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Hadamard’s inequality and its extensions for conformable
fractional integrals of any order α > 0

ERHAN SET1 , AHMET OCAK AKDEMIR2 and İ. MUMCU1

ABSTRACT. Recently the authors Abdeljawad [Abdeljawad, T., On conformable fractional calculus, J. Comput.
Appl. Math., 279 (2015), 57-66] and Khalil et al. [Khalil, R., Horani, M. Al., Yousef, A. and Sababheh, M., A
new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70] introduced a new and sim-
ple well-behaved concept of fractional integral called conformable fractional integral. In this article, we estab-
lish Hermite-Hadamard’s inequalities for conformable fractional integral. We also give extensions of Hermite-
Hadamard type inequalities for conformable fractional integrals.

1. INTRODUCTION

The following definition has an important place in all fields of mathematics and in-
equality theory.

A mapping g : J ⊆ R→ R is said to be convex if the inequality

g (λx+ (1− λ) y) ≤ λg (x) + (1− λ) g (y)

satisfies for all x, y ∈ I and λ ∈ [0, 1] (See [11]).
This definition has been used in the following inequality that is called Hadamard’s

inequality (see [11]) or Hermite-Hadamard inequality (HH-inequality).
Suppose that g : I ⊆ R→ R is a convex mapping and u, v ∈ J with u < v, then

g

(
u+ v

2

)
≤ 1

v − u

∫ v

u

g (x) dx ≤ g (u) + g (v)

2
. (1.1)

Hadamard’s inequality is sensitive in terms of Cauchy Mean-Value Theorem for con-
vex mappings. Because one can find upper and lower bounds for the mean value of a
convex mapping with Hadamard’s inequality. Many researchers have expended efforts
to provide new bounds and estimations by using this inequality. Of all of these, we men-
tion Riemann-Liouville fractional integrals that have beneficial uses.

Definition 1.1. Assume that g ∈ L1[u, v]. The Riemann-Liouville integrals Jµu+g and Jµv−g
of order µ > 0 are introduced by

Jµu+g(y) =
1

Γ(µ)

∫ y

u

(y − t)µ−1g(t)dt, y > u

and

Jµv−g(y) =
1

Γ(µ)

∫ v

y

(t− y)µ−1g(t)dt, y < v

respectively, where Γ(µ) =
∫∞
0
e−tuµ−1du. Here J0

u+g(y) = J0
v−g(y) = g(y).
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If we set µ = 1 in Definition 1.1, one can obtain the classical integral.
We consider the Beta function [7, p18]:

B (a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ta−1 (1− t)b−1 dt, a, b > 0,

where Γ (α) =
∫∞
0
e−tuα−1du is Gamma function.

Owing to this definition the inequalities that have been obtained by classical integral
and derivative have been improved and generalized. In [2] and [9], authors have proved
some HH-type inequalities for Riemann-Liouville fractional integrals.

Recently several Hermite-Hadamard type inequalities were obtained for various classes
of functions using fractional integrals; one may refer to such works as (for example)
[3, 4, 5, 8, 10].

In spite of its valuable contribitions to mathematical analysis, the Riemann-Liouville
Fractional integrals have deficiencies. For example, the solution of the differential equa-
tion that is given as

y(
1
2 ) + y = x(

1
2 ) +

2

Γ(2.5)
x(

3
2 ), y(0) = 0,

where y(
1
2 ) is the fractional derivative of y of order 1

2 .
This problem has caused to imagine a new and simple representation of the definition

of fractional derivative. In [6], Khalil et al. gave a new definition that is called ”Con-
formable fractional derivative”. They not only proved further properties of this definition
but also gave the differences with the other fractional derivatives. Besides, another con-
siderable study have presented by Abdeljawad to discuss the basic concepts of fractional
calculus. In [1], Abdeljawad gave the following definitions of Right-Left fractional inte-
grals:

Definition 1.2. Let α ∈ (n, n+1], n = 0, 1, 2, ... and set β = α−n. Then the left conformable
fractional integral of any order α > 0 is defined by

(Iaαf)(t) =
1

n!

∫ t

a

(t− x)n(x− a)β−1f(x)dx

Analogously, the right conformable fractional integral of any order α > 0 is defined by

(bIαf)(t) =
1

n!

∫ b

t

(x− t)n(b− x)β−1f(x)dx.

Notice that if α = n+1 then β = α−n = n+1−n = 1 and hence (Iaαf)(t) = (Jan+1f)(t).
We think that a new evaluation is necessary to explain the deficiencies of the previous

results obtained via Riemann-Liouville fractional integrals.
Let us consider the mapping f defined as f : R+ → R, f(x) = x2ex which is con-

vex. If we choose this function to provide applications by the previous inequalities that
have been obtained by Riemann-Liouville fractional inequalities, we can see that the in-
equalities do not hold for f(x). Because, the Riemann-Liouville derivatives are not valid
for product of two mappings. The results which are obtained by using the conformable
fractional integrals have a wide range of validity.

The aim of this paper is to prove new Hadamard’s type inequalities that are valid for
all elements of the class of convex mappings via conformable fractional integrals. We also
obtain extensions of Hadamard’s inequality by using the conformable fractional integrals.
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2. HH-INEQUALITY FOR CONFORMABLE FRACTIONAL INTEGRALS

Theorem 2.1. Let f : [a, b]→ R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is a convex
on [a, b], then one can obtains the following inequalities for conformable fractional integrals:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)] ≤ f (a) + f (b)

2
(2.2)

with α ∈ (n, n+ 1].

Proof. Let x, y ∈ [a, b]. If f is a convex function on [a, b],

f

(
x+ y

2

)
≤ f (x) + f (y)

2

i.e., with x = ta+ (1− t)b, y = (1− t)a+ tb,

2f

(
a+ b

2

)
≤ f(ta+ (1− t)b) + f((1− t)a+ tb). (2.3)

Multiplying both sides of (2.3) by 1
n! t

n(1 − t)α−n−1, then integrating the resulting in-
equality with respect to t over [0, 1], we get

2

n!
f(
a+ b

2
)

∫ 1

0

tn(1− t)α−n−1dt ≤ 1

n!

∫ 1

0

tn(1− t)α−n−1f(ta+ (1− t)b)dt

+
1

n!

∫ 1

0

tn(1− t)α−n−1f((1− t)a+ tb)dt

=
1

n!

∫ b

a

(
b− u
b− a

)n(
u− a
b− a

)α−n−1f(u)
du

a− b

+
1

n!

∫ b

a

(
u− a
b− a

)n(
b− u
b− a

)α−n−1f(u)
du

b− a

=
1

(b− a)α
[Iaαf(b) +b Iαf(a)].

Note we have

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[Iaαf(b) +b Iαf(a)]

where ∫ 1

0

tn(1− t)α−n−1dt = B(n+ 1, α− n) =
Γ(n+ 1)Γ(α− n)

Γ(α+ 1)

and the first part of the inequality in (2.2) is proved.
Since f is a convex, we have the following inequalities:

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b)

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b).

Adding these two inequalities, we get

f(ta+ (1− t)b) + f((1− t)a+ tb) ≤ f(a) + f(b).
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Multiplying both sides of the resulting inequality by 1
n! t

n(1−t)α−n−1 and integrating with
respect to t over [0, 1], we have

1

(b− a)α
[Iaαf(b) +b Iαf(a)] ≤ 1

n!

∫ 1

0

tn(1− t)α−n−1[f(a) + f(b)]dt

≤ 1

n!
B(n+ 1, α− n)[f(a) + f(b)]

≤ Γ(α− n)

Γ(α+ 1)
[f(a) + f(b)].

So we get

Γ(α+ 1)

(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)] ≤ f(a) + f(b).

�

Remark 2.1. In Theorem 2.1, if we take α = n + 1, then from the the inequality (2.2) we
get the inequalities in Theorem 2 of [9] and we don’t suppose that f is a positive function,
a condition which is required in Theorem 2 of [9].

3. EXTENSIONS OF HH- INEQUALITY

Theorem 3.2. Assume that f : [a, b] → R is a twice differentiable function with a < b and
f ∈ L1[a, b]. If f

′′
is bounded in [a, b], then we have

mΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(
a+ b

2
− x
)2

(3.4)

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)]− f

(
a+ b

2

)
≤ MΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(
a+ b

2
− x
)2

,

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

and

−MΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(x− a)(b− x) (3.5)

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)]− f(a) + f(b)

2

≤ −mΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(x− a)(b− x)

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

with α ∈ (n, n+ 1], where m = inft∈[a,b]f
′′
(t), M = supt∈[a,b]f

′′
(t).

Proof. We will prove (3.4), firstly.”
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Γ(α+ 1)

2(b− a)αΓ(α− n)
[Iaαf(b) + bIαf(a)]

=
Γ(α+ 1)

2(b− a)αΓ(α− n)

[ 1

n!

∫ b

a

(b− x)n(x− a)α−n−1f(x)dx

+
1

n!

∫ b

a

(x− a)n(b− x)α−n−1f(x)dx
]

=
Γ(α+ 1)

2(b− a)αΓ(α− n)n!

×
∫ b

a

f(x)[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

=
Γ(α+ 1)

2(b− a)αΓ(α− n)n!

×
∫ b

a

f(a+ b− x)[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

So

Γ(α+ 1)

2(b− a)αΓ(α− n)
[Iaαf(b) + bIαf(a)] (3.6)

=
Γ(α+ 1)

4(b− a)αΓ(α− n)n!

∫ b

a

[f(x) + f(a+ b− x)]

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

Then, we get

Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)]− f

(
a+ b

2

)
=

Γ(α+ 1)

4(b− a)αΓ(α− n)n!

∫ b

a

[
f(x) + f(a+ b− x)− 2f

(
a+ b

2

)]
×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx.

Since[
f(x) + f(a+ b− x)− 2f

(
a+ b

2

)]
[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]

is symmetric about x = a+b
2 , we have

Γ(α+ 1)

4(b− a)αΓ(α− n)n!

∫ b

a

[
f(x) + f(a+ b− x)− 2f

(
a+ b

2

)]
(3.7)

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

=
Γ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

[
f(x) + f(a+ b− x)− 2f

(
a+ b

2

)]
×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx.
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As consequence, we have

Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)]− f

(
a+ b

2

)
=

Γ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

[
f(x) + f(a+ b− x)− 2f

(
a+ b

2

)]
×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx.

Since

f(a+ b− x)− f
(
a+ b

2

)
=

∫ a+b−x

a+b
2

f
′
(t)dt

and

f

(
a+ b

2

)
− f(x) =

∫ a+b
2

x

f
′
(t)dt,

we get

f(x) + f(a+ b− x)− 2f

(
a+ b

2

)
=

∫ a+b−x

a+b
2

f
′
(t)dt−

∫ a+b
2

x

f
′
(t)dt (3.8)

=

∫ a+b
2

x

f
′
(a+ b− t)dt−

∫ a+b
2

x

f
′
(t)dt

=

∫ a+b
2

x

[f
′
(a+ b− t)− f

′
(t)]dt.

Since

f
′
(a+ b− t)− f

′
(t) =

∫ a+b−t

t

f
′′
(y)dy,

then for t ∈
[
a, a+b2

]
, we get

m(a+ b− 2t) ≤ f
′
(a+ b− t)− f

′
(t) ≤M(a+ b− 2t).

So ∫ a+b
2

x

m(a+ b− 2t)dt ≤ f(x) + f(a+ b− x)− 2f(
a+ b

2
)

≤
∫ a+b

2

x

M(a+ b− 2t)dt.

Hence, we obtain

m

(
a+ b

2
− x
)2

≤ f(x) + f(a+ b− x)− 2f

(
a+ b

2

)
≤ M

(
a+ b

2
− x
)2

.
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Then

mΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(
a+ b

2
− x
)2

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)]− f

(
a+ b

2

)
≤ MΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(
a+ b

2
− x
)2

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx,

which completes the proof of (3.4).
Now we prove the second inequality. From (3.7), we have

Γ(α+ 1)

2(b− a)αΓ(α− n)n!
[(Iaαf)(b) + (bIαf)(a)]− f(a) + f(b)

2

=
Γ(α+ 1)

4(b− a)αΓ(α− n)n!

∫ b

a

[f(x) + f(a+ b− x)− (f(a) + f(b))]

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx.

By using

[f(x) + f(a+ b− x)− (f(a) + f(b))] [(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]

is symetric about x = a+b
2 , we get

Γ(α+ 1)

2(b− a)αΓ(α− n)n!
[(Iaαf)(b) + (bIαf)(a)]− f(a) + f(b)

2
(3.9)

=
Γ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

[f(x) + f(a+ b− x)− (f(a) + f(b))]

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx.

Since

f(b)− f(a+ b− x) =

∫ b

a+b−x
f

′
(t)dt

and

f(x)− f(a) =

∫ x

a

f
′
(t)dt,

we obtain

f(x) + f(a+ b− x)− (f(a) + f(b)) (3.10)

=

∫ x

a

f
′
(t)dt−

∫ b

a+b−x
f

′
(t)dt

=

∫ x

a

f
′
(t)dt−

∫ x

a

f
′
(a+ b− t)dt

= −
∫ x

a

[f
′
(a+ b− t)− f

′
(t)]dt.

We also have

f
′
(a+ b− t)− f

′
(t) =

∫ a+b−t

t

f
′′
(y)dy.
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Then for t ∈ [a, a+b2 ], we get

m(a+ b− 2t) ≤ f
′
(a+ b− t)− f

′
(t) ≤M(a+ b− 2t)

Hence

−
∫ x

a

M(a+ b− 2t)dt ≤ f(x) + f(a+ b− x)− (f(a) + f(b))

≤ −
∫ x

a

m(a+ b− 2t)dt.

Namely,

−M(x− a)(b− x) ≤ f(x) + f(a+ b− x)− (f(a) + f(b))

≤ −m(x− a)(b− x)

and

−MΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(x− a)(b− x)

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)]− f(a) + f(b)

2

≤ −mΓ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

(x− a)(b− x)

×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx.

�

Remark 3.2. If the function f : [a, b]→ R is differentiable with a nondecreasing derivative,
then f is convex. In particular, if f is twice differentiable and f

′′ ≥ 0, then the function is
convex. In Theorem (3.2), if f

′′ ≥ 0, then we obtain inequality (2.2). Moreover if f
′′ ≥ 0,

α = n+ 1 and n = 0, we obtain inequality (1.1).

It is obvious that f
′′ ≥ 0 implies that f

′
non-decreasing. Therefore

f
′
(a+ b− x) ≥ f

′
(x). (3.11)

holds for all x ∈ [a, a+b2 ]. So, we can establish the following theorem using inequality
(3.11).

Theorem 3.3. Let f : [a, b]→ R be a positive, differentiable function with a < b and f ∈ L1[a, b].

If f
′
(a+b−x) ≥ f ′

(x) for all x ∈ [a, a+b2 ]. Then the following inequalities for fractional integrals
hold

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)] ≤ f (a) + f (b)

2
. (3.12)
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Proof. From (3.8) and (3.9), one has

Γ(α+ 1)

2(b− a)αΓ(α− n)
[Iaαf(b) + bIαf(a)]− f

(
a+ b

2

)
=

Γ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

[
f(x) + f(a+ b− x)− 2f

(
a+ b

2

)]
×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

=
Γ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

[∫ a+b
2

a

[f
′
(a+ b− t)− f

′
(t)]dt

]
×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

≥ 0.

Similarly, from (3.10) and (3.11), one gets

Γ(α+ 1)

2(b− a)αΓ(α− n)n!
[(Iaαf)(b) + (bIαf)(a)]− f(a) + f(b)

2

=
Γ(α+ 1)

2(b− a)αΓ(α− n)n!

∫ a+b
2

a

[
−
∫ x

a

[f
′
(a+ b− t)− f

′
(t)]dt

]
×[(b− x)n(x− a)α−n−1 + (x− a)n(b− x)α−n−1]dx

≤ 0.

�

Remark 3.3. It is easy to see that inequality (3.12) is a new refinement of (1.1). Also,
inequality (2.2) is the generalization of inequality (1.1).
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