )◦), it does not gener-
ally result that f(A) is a subtractive ideal in (n,m)−semiring (S′, ( )+, ( )◦).

Example 3.6. Let the set S = {0, a, b, c} endowed with a ternary operation ( )+ : S3 → S
defined as follows

(x, 0, 0)+ = x ; (x, c, c)+ = c for all x ∈ S,

(x, a, a)+ =

{
a, if x ∈ {0, a}
c, if x ∈ {b, c}

(x, b, b)+ =

{
b, if x ∈ {0, b}
c, if x ∈ {a, c}

(0, a, b)+ = (c, a, b)+ = (0, c, a)+ = (0, c, b)+ = c,

and the m-ary operation ( )◦ : S
m → S defined by (xm1 )◦ = 0, for any x1, x2, ..., xm ∈ S.

The algebraic structure (S, ( )+, ( )◦) is a commutative (3,m)−semiring with additive neu-
tral element 0 which is also the zero element of the semiring and the set of additive idem-
potents Ida(S) = S.

Let T = {0′, a′, c′} be a set endowed with the ternary operation ”( )?” defined as follows
(x′, 0′, 0′)? = x′; (x′, c′, c′)? = c′, for all x′ ∈ T , (0′, a′, c′)∗ = c′,

(x′, a′, a′)? =

{
a′, if x′ ∈ {0′, a′}
c′, if x′ = c′

and the m−ary operation ”( )◦” defined by (x′m1 )◦ = 0′ for all x′1, x′2, . . . , x′m ∈ T .
Then (T, ( )?, ( )◦) is also a commutative (3,m)−semiring with an additive neutral ele-

ment 0′, which is also the zero element of the semiring T and Ida(T ) = T.
The function f : S → T ; f(0) = 0′, f(a) = f(c) = c′, and f(b) = a′ is a surjective

morphism.
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The set A = {0, a} is a subtractive ideal of S, but f(A) = {0′, c′} is not a subtractive
ideal, because (a′ 0′ c′)? = c′ ∈ f(A), but a′ /∈ f(A).
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