On ideal invariant convergence of double sequences and some properties

Erdinç Dündar, Uğur Ulusu and Fatih Nuray

ABSTRACT. In this paper, we study the concepts of invariant convergence, p-strongly invariant convergence ([V_2^p]), I_2-invariant convergence (I_2^*), I_2-invariant convergence (I_2^*) of double sequences and investigate the relationships among invariant convergence, $[V_2^p]$, I_2^* and I_2^*. Also, we introduce the concepts of I_2^*-Cauchy double sequence and I_2^*-Cauchy double sequence.

1. INTRODUCTION AND BACKGROUND

The idea of I-convergence was introduced by Kostyrko et al. [6] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of the set of natural numbers \mathbb{N}. I-convergence of double sequences in a metric space and some properties of this convergence and similar concepts which are noted following can be seen in [2, 4, 7].

A family of sets $I \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if

(i) $\emptyset \in I$, (ii) For each $A, B \in I$ we have $A \cup B \in I$, (iii) For each $A \in I$ and each $B \subseteq A$ we have $B \in I$.

An ideal is called non-trivial if $\mathbb{N} \notin I$ and non-trivial ideal is called admissible if $\{n\} \in I$ for each $n \in \mathbb{N}$.

Throughout the paper we take I as an admissible ideal in \mathbb{N}.

A family of sets $F \subseteq 2^{\mathbb{N}}$ is called a filter if and only if

(i) $\emptyset \notin F$, (ii) For each $A, B \in F$ we have $A \cap B \in F$, (iii) For each $A \in F$ and each $B \supseteq A$ we have $B \in F$.

For any ideal there is a filter $F(I)$ corresponding with I, given by

$$F(I) = \{M \subseteq N : (\exists A \in I)(M = N\setminus A)\}.$$

A nontrivial ideal I_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to I_2 for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

Throughout the paper we take I_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

$${I_2}^0 = \{ A \subseteq N \times N : (\exists m(A) \in N)(i, j \geq m(A) \Rightarrow (i, j) \notin A)\}.$$ Then I_2^0 is a strongly admissible ideal and clearly an ideal I_2 is strongly admissible if and only if $I_2^0 \subset I_2$.

A double sequence $x = (x_{kj})_{k,j \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim’s sense if for any $\epsilon > 0$, there exists $N_\epsilon \in \mathbb{N}$ such that $|x_{kj} - L| < \epsilon$, whenever $k, j > N_\epsilon$. In this case, we write $P - \lim_{k,j \to \infty} x_{kj} = L$ or $\lim_{k,j \to \infty} x_{kj} = L$.

A double sequence $x = (x_{kj})$ is said to be bounded if $\sup_{k,j} x_{kj} < \infty$. The set of all bounded double sequences of sets will be denoted by ℓ^2_∞.

Received: 05.06.2017. In revised form: 12.01.2018. Accepted: 19.01.2018
2010 Mathematics Subject Classification. 40A05, 40A35.
Key words and phrases. double sequence, I-convergence, invariant convergence, I-Cauchy sequence.
Corresponding author: Erdinç Dündar; edundar@aku.edu.tr
Let \((X, \rho)\) be a metric space. A sequence \(x = (x_{mn})\) in \(X\) is said to be \(\mathcal{I}_2\)-convergent to \(L \in X\), if for any \(\varepsilon > 0\),
\[
A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \geq \varepsilon\} \subseteq \mathcal{I}_2.
\]
In this case, we write \(\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L\).

A double sequence \(x = (x_{kj})\) is \(\mathcal{I}_2^*\)-convergent to \(L\) if there exists a set \(M_2 \in \mathcal{F}(\mathcal{I}_2)\) (i.e., \(\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2\)) such that
\[
\lim_{k,j \to \infty} x_{kj} = L.
\]
In this case, we write \(\mathcal{I}_2 - \lim_{k,j \to \infty} x_{kj} = L\).

A double sequence \(x = (x_{kj})\) is \(\mathcal{I}_2\)-Cauchy sequence if for every \(\varepsilon > 0\), there exists \((r, s)\) in \(\mathbb{N} \times \mathbb{N}\) such that
\[
\{(k, j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - x_{rs}| \geq \varepsilon\} \subseteq \mathcal{I}_2.
\]

A double sequence \(x = (x_{kj})\) is \(\mathcal{I}_2^*\)-Cauchy if there exists a set \(M_2 \in \mathcal{F}(\mathcal{I}_2)\) \((\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2)\) such that,
\[
\lim_{k,j,r,s \to \infty} |x_{kj} - x_{rs}| = 0,
\]
for \((k, j), (r, s) \in M_2\).

An admissible ideal \(\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}\) satisfies the property (AP2) if for every countable family of mutually disjoint sets \(\{E_1, E_2, \ldots\}\) belonging to \(\mathcal{I}_2\), there exists a countable family of sets \(\{F_1, F_2, \ldots\}\) such that \(E_j \Delta F_j \in \mathcal{I}_2^0\), i.e., \(E_j \Delta F_j\) is included in the finite union of rows and columns in \(\mathbb{N} \times \mathbb{N}\) for each \(j \in \mathbb{N}\) and \(F = \bigcup_{j=1}^{\infty} F_j \in \mathcal{I}_2\) (hence \(F_j \in \mathcal{I}_2\) for each \(j \in \mathbb{N}\)).

Several authors have studied convergence, invariant convergence and Cauchy sequences (see, [1, 3, 5, 8, 10, 12–17]).

Let \(\sigma\) be a mapping of the positive integers into themselves. A continuous linear functional \(\phi\) on \(\ell_\infty\), the space of real bounded sequences, is said to be an invariant mean or a \(\sigma\)-mean if it satisfies following conditions:

1. \(\phi(x) \geq 0\), when the sequence \(x = (x_n)\) has \(x_n \geq 0\) for all \(n\),
2. \(\phi(e) = 1\), where \(e = (1, 1, 1, \ldots)\) and
3. \(\phi(x_{\sigma(n)}) = \phi(x_n)\) for all \(x \in \ell_\infty\).

The mappings \(\sigma\) are assumed to be one-to-one and such that \(\sigma^m(n) \neq n\) for all positive integers \(n\) and \(m\), where \(\sigma^m(n)\) denotes the \(m\) th iterate of the mapping \(\sigma\) at \(n\). Thus, \(\phi\) extends the limit functional on \(c\), the space of convergent sequences, in the sense that \(\phi(x) = \lim x\) for all \(x \in c\).

In the case \(\sigma\) is translation mappings \(\sigma(n) = n + 1\), the \(\sigma\)-mean is often called a Banach limit and the space \(V_\sigma\), the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences \(\hat{c}\).

It can be shown that
\[
V_\sigma = \left\{ x = (x_n) \in \ell_\infty : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} x_{\sigma^k(n)} = L, \text{ uniformly in } n \right\}.
\]

The concept of strongly \(\sigma\)-convergence was defined by Mursaleen in [8]:

A bounded sequence \(x = (x_k)\) is said to be strongly \(\sigma\)-convergent to \(L\) if
\[
\lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} |x_{\sigma^k(n)} - L| = 0,
\]
uniformly in \(n\). It is denoted by \(x_k \to L[V_\sigma]\).
By $[V_σ]$, we denote the set of all strongly $σ$-convergent sequences. In the case $σ(n) = n + 1$, the space $[V_σ]$ is the set of strongly almost convergent sequences $[c]$.

The concept of strongly $σ$-convergence was generalized by Savas $[14]$ as below:

$$[V_σ]_p = \left\{ x = (x_k) : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m |x_{σ^k(n)} - L|^p = 0, \text{ uniformly in } n \right\},$$

where $0 < p < \infty$. If $p = 1$, then $[V_σ]_p = [V_σ]$. It is known that $[V_σ]_p \subset \ell_∞$.

Recently, the concepts of $σ$-uniform density of the set $A \subseteq \mathbb{N}$, $I_σ$-convergence and $I_σ^*$-convergence of sequences of real numbers were defined by Nuray et al. $[12]$. Also, the concept of $σ$-convergence of double sequences was studied by Çakan et al. $[1]$ and the concept of $σ$-uniform density of $A \subseteq \mathbb{N} \times \mathbb{N}$ was defined by Tortop and Dündar $[17]$.

Let $A \subseteq \mathbb{N}$ and

$$s_m = \min_n |A \cap \{σ(n), σ^2(n), \ldots, σ^m(n)\}|$$

and

$$S_m = \max_n |A \cap \{σ(n), σ^2(n), \ldots, σ^m(n)\}|.$$

If the following limits exist

$$V(A) = \lim_{m \to \infty} \frac{s_m}{m}, \quad \overline{V}(A) = \lim_{m \to \infty} \frac{S_m}{m},$$

then they are called a lower and upper $σ$-uniform density of the set A, respectively. If $V(A) = \overline{V}(A)$, then $V(A) = \overline{V}(A) = \overline{V}(A)$ is called $σ$-uniform density of A.

Denote by $I_σ$ the class of all $A \subseteq \mathbb{N}$ with $V(A) = 0$.

Let $I_σ \subset 2^\mathbb{N}$ be an admissible ideal. A sequence $x = (x_k)$ is said to be $I_σ$-convergent to the number L if for every $ε > 0$ $A_ε = \{k : |x_k - L| \geq ε\} \in I_σ$; i.e., $V(A_ε) = 0$. In this case, we write $I_σ - \lim_k x = L$.

The set of all $I_σ$-convergent sequences will be denoted by $I_σ$.

Let $I_σ^* \subset 2^\mathbb{N}$ be an admissible ideal. A sequence $x = (x_k)$ is said to be $I_σ^*$-convergent to the number L if there exists a set $M = \{m_1 < m_2 < \ldots\} \in \mathcal{F}(I_σ)$ such that $\lim_{k \to \infty} x_{mk} = L$. In this case, we write $I_σ^* - \lim_k x = L$.

A bounded double sequences $x = (x_{kj})$ of real numbers is said to be $σ$-convergent to a limit L if

$$\lim_{mn} \frac{1}{mn} \sum_{k=0}^m \sum_{j=0}^n x_{σ^k(s), σ^j(t)} = L$$

uniformly in s, t. In this case, we write $σ_2 - \lim x = L$.

Let $A \subseteq \mathbb{N} \times \mathbb{N}$ and

$$s_{mn} := \min_{k,j} |A \cap \{(σ(k), σ(j)), (σ^2(k), σ^2(j)), \ldots, (σ^m(k), σ^m(j))\}|$$

and

$$S_{mn} := \max_{k,j} |A \cap \{(σ(k), σ(j)), (σ^2(k), σ^2(j)), \ldots, (σ^m(k), σ^m(j))\}|.$$

If the following limits exist

$$V_2(A) := \lim_{m,n \to \infty} \frac{s_{mn}}{mn}, \quad \overline{V}_2(A) := \lim_{m,n \to \infty} \frac{S_{mn}}{mn},$$

then they are called a lower and an upper $σ$-uniform density of the set A, respectively. If $V_2(A) = \overline{V}_2(A)$, then $V_2(A) = \overline{V}_2(A) = \overline{V}_2(A)$ is called the $σ$-uniform density of A.

On ideal invariant convergence of double sequences 163
Denote by \mathcal{I}_2^σ the class of all $A \subseteq \mathbb{N} \times \mathbb{N}$ with $V_2(A) = 0$.
Throughout the paper we let $\mathcal{I}_2^\sigma \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal.

2. \mathcal{I}_2-INVARIANT CONVERGENCE

In this section, we introduce the concepts of strongly invariant convergence ($[V_2^\sigma]$), p-strongly invariant convergence ($[V_2^\sigma]_p$), \mathcal{I}_2-invariant convergence (\mathcal{I}_2^σ) of double sequences and investigate the relationships among invariant convergence, $[V_2^\sigma]$ and \mathcal{I}_2^σ.

Definition 2.1. A double sequence $x = (x_{kj})$ is said to be \mathcal{I}_2^σ-invariant convergent or \mathcal{I}_2^σ-convergent to L, if for every $\varepsilon > 0$

$$A(\varepsilon) = \{(k, j) : |x_{kj} - L| \geq \varepsilon\} \in \mathcal{I}_2^\sigma$$

that is, $V_2(A(\varepsilon)) = 0$. In this case, we write $\mathcal{I}_2^\sigma - \lim x = L$ or $x_{kj} \to L(\mathcal{I}_2^\sigma)$.

The set of all \mathcal{I}_2-invariant convergent double sequences will be denoted by \mathcal{I}_2^σ.

Theorem 2.1. If $\mathcal{I}_2^\sigma - \lim x_{kj} = L_1$ and $\mathcal{I}_2^\sigma - \lim y_{kj} = L_2$, then

(i) $\mathcal{I}_2^\sigma - \lim (x_{kj} + y_{kj}) = L_1 + L_2$

(ii) $\mathcal{I}_2^\sigma - \lim \alpha x_{kj} = \alpha L_1$ (α is a constant).

Proof. The proof is clear so we omit it. \square

Theorem 2.2. Suppose that $x = (x_{kj})$ is a bounded double sequence. If $x = (x_{kj})$ is \mathcal{I}_2^σ-convergent to L, then $x = (x_{kj})$ is invariant convergent to L.

Proof. Let $m, n \in \mathbb{N}$ be arbitrary and $\varepsilon > 0$. We estimate

$$u(m, n, s, t) = \left| \frac{1}{mn} \sum_{k,j=1,1}^{m,n} x_{\sigma^k(s),\sigma^j(t)} - L \right|.$$

Then, we have

$$u(m, n, s, t) \leq u^1(m, n, s, t) + u^2(m, n, s, t)$$

where

$$u^1(m, n, s, t) = \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|$$

for $|x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon$

and

$$u^2(m, n, s, t) = \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|$$

for $|x_{\sigma^k(s),\sigma^j(t)} - L| < \varepsilon$

Therefore, we have

$$u^2(m, n, s, t) < \varepsilon,$$

for every $s, t = 1, 2, \ldots$. The boundedness of (x_{kj}) implies that there exists $K > 0$ such that

$$|x_{\sigma^k(s),\sigma^j(t)} - L| \leq K, \quad (k, j, s, t = 1, 2, \ldots).$$
then this implies that
\[
\begin{aligned}
u^1(m, n, s, t) &\leq \frac{K}{mn} \left| \left\{ 1 \leq k \leq m, 1 \leq j \leq n : |x_{\sigma^k(s), \sigma^j(t)} - L| \geq \varepsilon \right\} \right| \\
&\leq \frac{1}{mn} \max_{s, t} \left\{ 1 \leq k \leq m, 1 \leq j \leq n : |x_{\sigma^k(s), \sigma^j(t)} - L| \geq \varepsilon \right\} \\
&= K \frac{S_{mn}}{mn}
\end{aligned}
\]

Hence, \((x_{kj})\) is invariant convergent to \(L\).

The converse of Theorem 2.2 does not hold. For example, \(x = (x_{kj})\) is the double sequence defined by following;

\[
x_{kj} := \begin{cases}
1 &, \text{if } k+j \text{ is even integer,} \\
0 &, \text{if } k+j \text{ is odd integer.}
\end{cases}
\]

When \(\sigma(s) = s + 1\) and \(\sigma(t) = t + 1\), this sequence is invariant convergent to \(\frac{1}{2}\) but it is not \(\mathcal{I}_2^\sigma\)-convergent.

In [12], Nuray et al. gave some inclusion relations between \([V_\sigma]_p\)-convergence and \(\mathcal{I}\)-invariant convergence, and showed that these are equivalent for bounded sequences. Now, we shall give analogous theorems which states inclusion relations between \([V_\sigma^2]_p\)-convergence and \(\mathcal{I}_2\)-invariant convergence, and show that these are equivalent for bounded double sequences.

Definition 2.2. A double sequence \(x = (x_{kj})\) is said to be strongly invariant convergent to \(L\), if

\[
\lim_{m, n \to \infty} \frac{1}{mn} \sum_{k, j=1}^{m, n} |x_{\sigma^k(s), \sigma^j(t)} - L| = 0,
\]

uniformly in \(s, t\). In this case, we write \(x_{kj} \to L([V_\sigma^2])\).

Definition 2.3. A double sequence \(x = (x_{kj})\) is said to be \(p\)-strongly invariant convergent to \(L\), if

\[
\lim_{m, n \to \infty} \frac{1}{mn} \sum_{k, j=1}^{m, n} |x_{\sigma^k(s), \sigma^j(t)} - L|^p = 0,
\]

uniformly in \(s, t\), where \(0 < p < \infty\). In this case, we write \(x_{kj} \to L([V_\sigma^2]_p)\).

The set of all \(p\)-strongly invariant convergent double sequences will be denoted by \([V_\sigma^2]_p\).

Theorem 2.3. Let \(0 < p < \infty\).

(i) If \(x_{kj} \to L([V_\sigma^2]_p)\), then \(x_{kj} \to L(\mathcal{I}_2^\sigma)\).

(ii) If \((x_{kj}) \in \ell_\infty^2\) and \(x_{kj} \to L(\mathcal{I}_2^\sigma)\), then \(x_{kj} \to L([V_\sigma^2]_p)\).

(iii) If \((x_{kj}) \in \ell_\infty^2\), then \(x_{kj} \to L(\mathcal{I}_2^\sigma)\) if and only if \(x_{kj} \to L([V_\sigma^2]_p)\).
Proof. (i) : Assume that $x_{kj} \to L([V^2_\sigma])$. Then, for every $\varepsilon > 0$, we can write

$$\sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p \geq \sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p$$

$$\geq \varepsilon^p \{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \}$$

$$\geq \varepsilon^p \max_{s,t} \{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \}$$

and

$$\frac{1}{mn} \sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p \geq \varepsilon^p \frac{\max_{s,t} \{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \} \frac{1}{mn}}{\{ k \leq m, j \leq n : \}}$$

$$\leq \frac{\varepsilon^p S_{mn}}{mn}$$

for every $s, t = 1, 2, \ldots$. This implies

$$\lim_{m,n \to \infty} \frac{S_{mn}}{mn} = 0$$

and so (x_{kj}) is \mathcal{T}^2_σ-convergent to L.

(ii) : Suppose that $(x_{kj}) \in \ell^p_\infty$ and $x_{kj} \to L(\mathcal{T}^2_\sigma)$. Let $0 < p < \infty$ and $\varepsilon > 0$. By assumption we have $V_2(A(\varepsilon)) = 0$. Since (x_{kj}) is bounded, (x_{kj}) implies that there exists $K > 0$ such that

$$|x_{\sigma^k(s),\sigma^j(t)} - L| \leq K,$$

for all k, j, s, t. Then, we have

$$\frac{1}{mn} \sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p$$

$$= \frac{1}{mn} \sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p$$

$$+ \frac{1}{mn} \sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p$$

$$\leq K \frac{\max_{s,t} \{ k \leq m, j \leq n : |x_{\sigma^k(s),\sigma^j(t)} - L| \geq \varepsilon \} \frac{1}{mn}}{\{ k \leq m, j \leq n : \}} + \varepsilon^p$$

$$\leq K \frac{S_{mn}}{mn} + \varepsilon^p.$$

Hence, we obtain

$$\lim_{m,n \to \infty} \frac{1}{mn} \sum_{k,j=1}^{m,n} |x_{\sigma^k(s),\sigma^j(t)} - L|^p = 0,$$

uniformly in s, t.

(iii) : This is immediate consequence of (i) and (ii).
Now, we introduce I_2^σ-invariant convergence concept, I_2-invariant Cauchy double sequence and I_2^σ-invariant Cauchy double sequence concepts and give the relationships among these concepts and relationships with I_2-invariant convergence concept.

Definition 2.4. A double sequence $(x_{k,j})$ is I_2^σ-invariant convergent or $I_2^\sigma^*$-convergent to L if and only if there exists a set $M_2 \in \mathcal{F}(I_2^\sigma)\ (\mathbb{N} \times \mathbb{N}\ \backslash M_2 = H \in I_2^\sigma)$ such that

$$\lim_{k,j \to \infty} x_{k,j} = L.$$

In this case, we write $I_2^\sigma^* - \lim_{k,j \to \infty} x_{k,j} = L$ or $x_{k,j} \to L(I_2^\sigma^*)$.

Theorem 2.4. If a double sequence $(x_{k,j})$ is $I_2^\sigma^*$-convergent to L, then this sequence is I_2^σ-convergent to L.

Proof. Since $I_2^\sigma^* - \lim_{k,j \to \infty} x_{k,j} = L$, there exists a set $M_2 \in \mathcal{F}(I_2^\sigma)\ (\mathbb{N} \times \mathbb{N}\ \backslash M_2 = H \in I_2^\sigma)$ such that

$$\lim_{k,j \to \infty} x_{k,j} = L.$$

Let $\varepsilon > 0$. Then, there exists $k_0 \in \mathbb{N}$ such that

$$|x_{k,j} - L| < \varepsilon,$$

for all $(k, j) \in M_2$ and $k, j \geq k_0$. Hence, for every $\varepsilon > 0$, we have

$$T(\varepsilon) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |x_{k,j} - L| \geq \varepsilon\} \subset H \cup \left(M_2 \cap (\{1, 2, ..., (k_0 - 1)\} \times \mathbb{N}) \cup (\{1, 2, ..., (k_0 - 1)\})\right).$$

Since $I_2^\sigma \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal,

$$H \cup \left(M_2 \cap (\{1, 2, ..., (k_0 - 1)\} \times \mathbb{N}) \cup (\{1, 2, ..., (k_0 - 1)\})\right) \in I_2^\sigma,$$

so we have $T(\varepsilon) \in I_2^\sigma$ that is $V_2(T(\varepsilon)) = 0$. Hence,

$$I_2^\sigma^* - \lim_{k,j \to \infty} x_{k,j} = L.$$

\square

Theorem 2.5. Let I_2^σ has property $(AP2)$. If $(x_{k,j})$ is I_2^σ-convergent to L, then $(x_{k,j})$ is $I_2^\sigma^*$-convergent to L.

Proof. Suppose that I_2^σ satisfies property $(AP2)$. Let $(x_{k,j})$ is I_2^σ-convergent to L. Then,

$$T(\varepsilon) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |x_{k,j} - L| \geq \varepsilon\} \in I_2^\sigma$$

for every $\varepsilon > 0$. Put

$$T_1 = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |x_{k,j} - L| \geq 1\}$$

and

$$T_v = \left\{(k, j) \in \mathbb{N} \times \mathbb{N} : \frac{1}{v} \leq |x_{k,j} - L| < \frac{1}{v - 1}\right\}$$

for $v \geq 2$ and $v \in \mathbb{N}$. Obviously $T_i \cap T_j = \emptyset$ for $i \neq j$ and $T_i \in I_2^\sigma$ for each $i \in \mathbb{N}$. By property $(AP2)$ there exits a sequence of sets $\{E_v\}_{v \in \mathbb{N}}$ such that $T_i \Delta E_i$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $i \in \mathbb{N}$ and $E = \bigcup_{i=1}^{\infty} E_i \in I_2^\sigma$.

We shall prove that for $M_2 = \mathbb{N} \times \mathbb{N}\ \backslash E$ we have

$$\lim_{k,j \to \infty} x_{k,j} = L.$$
Let $\eta > 0$ be given. Choose $v \in \mathbb{N}$ such that $\frac{1}{v} < \eta$. Then,

$$\{(k, j) \in \mathbb{N} \times \mathbb{N} : |x_{kj} - L| \geq \eta\} \subset \bigcup_{i=1}^{v} T_i.$$

Since $T_i \Delta E_i, i = 1, 2, ...$ are included in finite union of rows and columns, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{i=1}^{v} T_i \right) \cap \{(k, j) : k \geq n_0 \land j \geq n_0\} = \left(\bigcup_{i=1}^{v} E_i \right) \cap \{(k, j) : k \geq n_0 \land j \geq n_0\}. \tag{2.2}$$

If $k, j > n_0$ and $(k, j) \notin E$, then

$$(k, j) \notin \bigcup_{i=1}^{v} E_i \land (k, j) \notin \bigcup_{i=1}^{v} T_i.$$

This implies that

$$|x_{kj} - L| < \frac{1}{v} < \eta.$$

Hence, we have

$$\lim_{k,j \to \infty, (k,j) \in M_2} x_{kj} = L.$$

Finally, we define the concepts of I_2^g-Cauchy and I_2^{g*}-Cauchy double sequences.

Definition 2.5. A double sequence (x_{kj}) is said to be I_2^g-invariant Cauchy or I_2^{g*}-Cauchy sequence, if for every $\varepsilon > 0$, there exist numbers $r = r(\varepsilon), s = s(\varepsilon) \in \mathbb{N}$ such that

$$A(\varepsilon) = \{(k, j) : |x_{kj} - x_{rs}| \geq \varepsilon\} \in I_2^g,$$

that is, $V_2(A(\varepsilon)) = 0$.

Definition 2.6. A double sequence (x_{kj}) is I_2^g-invariant Cauchy or I_2^{g*}-Cauchy sequence if there exists a set $M_2 \in \mathcal{F}(I_2^g)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in I_2^g$) such that for every $(k, j), (r, s) \in M_2$

$$\lim_{k,j,r,s \to \infty} |x_{kj} - x_{rs}| = 0.$$

We give following theorems which show relationships between I_2^g-convergence, I_2^g-Cauchy double sequence and I_2^{g*}-Cauchy double sequence. The proof of them are similar to the proof of Theorems in [3, 4, 11], so we omit them.

Theorem 2.6. If a double sequence (x_{kj}) is I_2^g-convergent, then (x_{kj}) is an I_2^g-Cauchy double sequence.

Theorem 2.7. If a double sequence (x_{kj}) is I_2^{g*}-Cauchy double sequence, then (x_{kj}) is I_2^g-Cauchy double sequence.

Theorem 2.8. Let I_2^g has property $(AP2)$. Then, the concepts I_2^g-Cauchy double sequence and I_2^{g*}-Cauchy double sequence coincides.

Acknowledgements. This study supported by Afyon Kocatepe University Scientific Research Coordination Unit with the project number 17.KARÝYER.20.
REFERENCES

DEPARTMENT OF MATHEMATICS
AFYON KOCATEPE UNIVERSITY
AFYONKARAHISAR, 03200, TURKEY
Email address: edundar@aku.edu.tr, ulusu@aku.edu.tr, fnuray@aku.edu.tr