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Hankel determinant for m-fold symmetric bi-univalent
functions

SAHSENE ALTINKAYA and SIBEL YALCIN

ABSTRACT. In this paper, we consider a general subclass Hs,  (8) of X, consisting of analytic and m-fold
symmetric bi-univalent functions in the open unit disc /. An estimate for the second Hankel determinant for
m-fold symmetric bi-univalent functions are determined.

1. INTRODUCTION

Let A represent the class of functions f which are analytic in the open unit disc & =
{z: 2z € C,|z| < 1}, with in the form

(1.1) f(z) :erZanz”.

n=2

Let S be the subclass of A consisting of the functions f of the form (1.1) which are also
univalent in U. It is well known that every function f € S has an inverse f~!, satisfying

f7Hf () =2 (zeU)and f (f~ (w)) = w (lw| <ro(f),ro(f) > ), where
(1.2) FHw) =w —aw? + (2a3 — a3) w® — (5a3 — Sasas + ag) wh + - - .

A function f € A is said to be bi-univalent in / if both f and f~! are univalent in
U. Let ¥ denote the class of bi-univalent functions defined in the unit disc ¢/. For a
brief history and interesting examples of functions in the class ¥, see the pioneering work
on this subject by Srivastava et al. [16], which has apparently revived the study of bi-
univalent functions in recent years (see also [2], [3], [4], [9], [10], [15] and [17]).

For each function f € S, the function

(1.3) h(z) = %/ f(z™) (zelU, meN)

is univalent and maps the unit disc / into a region with m-fold symmetry. A function is
said to be m-fold symmetric (see [8], [14]) if it has the following normalized form:

(14) fE) =243 am2™ (€U, meN).

We denote by S, the class of m-fold symmetric univalent functions in U/, which are
normalized by the series expansion (1.4). In fact, the functions in the class S are one-
fold symmetric. Analogous to the concept of m-fold symmetric univalent functions, we
here introduced the concept of m-fold symmetric bi-univalent functions. Each function
f € X generates an m-fold symmetric bi-univalent function for each integer m € N. The
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normalized form of f is given as in (1.4) and the series expansion for f~!, which has been
recently proven by Srivastava et al. [18], is given as follows:

G(W) = W — A1 ™ + [(m+ 12,4y — dzmen)] W™

(1.5) — [3(m+1)(Bm+2)ad, | — (3m + 2)am1102m41 + a3m1] w3

+...’

where f~! = g. We denote by %, the class of m-fold symmetric bi-univalent functions
in Y. For m = 1, the formula (1.5) coincides with the formula (1.2) of the class ¥. Some
examples of m-fold symmetric bi-univalent functions are given as follows:

1 1
zm m 1 1 14+2m\]™
—log(1 — 2™)]™ —1 .

The ¢'" Hankel determinant for n > 0 and ¢ > 1 is stated by Noonan and Thomas [11]
as

Qp Qp41 Qp4q—1
Ap41 An+2 et an+q

Hy(n) =1 . : C (ar =1).
Un+qg—1 GOn+q - An42¢-—2

This determinant has also been considered by several authors. In particular, sharp upper
bounds on H;(2) were obtained by the authors of articles ([1], [12], [13], [19], [20]) different
subclasses of univalent and bi-univalent functions.

Note that

ayp a2
a2 as

as as

Hy(1) = a5 ay

=a3—a3, Hy(2)= = agay — aj3.

The Hankel determinant Hy(1) = a3 — a3 is well-known as Fekete-Szeg functional (see

[6D).

Definition 1.1. (See [18]) A function f € ¥, is said to be in the class Hyx  (8), if the
following conditions are satisfied:

R(f'(2)>B (0<B<1, z€lU)
and
R (w)>p8 (0<B<l,weld),

where g = f~1.

2. PRELIMINARY RESULTS

Let P be the class of functions p(z) with positive real part consisting of all analytic
functions p : U — C satisfying the following conditions:

p(0) =1, R(p(z)) > 0.
Lemma 2.1. (See [14]) If the function p € P is defined by
p(2) =1+piz+pez® +p3z® + -,
then
lpn| <2 (neN={1,2,3,---}).
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Lemma 2.2. (See [7]) If the function p € P, then
2p; = pi+a(d-pi)
dps = pi+2(4—p)pre - pi(d - pi)a’ + 24 - p})(1 - ]z
for some x, z with |x| < 1and |z| < 1.
3. MAIN RESULTS
Theorem 3.1. Let f given by (1.4) be in the class Hsx,,, (), 0 < 8 < 1. Then

|am+1a3m+1 - a%m+1| <

x (7rL+1)2(27n+1)2(3m+1) } ’

m(3m+1)+4/m2(3m+1)2+8(m+1)(2m+1)2 (3m+1)
ﬁ = |:1 - 4(2m~+1)(3m+1) 1)

Proof. Let f € Hx, (B). Then
(3.6) f(z) =B+ (1-P)p(),
(3.7) g (w) =B+ (1= Ba(w),

where g = f ~! and p, ¢ in P and have the forms
p(2) = 14 prz™ + pomz®™ 4 - -
and
g(w) = 1+ guw™ + gzpw®™ + - --
It follows from (3.6) and (3.7) that

(3.8) (m+1)ams1 = (1= B)pm,

(3.9) (2m + Vagmy1 = (1 — B)pam,

(3.10) (3m + 1)agm41 = (1 — B)p3m,

(3.11) —(m+ Dams1 = (1= B)gm,

(3.12) 2m+1) [(m+1)a2, 1 — azmi1] = (1 — B)g2m,

1
(3.13) —(3m—|—1) §(m—|— 1)(3m—|—2) At1 (3m+2)am+1a2m+1 + asm+1| = (].—

From (3.8) and (3.11), we obtain

(3.14) Pm = —qm
and

1—
(3.15) i1 = B)pm.

m+1

(1-8)2 {4(1 9 } Be { m(3m+1)+\/m2(3m+1)2+8(m+1)(2m+1)2(3m+1):|
m-+1 m-+1 3m+1 4(2m+1)(3m—+1)

1 5 —[m(2m+1)(3m+1)(1-B)+(m+1)(6m>+4m+1)]”

( 76) (2m+1)2 + [(2m+1)2(3m+1)(1—B)2—m(2m+1)(3m+1)(1—8)—(m+1)(bm2+4m+1)]
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Subtracting (3.9) from (3.12), we have

(1-8° ,  (1-5)
Also, subtracting (3.10) from (3.13), we have

(3m +2) (1 - B)°
A(m+1)m+ P
Then, we can establish that

(316) aA2m+1 =

(1-5)
2(3m+1)

(317) aA3m+1 = (pZm - qu) + (pdm - qu) .

1-8)* 1
|@m+1G3m+1 = 03,41 ] = ’_4((m+ﬂi)2pfn + (m+§) (gv)nﬂ)pm (P2im — g2m)
(3.18)
(1-p)? _(1=p7°_

2
t 3D GmE Pm (P3m — q3m) — Tomt1? (P2m — q2m)

According to Lemma 2.2 and (3.14), we write

2pom = P2, + x(4 — p2) } 4—p2,
3.19 m m = Do — Q2m = T —
(3.19) 202 = G +y(4 — d3,) Pam =2 p Y
and
(320) 4p3m = p?n + 2(4 - p?n)pmx - pm(4 - p?n)x2 + 2(4 - pgn)(l - ‘(E|2)Z
(B21)  dgzm = @G+ 204 — ey — am(d — g2)y? +2(4 — )1 — [y)w

3 m4_2 m _n2
Pam — Qam = U5+ PO (1 4 y) — PR (2 4 )

+ g (1= o)z = (1= lylP)w]
Then, using (3.19) and (3.20), in (3.18), we obtain

1-8)* m(1—p8)3 4—p?
’am+la3m+1 - a’%m+1’ = ‘ 4((mfi)2pm + 4(m+(1)2(§3n+1)p3n 2pm (@ —y)
(1-B)  pm (1-p)* 4—py (1-p)* ()
I GmTD 2 Bt St 1) (37 1) Pon. p (+Y) = seinEminPn- 2 (@ + )

1—6)2 4—p2 2 2 1—-8)2 (4—p2))?
+2(m(+1)(63)m+1)p ( 2pm> {(1_ || )Z_ (1 — [yl )w} - ﬁ( Zm) (z —y)?

and

(3.22) . \ .
1= (1-p) m (1-p)
’am+1a3m+1 - @2m+1’ > 4(m+1)2pm + D GmED B+ (m+1)(3m+1)pm(4 —Pr)
m(1-5)° o (4=pw) (1-5)° (4= pm)
+ |:4(m+01) (2m+1)pm 2 + 2(m+1)(3m+1)p2 (|1’| + ‘y|)
(1-p)* (4=p3) (1-p)° (4=p,
+[2(m+1)(3m+1)p72n ™~ DGR Pm 2 }(lxl +1yl?)
1-8)? (4—
+ sty S (] )2
Since p € P, so |pm| < 2. Letting |p,,| = p, we may assume without restriction that

p € [0,2]. Forn = |z| Slandu— ly] <1, we get
|ams103m41 — a3ppr| ST+ 0+ p) To+ (0 + 1) Ts + (n + p)> Ty = G(n, )
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where

no= no = A (U L Y e st >
T = B®*ﬂﬁ£f§¢“‘¢”bo¥i%é§+n 3m11]20

Ty = ﬂﬂﬂ=80n$5£§+lfﬂ—p%@—2)ﬁo

PR Y ) W C ) Y

A2m+12 4 -
We now need to maximize the function G(n, i) on the closed square [0, 1] x [0, 1]. We must
investigate the maximum of G(7, 1) according to p € (0,2), p = 0 and p = 2 taking into

account the sign of G,,,,.G ., — (GW)2 .
Firstly, let p € (0,2). Since T5 < 0 and T3 + 27y > 0 for p € (0, 2), we conclude that

GG — (Gp)” < 0.

Thus the function G cannot have a local maximum in the interior of the square. Now, we
investigate the maximum of G on the boundary of the square.
Forn=0and 0 < p <1 (similarly 4 = 0 and 0 < 7 < 1), we obtain

G(0,p) = H(p) = (Ts + Ty)p* + Top + Th.

i. The case T5 + Ty > 0:In this case for 0 < p < 1 and any fixed p with 0 < p < 2, itis
clear that H'(u) = 2(T3 +Ty)pu+ To > 0, that is, H(u) is an increasing function. Hence, for
fixed p € (0, 2), the maximum of H (x) occurs at ;= 1, and

max H(p) =H(1) =Ty + To + T5 + T4.

ii. The case T5 + T4 < 0: Since Ty + 2(T3 + T4) > 0 for 0 < p < 1 and any fixed p with
0 <p<2itisclear that To + 2(T5 + Ty) < 2(T5+ Ty)p+ T < Ty and so H' (1) > 0. Hence
for fixed p € (0, 2), the maximum of H () occurs at = 1.

Also for p = 2 we obtain

(1-p)% 140 - B)* 4
m—+1 m—+1 +3m+1

(3.23) Gl p) =

Taking into account the value (3.23), and the cases i and ii, for 0 < p < 1 and any fixed p
with0 <p <2,

max H(p) =H()=T1 +To +T5 + T4.
Forn=1and 0 <y <1 (similarly y = 1 and 0 < n < 1), we obtain
G(l,p) = F(p) = (Ts + Ta)p® + (To + 2Tu)p+ T1 + To + T3 + T
Similarly to the above cases of T5 + T4, we get that
max F(p) = F(1) =Ty + 275 + 213 + 4Ty.

Since H(1) < F(1) for p € [0,2], maxG(n, u) = G(1,1) on the boundary of the square.
Thus the maximum of G occurs at n = 1 and p = 1 in the closed square.
Let K :[0,2] - R

(3.24) K(p) =maxG(n,u) = G(1,1) = T1 + 275 + 275 + 47y4.
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Substituting the values of 1%, 71%, T3 and 7} in the function K defined by (3.24), yield

(1—5)2{<(1—ﬂ) m (1—B) 1 L ) ’
K = — —
) 2 2(m+1)° 2(m+1)*(2m+1) (m+1 (3m+1)+2(2m+1) b
( 2m (1 — ) 6 ) }
(m+1)2@2m+1)  (m+1)Bm+1)  2m+1) (2m +1)°
Assume that K (p) has a maximum value in an interior of p € [0, 2], by elementary calcu-
lation
2
K e [(A=B m-p) 2 1 ) )
(®) =8 {((m+1)2 (m+1)*@2m+1) (m+1)(Bm+1) * em+1)2)"
( 2m (1 — B) 6 4 ) }
(m+1)°@m+1)  m+)Em+1)  @em+1)? )"
As aresult of some calculations we can do the following examine: O
(1-p)° m(1-)
Case 1. Let (2(m+1)2 ~ S 1) @miD) (m+1)(3m+1) + (2m+1) ) > 0. Therefore g €

and K'(p) > 0 for p € (0,2). Since

0.1 m(3m+1)+\/m2(3m+1)2+4(m+1)(3m+1)(5m2+4m+1)
T 2(2m+1)(3m+1)

K is an increasing function in the interval (0,2), maximum point of X must be on the
boundary of p € [0, 2], that is, p = 2. Thus, we have

Y 2
max K(p) = K(2) = (jn +ﬁ1) [4(7; +ﬂ1) * 3m4+ 1} '

(1-8)? m(1-pB) 1 1
Case 2. Let (2(m+1)2 T 2tmt1)2(2mtl)  (mFD)(Bm+1) + 2(2m+1)2

m(3m41)+/m? 3m+1)2+4(m+1) (3m+1) (5m>+4m+1) 1) Then K'(p) = 0 implies the real

) < 0. thatis, 8 €

1-—

2(2m+1)(3m+1)
critical points pg; = 0 or

—2m2m+1)3m + 1)(1 — 8) + (m + 1)(6m? + 4m + 1)]
P2 = 2m + 12Bm + 1)(1 - B)2 — m@m + 1)(3m + )(1 — B) — (m + )(5m2 + 4m + 1)

When
5 e (1 ~mBm+1) + /m2Bm+ 1%+ 4(m + 1)Bm + D(Em® + dm + 1)

22m +1)(3m + 1) ’

m(3m +1) + /m2(3m + 1)2 4+ 8(m + 1)(2m + 1)2(3m + 1)

1= 4(2m +1)(3m + 1)

we observe that pgs > 2, that is, pp2 is out of the interval (0,2). Therefore the maximum
value of K (p) occurs at pg; = 0 or p = po2 which contradicts our assumption of having the
maximum value at the interior point of p € [0, 2]. Since K is an increasing function in the
interval (0, 2), maximum point of K must be on the boundary of p € [0, 2], thatis, p = 2.

Thus, we have
_ 2 _ 2
max K(p) = K(2) = (1-5) {4(1 B) n 4 } '

m+1 m+1 3m—+1

1— 771(3771+1)+\/m2(3m+1) +8(m+1)(2m+1)2(3m+1) 1

When j € I2m+1)(3m+1)

) we observe that pgs < 2,

that is, pgs is interior of the interval [0, 2]. Since K" (pp2) < 0, the maximum value of K (p)
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occurs at p = pg2. Thus, we have

K(po2) = (1-B)? {m

[m(2m+1)(3m+1)(1—B)+(m+1)(6m> +4m+1)]?
T (m+1)22m4+1)2(B3m+1)[(2m+1)2(B3m~+1)(1—B)2—m(2m+1) (3m+1)(1—B)— (m+1) (5m2+4m+1)] [
This completes the proof.

Remark 3.1. (See [5]) Putting m = 1 in Theorem 3.1 we have the second Hankel determi-
nant for the well-known class Hy,, (8) = Hx(f).

Remark 3.2. Let f given by (1.4) be in the class S5;(5) and 0 < 3 < 1. Then
(1—25) (262 — 48+ 3) Be {O, 11—1%/377)

|a2a4 — a§| <

(1-p) (17-68)* 1137
9 (4_16(9,82—15/3-',-1)) ﬂe( B 71>
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