On ideal invariant convergence of double sequences and some properties

ERDINÇ DÜNDAR, UĞUR ULUSU and FATIH NURAY

ABSTRACT. In this paper, we study the concepts of invariant convergence, p-strongly invariant convergence $([V_\sigma^2]_p)$, \mathcal{I}_2 -invariant convergence (\mathcal{I}_2^σ) , \mathcal{I}_2^* -invariant convergence (\mathcal{I}_2^σ) of double sequences and investigate the relationships among invariant convergence, $[V_\sigma^2]_p$, \mathcal{I}_2^σ and $\mathcal{I}_2^{\sigma^*}$. Also, we introduce the concepts of \mathcal{I}_2^σ -Cauchy double sequence and $\mathcal{I}_2^{\sigma^*}$ -Cauchy double sequence.

1. INTRODUCTION AND BACKGROUND

The idea of \mathcal{I} -convergence was introduced by Kostyrko et al. [6] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers \mathbb{N} . \mathcal{I} -convergence of double sequences in a metric space and some properties of this convergence and similar concepts which are noted following can be seen in [2,4,7].

A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if

 $(i) \emptyset \in \mathcal{I}$, (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (iii) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$.

An ideal is called non-trivial if $\mathbb{N} \notin \mathcal{I}$ and non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

Throughout the paper we take \mathcal{I} as an admissible ideal in \mathbb{N} .

A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is called a filter if and only if

 $(i) \emptyset \notin \mathcal{F}$, (ii) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$, (iii) For each $A \in \mathcal{F}$ and each $B \supset A$ we have $B \in \mathcal{F}$.

For any ideal there is a filter $\mathcal{F}(\mathcal{I})$ corresponding with \mathcal{I} , given by

$$\mathcal{F}(\mathcal{I}) = \{ M \subset \mathbb{N} : (\exists A \in \mathcal{I})(M = \mathbb{N} \backslash A) \}.$$

A nontrivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

Throughout the paper we take \mathcal{I}_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

 $\mathcal{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \geq m(A) \Rightarrow (i, j) \notin A)\}$. Then \mathcal{I}_2^0 is a strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

A double sequence $x=(x_{kj})_{k,j\in\mathbb{N}}$ of real numbers is said to be convergent to $L\in\mathbb{R}$ in Pringsheim's sense if for any $\varepsilon>0$, there exists $N_\varepsilon\in\mathbb{N}$ such that $|x_{kj}-L|<\varepsilon$, whenever $k,j>N_\varepsilon$. In this case, we write $P-\lim_{k,j\to\infty}x_{kj}=L$ or $\lim_{k,j\to\infty}x_{kj}=L$.

A double sequence $x = (x_{kj})$ is said to be bounded if $\sup_{k,j} x_{kj} < \infty$. The set of all

bounded double sequences of sets will be denoted by ℓ_{∞}^2 .

Received: 05.06.2017. In revised form: 12.01.2018. Accepted: 19.01.2018

2010 Mathematics Subject Classification. 40A05, 40A35.

Key words and phrases. double sequence, I-convergence, invariant convergence, I-Cauchy sequence.

Corresponding author: Erdinç Dündar; edundar@aku.edu.tr

Let (X, ρ) be a metric space. A sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2 -convergent to $L \in X$, if for any $\varepsilon > 0$,

$$A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_2.$$

In this case, we write $\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$.

A double sequence $x=(x_{kj})$ is \mathcal{I}_2^* -convergent to L if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} x_{kj} = L.$$

In this case, we write $\mathcal{I}_2^* - \lim_{k,j \to \infty} x_{kj} = L$.

A double sequence $x=(x_{kj})$ is \mathcal{I}_2 -Cauchy sequence if for every $\varepsilon>0$, there exists (r,s) in $\mathbb{N}\times\mathbb{N}$ such that

$$\{(k,j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - x_{rs}| \ge \varepsilon\} \in \mathcal{I}_2.$$

A double sequence $x=(x_{kj})$ is \mathcal{I}_2^* -Cauchy if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that,

$$\lim_{k,j,r,s\to\infty} |x_{kj} - x_{rs}| = 0,$$

for $(k, j), (r, s) \in M_2$.

An admissible ideal $\mathcal{I}_2\subset 2^{\mathbb{N}\times\mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{E_1,E_2,...\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{F_1,F_2,...\}$ such that $E_j\Delta F_j\in\mathcal{I}_2^0$, i.e., $E_j\Delta F_j$ is included in the finite union of rows and columns in $\mathbb{N}\times\mathbb{N}$ for each $j\in\mathbb{N}$ and $F=\bigcup_{j=1}^\infty F_j\in\mathcal{I}_2$ (hence $F_j\in\mathcal{I}_2$ for each $j\in\mathbb{N}$).

Several authors have studied convergence, invariant convergence and Cauchy sequences (see, [1,3,5,8–10,12–17]).

Let σ be a mapping of the positive integers into themselves. A continuous linear functional ϕ on ℓ_{∞} , the space of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

- (1) $\phi(x) \ge 0$, when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n,
- (2) $\phi(e) = 1$, where e = (1, 1, 1, ...) and
- (3) $\phi(x_{\sigma(n)}) = \phi(x_n)$ for all $x \in \ell_{\infty}$.

The mappings σ are assumed to be one-to-one and such that $\sigma^m(n) \neq n$ for all positive integers n and m, where $\sigma^m(n)$ denotes the m th iterate of the mapping σ at n. Thus, ϕ extends the limit functional on c, the space of convergent sequences, in the sense that $\phi(x) = \lim x$ for all $x \in c$.

In the case σ is translation mappings $\sigma(n) = n + 1$, the σ -mean is often called a Banach limit and the space V_{σ} , the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences \hat{c} .

It can be shown that

$$V_{\sigma} = \left\{ x = (x_n) \in \ell_{\infty} : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} x_{\sigma^k(n)} = L, \text{ uniformly in } n \right\}.$$

The concept of strongly σ -convergence was defined by Mursaleen in [8]:

A bounded sequence $x = (x_k)$ is said to be strongly σ -convergent to L if

$$\lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} |x_{\sigma^k(n)} - L| = 0,$$

uniformly in n. It is denoted by $x_k \to L[V_{\sigma}]$.

By $[V_{\sigma}]$, we denote the set of all strongly σ -convergent sequences. In the case $\sigma(n) = n + 1$, the space $[V_{\sigma}]$ is the set of strongly almost convergent sequences $[\hat{c}]$.

The concept of strongly σ -convergence was generalized by Savaş [14] as below:

$$[V_{\sigma}]_p = \left\{ x = (x_k) : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m |x_{\sigma^k(n)} - L|^p = 0, \text{ uniformly in } n \right\},$$

where 0 . If <math>p = 1, then $[V_{\sigma}]_p = [V_{\sigma}]$. It is known that $[V_{\sigma}]_p \subset \ell_{\infty}$.

Recently, the concepts of σ -uniform density of the set $A \subseteq \mathbb{N}$, \mathcal{I}_{σ} -convergence and \mathcal{I}_{σ}^* -convergence of sequences of real numbers were defined by Nuray et al. [12]. Also, the concept of σ -convergence of double sequences was studied by Çakan et al. [1] and the concept of σ -uniform density of $A \subseteq \mathbb{N} \times \mathbb{N}$ was defined by Tortop and Dündar [17].

Let $A \subseteq \mathbb{N}$ and

$$s_m = \min_{n} |A \cap {\sigma(n), \sigma^2(n), \cdots, \sigma^m(n)}|$$

and

$$S_m = \max_{n} |A \cap {\sigma(n), \sigma^2(n), \cdots, \sigma^m(n)}|.$$

If the following limits exist

$$\underline{V}(A) = \lim_{m \to \infty} \frac{s_m}{m}, \ \overline{V}(A) = \lim_{m \to \infty} \frac{S_m}{m}$$

then they are called a lower and upper σ -uniform density of the set A, respectively. If $\underline{V}(A) = \overline{V}(A)$, then $V(A) = \underline{V}(A) = \overline{V}(A)$ is called σ -uniform density of A.

Denote by \mathcal{I}_{σ} the class of all $A \subseteq \mathbb{N}$ with V(A) = 0.

Let $\mathcal{I}_{\sigma} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $x=(x_k)$ is said to be \mathcal{I}_{σ} -convergent to the number L if for every $\varepsilon>0$ $A_{\varepsilon}=\{k:|x_k-L|\geq\varepsilon\}\in\mathcal{I}_{\sigma};$ i.e., $V(A_{\varepsilon})=0$. In this case, we write $\mathcal{I}_{\sigma}-\lim_k=L$.

The set of all \mathcal{I}_{σ} -convergent sequences will be deneted by \mathfrak{I}_{σ} .

Let $\mathcal{I}_{\sigma} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $x = (x_k)$ is said to be \mathcal{I}_{σ}^* -convergent to the number L if there exists a set $M = \{m_1 < m_2 < \cdots\} \in \mathcal{F}(\mathcal{I}_{\sigma})$ such that $\lim_{k \to \infty} x_{m_k} = L$. In this case, we write $\mathcal{I}_{\sigma}^* - \lim_{k \to \infty} L$.

A bounded double sequences $x=(x_{kj})$ of real numbers is said to be σ -convergent to a limit L if

$$\lim_{mn} \frac{1}{mn} \sum_{k=0}^{m} \sum_{j=0}^{n} x_{\sigma^{k}(s), \sigma^{j}(t)} = L$$

uniformly in s, t. In this case, we write $\sigma_2 - \lim x = L$.

Let $A \subseteq \mathbb{N} \times \mathbb{N}$ and

$$s_{mn}:=\min_{k,j}\left|A\cap\left\{\left(\sigma(k),\sigma(j)\right),\left(\sigma^2(k),\sigma^2(j)\right),...,\left(\sigma^m(k),\sigma^n(j)\right)\right\}\right|$$

and

$$S_{mn} := \max_{k,j} \left| A \cap \left\{ \left(\sigma(k), \sigma(j) \right), \left(\sigma^2(k), \sigma^2(j) \right), ..., \left(\sigma^m(k), \sigma^n(j) \right) \right\} \right|.$$

If the following limits exists

$$\underline{V_2}(A) := \lim_{m,n \to \infty} \frac{s_{mn}}{mn}, \quad \overline{V_2}(A) := \lim_{m,n \to \infty} \frac{S_{mn}}{mn}$$

then they are called a lower and an upper σ -uniform density of the set A, respectively. If $\underline{V_2}(A) = \overline{V_2}(A)$, then $V_2(A) = \underline{V_2}(A) = \overline{V_2}(A)$ is called the σ -uniform density of A.

Denote by \mathcal{I}_2^{σ} the class of all $A \subseteq \mathbb{N} \times \mathbb{N}$ with $V_2(A) = 0$.

Throughout the paper we let $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal

2. \mathcal{I}_2 -Invariant convergence

In this section, we introduce the concepts of strongly invariant convergence $([V_{\sigma}^2])$, p-strongly invariant convergence $([V_{\sigma}^2]_p)$, \mathcal{I}_2 -invariant convergence (\mathcal{I}_2^{σ}) of double sequences and investigate the relationships among invariant convergence, $[V_{\sigma}^2]_p$ and \mathcal{I}_2^{σ} .

Definition 2.1. A double sequence $x = (x_{kj})$ is said to be \mathcal{I}_2 -invariant convergent or \mathcal{I}_2^{σ} -convergent to L, if for every $\varepsilon > 0$

$$A(\varepsilon) = \{(k,j) : |x_{kj} - L| \ge \varepsilon\} \in \mathcal{I}_2^{\sigma}$$

that is, $V_2(A(\varepsilon)) = 0$. In this case, we write $\mathcal{I}_2^{\sigma} - \lim x = L$ or $x_{kj} \to L(\mathcal{I}_2^{\sigma})$. The set of all \mathcal{I}_2 -invariant convergent double sequences will be denoted by \mathfrak{I}_2^{σ} .

Theorem 2.1. If $\mathcal{I}_2^{\sigma} - \lim x_{kj} = L_1$ and $\mathcal{I}_2^{\sigma} - \lim y_{kj} = L_2$, then

- (i) $\mathcal{I}_2^{\sigma} \lim(x_{kj} + y_{kj}) = L_1 + L_2$ (ii) $\mathcal{I}_2^{\sigma} \lim \alpha x_{kj} = \alpha L_1$ (α is a constant).

Proof. The proof is clear so we omit it.

Theorem 2.2. Suppose that $x = (x_{kj})$ is a bounded double sequence. If $x = (x_{kj})$ is \mathcal{I}_2^{σ} convergent to L, then $x = (x_{kj})$ is invariant convergent to L.

П

Proof. Let $m, n \in \mathbb{N}$ be arbitrary and $\varepsilon > 0$. We estimate

$$u(m,n,s,t) = \left| \frac{1}{mn} \sum_{k,j=1}^{m,n} x_{\sigma^k(s),\sigma^j(t)} - L \right|.$$

Then, we have

$$u(m, n, s, t) \le u^{1}(m, n, s, t) + u^{2}(m, n, s, t)$$

where

$$u^{1}(m, n, s, t) = \frac{1}{mn} \sum_{\substack{k, j = 1, 1 \\ |x_{\sigma^{k}(s), \sigma^{j}(t)} - L| \ge \varepsilon}}^{m, n} |x_{\sigma^{k}(s), \sigma^{j}(t)} - L|$$

and

$$u^{2}(m, n, s, t) = \frac{1}{mn} \sum_{\substack{k, j = 1, 1 \\ |x_{\sigma^{k}(s), \sigma^{j}(t)} - L| < \varepsilon}}^{m, n} |x_{\sigma^{k}(s), \sigma^{j}(t)} - L|.$$

Therefore, we have

$$u^2(m, n, s, t) < \varepsilon,$$

for every $s,t=1,2,\ldots$. The boundedness of (x_{kj}) implies that there exists K>0 such that

$$|x_{\sigma^k(s),\sigma^j(t)} - L| \le K, \quad (k, j, s, t = 1, 2, \dots),$$

П

then this implies that

$$\begin{split} u^1(m,n,s,t) &\leq \frac{K}{mn} \Big| \big\{ 1 \leq k \leq m, 1 \leq j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \big\} \Big| \\ &= \max_{s,t} \Big| \big\{ 1 \leq k \leq m, 1 \leq j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \big\} \Big| \\ &\leq K \frac{S_{mn}}{mn}. \end{split}$$

Hence, (x_{kj}) is invariant convergent to L.

The converse of Theorem 2.2 does not hold. For example, $x = (x_{kj})$ is the double sequence defined by following;

$$x_{kj} := \begin{cases} 1 & , & \text{if } k+j \text{ is even integer,} \\ 0 & , & \text{if } k+j \text{ is odd integer.} \end{cases}$$

When $\sigma(s) = s + 1$ and $\sigma(t) = t + 1$, this sequence is invariant convergent to $\frac{1}{2}$ but it is not \mathcal{I}_2^{σ} -convergent.

In [12], Nuray et al. gave some inclusion relations between $[V_{\sigma}]_p$ -convergence and \mathcal{I} -invariant convergence, and showed that these are equivalent for bounded sequences. Now, we shall give analogous theorems which states inclusion relations between $[V_2^{\sigma}]_p$ -convergence and \mathcal{I}_2 -invariant convergence, and show that these are equivalent for bounded double sequences.

Definition 2.2. A double sequence $x = (x_{kj})$ is said to be strongly invariant convergent to L, if

$$\lim_{m,n \to \infty} \frac{1}{mn} \sum_{k=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L| = 0,$$

uniformly in s, t. In this case, we write $x_{kj} \to L([V_{\sigma}^2])$.

Definition 2.3. A double sequence $x = (x_{kj})$ is said to be p-strongly invariant convergent to L, if

$$\lim_{m,n \to \infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p = 0,$$

uniformly in s, t, where $0 . In this case, we write <math>x_{kj} \to L([V_{\sigma}^2]_p)$.

The set of all p-strongly invariant convergent double sequences will be denoted by $[V_\sigma^2]_p$.

Theorem 2.3. Let 0 .

(i) If
$$x_{kj} \to L([V_{\sigma}^2]_p)$$
, then $x_{kj} \to L(\mathcal{I}_2^{\sigma})$.

(ii) If
$$(x_{kj}) \in \ell_{\infty}^2$$
 and $x_{kj} \to L(\mathcal{I}_2^{\sigma})$, then $x_{kj} \to L([V_{\sigma}^2]_p)$.

(iii) If
$$(x_{kj}) \in \ell_{\infty}^2$$
, then $x_{kj} \to L(\mathcal{I}_2^{\sigma})$ if and only if $x_{kj} \to L([V_{\sigma}^2]_p)$.

Proof. (i): Assume that $x_{kj} \to L([V_{\sigma}^2]_p)$. Then, for every $\varepsilon > 0$, we can write

$$\begin{split} \sum_{k,j=1,1}^{m,n} \left| x_{\sigma^k(s),\sigma^j(t)} - L \right|^p & \geq \sum_{\substack{k,j=1,1\\ |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon}}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p \\ & \geq \varepsilon^p \big| \big\{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \big\} \big| \\ & \geq \varepsilon^p \max_{t \in \mathcal{T}} \big| \big\{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \big\} \big| \end{split}$$

and

$$\begin{split} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| x_{\sigma^k(s),\sigma^j(t)} - L \right|^p & \geq & \varepsilon^p \frac{\max\limits_{s,t} \left| \left\{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \right\} \right|}{mn} \\ & = & \varepsilon^p \frac{S_{mn}}{mn} \end{split}$$

for every $s, t = 1, 2, \ldots$ This implies

$$\lim_{m,n\to\infty} \frac{S_{mn}}{mn} = 0$$

and so (x_{kj}) is \mathcal{I}_2^{σ} -convergent to L.

(ii) : Suppose that $(x_{kj}) \in \ell_{\infty}^2$ and $x_{kj} \to L(\mathcal{I}_2^{\sigma})$. Let $0 and <math>\varepsilon > 0$. By assumption we have $V_2(A(\varepsilon)) = 0$. Since (x_{kj}) is bounded, (x_{kj}) implies that there exists K > 0 such that

$$|x_{\sigma^k(s),\sigma^j(t)} - L| \le K,$$

for all k, j, s, t. Then, we have

$$\begin{split} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| x_{\sigma^k(s),\sigma^j(t)} - L \right|^p &= \frac{1}{mn} \sum_{\substack{k,j=1,1 \\ |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon}}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p \\ &+ \frac{1}{mn} \sum_{\substack{k,j=1,1 \\ |x_{\sigma^k(s),\sigma^j(t)} - L| < \varepsilon}}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p \\ &\leq K \frac{\max_{s,t} \left| \left\{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \right\} \right|}{mn} + \varepsilon^p \\ &\leq K \frac{S_{mn}}{mn} + \varepsilon^p. \end{split}$$

Hence, we obtain

$$\lim_{m,n \to \infty} \frac{1}{mn} \sum_{k=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p = 0,$$

uniformly in s, t.

(iii) : This is immediate consequence of (i) and (ii).

Now, we introduce \mathcal{I}_2^* -invariant convergence concept, \mathcal{I}_2 -invariant Cauchy double sequence and \mathcal{I}_2^* -invariant Cauchy double sequence concepts and give the relationships among these concepts and relationships with \mathcal{I}_2 -invariant convergence concept.

Definition 2.4. A double sequence (x_{kj}) is \mathcal{I}_2^* -invariant convergent or $\mathcal{I}_2^{\sigma*}$ -convergent to L if and only if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} x_{kj} = L.$$

In this case, we write $\mathcal{I}_2^{\sigma*} - \lim_{k \to \infty} x_{kj} = L \text{ or } x_{kj} \to L(\mathcal{I}_2^{\sigma*}).$

Theorem 2.4. If a double sequence (x_{kj}) is $\mathcal{I}_2^{\sigma*}$ -convergent to L, then this sequence is $\mathcal{I}_2^{\sigma-}$ convergent to L.

Proof. Since $\mathcal{I}_2^{\sigma*} - \lim_{k,j \to \infty} x_{kj} = L$, there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} x_{kj} = L.$$

Let $\varepsilon > 0$. Then, there exists $k_0 \in \mathbb{N}$ such that

$$|x_{kj} - L| < \varepsilon$$
,

for all $(k, j) \in M_2$ and $k, j \ge k_0$. Hence, for every $\varepsilon > 0$, we have

$$T(\varepsilon) = \{(k,j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - L| \ge \varepsilon\}$$

$$\subset H \cup \Big(M_2 \cap \big((\{1,2,...,(k_0-1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,2,...,(k_0-1)\})\big)\Big).$$

Since $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal,

$$H \cup (M_2 \cap ((\{1, 2, ..., (k_0 - 1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, ..., (k_0 - 1)\}))) \in \mathcal{I}_2^{\sigma},$$

so we have $T(\varepsilon) \in \mathcal{I}_2^{\sigma}$ that is $V_2\big(T(\varepsilon)\big) = 0$. Hence,

$$\mathcal{I}_2^{\sigma} - \lim_{k \to \infty} x_{kj} = L.$$

Theorem 2.5. Let \mathcal{I}_2^{σ} has property (AP2). If (x_{kj}) is \mathcal{I}_2^{σ} -convergent to L, then (x_{kj}) is $\mathcal{I}_2^{\sigma*}$ -convergent to L.

Proof. Suppose that \mathcal{I}_2^{σ} satisfies property (AP2). Let (x_{kj}) is \mathcal{I}_2^{σ} -convergent to L. Then,

$$T(\varepsilon) = \{(k,j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - L| \ge \varepsilon\} \in \mathcal{I}_2^{\sigma}$$
 (2.1)

for every $\varepsilon > 0$. Put

$$T_1 = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - L| \ge 1\}$$

and

$$T_v = \left\{ (k, j) \in \mathbb{N} \times \mathbb{N} : \frac{1}{v} \le |x_{kj} - L| < \frac{1}{v - 1} \right\}$$

for $v \geq 2$ and $v \in \mathbb{N}$. Obviously $T_i \cap T_j = \emptyset$ for $i \neq j$ and $T_i \in \mathcal{I}_2^{\sigma}$ for each $i \in \mathbb{N}$. By property (AP2) there exits a sequence of sets $\{E_v\}_{v \in \mathbb{N}}$ such that $T_i \Delta E_i$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each i and $E = \bigcup_{i=1}^{\infty} E_i \in \mathcal{I}_2^{\sigma}$.

We shall prove that for $M_2 = \mathbb{N} \times \mathbb{N} \setminus E$ we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} x_{kj} = L.$$

Let $\eta > 0$ be given. Choose $v \in \mathbb{N}$ such that $\frac{1}{v} < \eta$. Then,

$$\{(k,j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - L| \ge \eta\} \subset \bigcup_{i=1}^{v} T_i.$$

Since $T_i \Delta E_i$, i = 1, 2, ... are included in finite union of rows and columns, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{i=1}^{v} T_i\right) \cap \left\{(k,j) : k \ge n_0 \land j \ge n_0\right\} = \left(\bigcup_{i=1}^{v} E_i\right) \cap \left\{(k,j) : k \ge n_0 \land j \ge n_0\right\}. \tag{2.2}$$

If $k, j > n_0$ and $(k, j) \notin E$, then

$$(k,j) \notin \bigcup_{i=1}^{v} E_i$$
 and $(k,j) \notin \bigcup_{i=1}^{v} T_i$.

This implies that

$$|x_{kj} - L| < \frac{1}{v} < \eta.$$

Hence, we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} x_{kj} = L.$$

Finally, we define the concepts of \mathcal{I}_2^{σ} -Cauchy and $\mathcal{I}_2^{\sigma*}$ -Cauchy double sequences.

Definition 2.5. A double sequence (x_{kj}) is said to be \mathcal{I}_2 -invariant Cauchy or \mathcal{I}_2^{σ} -Cauchy sequence, if for every $\varepsilon > 0$, there exist numbers $r = r(\varepsilon), s = s(\varepsilon) \in \mathbb{N}$ such that

$$A(\varepsilon) = \{(k, j) : |x_{kj} - x_{rs}| \ge \varepsilon\} \in \mathcal{I}_2^{\sigma},$$

that is, $V_2(A(\varepsilon)) = 0$.

Definition 2.6. A double sequence (x_{kj}) is \mathcal{I}_2^* -invariant Cauchy or $\mathcal{I}_2^{\sigma*}$ -Cauchy sequence if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for every $(k, j), (r, s) \in M_2$

$$\lim_{k,j,r,s\to\infty} |x_{kj} - x_{rs}| = 0.$$

We give following theorems which show relationships between \mathcal{I}_2^{σ} -convergence, \mathcal{I}_2^{σ} -Cauchy double sequence and $\mathcal{I}_2^{\sigma*}$ -Cauchy double sequence. The proof of them are similar to the proof of Theorems in [3,4,11], so we omit them.

Theorem 2.6. If a double sequence (x_{kj}) is \mathcal{I}_2^{σ} -convergent, then (x_{kj}) is an \mathcal{I}_2^{σ} -Cauchy double sequence.

Theorem 2.7. *If a double sequence* (x_{kj}) *is* $\mathcal{I}_2^{\sigma*}$ *-Cauchy double sequence, then* (x_{kj}) *is* \mathcal{I}_2^{σ} *-Cauchy double sequence.*

Theorem 2.8. Let \mathcal{I}_2^{σ} has property (AP2). Then, the concepts \mathcal{I}_2^{σ} -Cauchy double sequence and $\mathcal{I}_2^{\sigma*}$ -Cauchy double sequence coincides.

Acknowledgements. This study supported by Afyon Kocatepe University Scientific Research Coordination Unit with the project number 17.KARÝYER.20.

REFERENCES

- [1] Çakan, C., Altay, B. and Mursaleen, M., The σ -convergence and σ -core of double sequences, Appl. Math. Lett., **19** (2006), 1122–1128
- [2] Das, P., Kostyrko, P., Wilczyński, W. and Malik, P. *I and I*-convergence of double sequences*, Math. Slovaca, **58** (2008), No. 5, 605–620
- [3] Dems, K., On *I-Cauchy sequences*, Real Anal, Exchange, **30** (2004/2005), 123–128
- [4] Dündar, E. and Altay, B., I₂-convergence and I₂-Cauchy of double sequences, Acta Math. Sci., 34 (2014), No. B(2), 343–353
- [5] Gürdal, M., Some tupes of convergence, Doctoral Dissertation, S. Demirel Univ., Isparta, 2004
- [6] Kostyrko, P., Šalát, T. and Wilczyński, W., I-Convergence, Real Anal. Exchange, 26 (2000), No. 2, 669-686
- [7] Kumar, V., On I and I*-convergence of double sequences, Math. Commun., 12 (2007), 171–181
- [8] Mursaleen, M., Matrix transformation between some new sequence spaces, Houston J. Math., 9 (1983), 505-509
- [9] Mursaleen, M., On finite matrices and invariant means, Indian J. Pure Appl. Math., 10 (1979), 457-460
- [10] Mursaleen, M. and Edely, O. H. H., On the invariant mean and statistical convergence, Appl. Math. Lett., 22 (2009), No. 11, 1700–1704
- [11] Nabiev, A., Pehlivan, S. and Gürdal, M., On I-Cauchy sequences, Taiwanese J. Math., 11 (2007), No. 2, 569–576
- [12] Nuray, F., Gök, H. and Ulusu, U., \mathcal{I}_{σ} -convergence, Math. Commun., 16 (2011), 531–538
- [13] Raimi, R. A., Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), No. 1, 81–94
- [14] Savas, E., Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1–8
- [15] Savas, E., Strongly σ -convergent sequences, Bull. Calcutta Math., 81 (1989), 295–300
- [16] Schaefer, P., Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110
- [17] Tortop, Ş and Dündar, E., Wijsman I₂-invariant convergence of double sequences of sets, (submitted for publication).

DEPARTMENT OF MATHEMATICS

AFYON KOCATEPE UNIVERSITY

AFYONKARAHISAR, 03200, TURKEY

Email address: edundar@aku.edu.tr, ulusu@aku.edu.tr, fnuray@aku.edu.tr