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Sequences interpolating some geometric inequalities

DORIN ANDRICA and DAN ŞTEFAN MARINESCU

ABSTRACT. Using the geometric dynamic of an iterative process (Theorem 2.1), we obtain refinements to
some famous geometric inequalities in a triangle by constructing interpolating sequences.

1. INTRODUCTION

For the inequality a ≤ b, where a, b are real numbers, an increasing sequence (un)n≥0
with the property a = u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ b and un → b, is called increasing
interpolating sequence. Similarly, a decreasing sequence (vn)n≥0 satisfying a ≤ . . . ≤ vn ≤
. . . ≤ v1 ≤ v0 = b and vn → a, is a decreasing interpolating sequence for the inequality a ≤ b.

In this paper we will construct interpolating sequences for some geometric inequalities
in a triangle due to Euler, Mitrinović, Weitzenböck, Gordon, Curry, Finsler-Hadwiger,
Pólya-Szegö, and Chen.

2. AN USEFUL RESULT ABOUT ITERATIONS IN THE CIRCUMCIRCLE

Let ABC be a triangle with the angles A,B,C measured in radians, with the length-
sides a, b, c, the circumradius R, the inradius r, the semiperimeter s, and the area K.
For the fixed nonnegative real numbers x, y, z with x + y + z = 1, define recursively
the sequences (An)n≥0, (Bn)n≥0, (Cn)n≥0 by An+1 = xAn + yBn + zCn, Bn+1 = zAn +
xBn + yCn, An+1 = yAn + zBn + xCn, A0 = A,B0 = B,C0 = C, n = 0, 1, . . .. Note that
An, Bn, Cn > 0 andAn+Bn+Cn = π, n = 0, 1, . . . Therefore, we can consider the triangle
AnBnCn with the angles An, Bn, Cn and having the same circumcircle as triangle ABC,
n = 1, 2 . . .. Denote this triangle by Tn. Let an, bn, cn, R, rn, sn,Kn be the length-sides, the
circumradius, the inradius, the semiperimeter, and the area of the triangle Tn, respectively.

Let us mention that such recursive systems describing some dynamic geometries are
considered by S. Abbot [1], G. Z. Chang and P. J. Davis [6], R. J. Clarke [9], J. Ding, L. R.
Hitt and X-M. Zhang [11], L. R. Hitt and X-M. Zhang [14], and D. Ismailescu and J. Jacobs
[15].

The first result is contained in the following theorem.

Theorem 2.1. With the above notations, if at most one of x, y, z is equal to 0, then the sequences
(An)n≥0, (Bn)n≥0, (Cn)n≥0 are convergent and

(2.1) lim
n→∞

An = lim
n→∞

Bn = lim
n→∞

Cn =
π

3
.

Proof. It is easy to see that the following matrix relations hold

(2.2)

AnBn
Cn

 = Un

AB
C

 ,
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where U is the circulant matrix given by

(2.3) U =

x y z
z x y
y z x

 .

A simple induction argument shows that

(2.4) Un =

xn yn zn
zn xn yn
yn zn xn

 ,

where the sequences (xn)n≥1, (yn)n≥1, (zn)n≥1 verify the recursive relations xn+1 = xxn+
yyn + zzn, yn+1 = zxn + xyn + yzn, zn+1 = yxn + zyn + xzn, x1 = x, y1 = y, z1 = z, n =
1, 2 . . .. Summing down these relations we obtain xn+1 + yn+1 + zn+1 = xn + yn + zn,
hence the sequence (xn + yn + zn)n≥1 is constant and equal to 1.

On the other hand, the characteristic polynomial of the matrix U is

(2.5) fU (t) = (t− x− y − z)(t2 + (y + z − 2x)t+ x2 + y2 + z2 − xy − yz − zx).

The hypothesis x + y + z = 1 implies that the roots of the polynomial fU are t1 = 1, t2 =
α, t3 = ᾱ, where α ∈ C \ R and |α| < 1. It follows that we have

(2.6) U = P

1 0 0
0 α 0
0 0 ᾱ

P−1,

for some nonsingular matrix P . Therefore, we obtain

(2.7) Un = P

1 0 0
0 αn 0
0 0 ᾱn

P−1,

and we get

xn = a+ bαn + cᾱn, yn = a′ + b′αn + c′ᾱn, zn = a′′ + b′′αn + c′′ᾱn, n = 1, 2 . . .

for some fixed real numbers a, b, c, a′, b′, c′, a′′, b′′, c′′ determined by the initial conditions
in the definition of the sequences (xn)n≥1, (yn)n≥1, (zn)n≥1. Because limn→∞ αn = limn→∞ ᾱn =
0, from the above formulas it follows that the sequences (xn)n≥1, (yn)n≥1,
(zn)n≥1 are convergent and

lim
n→∞

xn = a, lim
n→∞

yn = a′, lim
n→∞

zn = a′′.

From xn + yn + zn = 1, n = 1, 2 . . ., we obtain a + a′ + a′′ = 1. On the other hand,
the relation (2.7) shows that the eingenvalues of the matrix Un are 1, αn, ᾱn, that is the
characteristic polynomial fUn of the matrix Un is

fUn(t) = (t− xn − yn − zn)(t2 + (yn + xn − 2xn)t+ x2n + y2n + z2n − xnyn − ynzn − znxn)

and from the Vieta’s relations we have x2n + y2n + z2n − xnyn − ynzn − znxn = |α|2n. When
n → ∞, we obtain the relation a2 + (a′)2 + (a′′)2 − aa′ − a′a′′ − a′′a = 0, i.e. (a − a′)2 +
(a′ − a′′)2 + (a′′ − a)2 = 0. Therefore a = a′ = a′′ = 1

3 , and the desired result follows from
the relation (2).

�

We will illustrate the above general iterative process by considering the following spe-
cial geometric situation also studied by S. Abbot [1] and D. Şt. Marinescu, M. Monea, M.
Opincariu and M. Stroe [18]. Recall that, if P is a point in the plane of the triangle ABC,
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the circumcevian triangle of P with respect to ABC is the triangle defined by the intersec-
tions of the CeviansAP,BP,CP with the circumcircle ofABC. We considerA1B1C1 to be
the circumcevian triangle of the incenter I of ABC, i.e. the circumcircle mid-arc triangle
of ABC. In this case we have

A1 =
1

2
(B + C), B1 =

1

2
(C +A), C1 =

1

2
(A+B),

that is in the general iterative process we have x = 0, y = 1
2 , y = 1

2 . On the other hand,
because A+B + C = π, we have

A1 =
1

2
(π −A), B1 =

1

2
(π −B), C1 =

1

2
(π − C)

Define recursively the sequence of triangles Tn as follows : Tn+1 is the circumcircle mid-
arc triangle with respect to the incenter of Tn, and T0 is the triangle ABC. The angles
of triangles Tn are given by the recurrence relations An+1 = 1

2 (π − An), Bn+1 = 1
2 (π −

Bn), Cn+1 = 1
2 (π−Cn), where A0 = A,B0 = B,C0 = C. Solving these recurrences we get

An =

(
−1

2

)n
A+

π

3

(
1−

(
−1

2

)n)
,

Bn =

(
−1

2

)n
B +

π

3

(
1−

(
−1

2

)n)
,

Cn =

(
−1

2

)n
C +

π

3

(
1−

(
−1

2

)n)
,

and the conclusion in Theorem 2.1 is obviously verified.

3. AN INTERPOLATING SEQUENCE FOR EULER’S INEQUALITY R ≥ 2r

The Euler’s inequality is a central result in triangle geometry (see T. Andreescu, O.
Mushkarov and L. Stoyanov [3], D. Andrica [4], D. S. Mitrinovic, J. Pecaric and V. Volonec
[20], and G. Popescu, I. V. Maftei, J. L. Diaz-Barrero and M. Dincă [22]). It is a direct
consequence of Blundon’s inequality and it has numerous and various refinements (see
for instance D. Andrica [4], D. Andrica and D. Şt. Marinescu [5], and D. S. Mitrinovic, J.
Pecaric and V. Volonec [20]). In this section we use the result in Theorem 2.1 to construct
an increasing interpolating sequence for the Euler’s inequality.

Theorem 3.2. With the above notations the sequence of inradii (rn)n≥0 is increasing and
we have

(3.8) lim
n→∞

rn =
R

2
.

Proof. Using the known formula r
R = 4 sin A

2 sin B
2 sin C

2 we have to prove the following
the following inequality

(3.9) sin
An+1

2
sin

Bn+1

2
sin

Cn+1

2
≥ sin

An
2

sin
Bn
2

sin
Cn
2
.

Denote An

2 = u, Bn

2 = v, Cn

2 = t and the inequality (3.8) is equivalent to

(3.10) sin(xu+ yv + zt) sin(zu+ xv + yt) sin(yu+ zv + xt) ≥ sinu sin v sin t.

To prove the inequality (3.10), let us consider the function f : (0, π) → R, defined by
f(s) = ln sin s, which is concave on the interval (0, π). Applying the Jensen’s inequality
we get the inequalities

f(xu+ yv + zt) ≥ xf(u) + yf(v) + zf(t),

f(zu+ xv + yt) ≥ zf(u) + xf(v) + yf(t),
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f(yu+ zv + xt) ≥ yf(u) + zf(v) + xf(t).

Summing these inequalities and using the relation x + y + z = 1, the inequality (3.10)
follows.

From relation
rn
R

= 4 sin
An
2

sin
Bn
2

sin
Cn
2

and from (1) we obtain the limit (3.8).
�

Corollary 3.1. With the above notations, the sequence of inradii (rn)n≥0 is an increasing
interpolating sequence for the Euler’s inequality, i.e. we have the inequalities

(3.11) r = r0 ≤ r1 ≤ . . . ≤ rn ≤ . . . ≤
R

2
.

4. AN INTERPOLATING SEQUENCE FOR MITRINOVIĆ’S INEQUALITY s ≤ 3
√
3

2 R

The inequality s ≤ 3
√
3

2 R is known in the literature as Mitrinović’s inequality. It is
a simple consequence of Blundon’s inequality but also there are different direct proofs.
It has as a counterpart the inequality 3

√
3r ≤ s. Combining these two inequalities, we

obtain a refinement to Euler’s R ≥ 2r :

3
√

3r ≤ s ≤ 3
√

3

2
R.

In what follows we use the result in Theorem 2.1 to construct an increasing interpolating
sequence for the Mitrinović’s inequality and a decreasing interpolating sequence for its
counterpart.

Theorem 4.3. 1) With the above notations, the sequence of semiperimeters (sn)n≥0 is in-
creasing and we have

(4.12) lim
n→∞

sn =
3
√

3

2
R.

2) The sequence ( snrn )n≥0 is decreasing and

(4.13) lim
n→∞

sn
rn

= 3
√

3.

Proof. 1) We have sn = R(sinAn + sinBn + sinCn) and the function g : (0, π) → R,
g(u) = sinu is concave on the interval (0, π). From the Jensen’s inequality we obtain
sinAn+1 = sin(xAn + yBn + zCn) ≥ x sinAn + y sinBn + z sinCn. Similarly, we get
other two inequalities sinBn+1 ≥ z sinAn + x sinBn + y sinCn and sinCn+1 ≥ y sinAn +
z sinBn + x sinCn. Summing up these inequalities it follows sn ≤ sn+1. The relation
limn→∞ sn = 3

√
3

2 R follows from Theorem 2.1.
2) From the relation cot An

2 = sn−an
rn

and the other two, we obtain

cot
An
2

+ cot
Bn
2

+ cot
Cn
2

=
3sn − 2sn

rn
=
sn
rn
.

Because the function h(u) = cotu is convex on the interval (0, π2 ), with a similar argument
as in the proof of part 1), it follows

cot
An+1

2
+ cot

Bn+1

2
+ cot

Cn+1

2
≤ cot

An
2

+ cot
Bn
2

+ cot
Cn
2
,

that is sn+1

rn+1
≤ sn

rn
. The limit limn→∞

sn
rn

= 3
√

3 follows from Theorem 2.1. �
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Corollary 4.2. 1) With the above notations, the sequence of semiperimeters (sn)n≥0 is an
increasing interpolating sequence for the Mitrinović’s inequality, i.e. we have

(4.14) s = s0 ≤ s1 ≤ . . . ≤ sn ≤ . . . ≤
3
√

3

2
R.

2) The sequence ( snrn )n≥0 is a decreasing interpolating sequence for the counterpart of
Mitrinović’s inequality, i.e. we have

(4.15) 3
√

3 ≤ . . . ≤ sn
rn
≤ . . . ≤ s1

r1
≤ s0
r0

=
s

r
.

5. INTERPOLATING WEITZENBÖCK’S INEQUALITY

In a triangle ABC, the Weitzenböck’s inequality [25] is

(5.16) a2 + b2 + c2 ≥ 4
√

3K,

where a, b, c are the length of the sides of the triangle and K denotes the area of ABC. To
construct an interpolating sequence for (5.16) we use the special case x = 0, y = 1

2 , y = 1
2

in the general iterative process described in Section 2. Considering the sequence (un)n≥0,
where

un =
a2n + b2n + c2n

4Kn
, n = 0, 1, . . .

we obtain the following result :

Theorem 5.4. With the above notations, the sequence (un)n≥0 is decreasing and we have

(5.17) lim
n→∞

un = lim
n→∞

a2n + b2n + c2n
4Kn

=
√

3.

Proof. Clearly, we have

un=
4R2(sin2An+ sin2Bn+ sin2 Cn)

8R2 sinAn sinBn sinCn
=

1

2

(
sinAn

sinBn sinCn
+

sinBn
sinCn sinAn

+
sinCn

sinAn sinBn

)
=

1

2
(cotBn + cotCn + cotCn + cotAn + cotAn + cotBn) = cotAn + cotBn + cotCn.

It is easy to show that the inequality 2 cot x+y2 ≤ cotx+ cot y holds for every x, y ∈ (0, π)
with x+ y < π. Applying this property and using the recursive relations in the process, it
follows

un+1 = cotAn+1 + cotBn+1 + cotCn+1 ≤ cotAn + cotBn + cotCn = un,

that is the sequence is decreasing. Because limn→∞An = limn→∞Bn = limn→∞ Cn = π
3 ,

we obtain immediately the limit (5.17).
�

Corollary 5.3. With the above notations, the sequence (un)n≥0 is a decreasing interpolat-
ing sequence for the Weitzenböck’s inequality, i.e. we have

(5.18)
√

3 ≤ . . . ≤ un ≤ . . . ≤ u1 ≤ u0 =
a2 + b2 + c2

4K
.
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6. INTERPOLATING GORDON’S INEQUALITY

In a triangle ABC the following inequality holds

(6.19) ab+ bc+ ca ≥ 4
√

3K,

where a, b, c are the length of the sides of the triangle andK denotes the area ofABC, and
it is known as Gordon’s inequality [12]. Denote by an, bn, cn,Kn the length of the sides
and the area of the triangle Tn, n = 0, 1, 2, . . ., where a0 = a, b0 = b, c0 = c. Consider the
sequence (tn)n≥0, where

tn =
anbn + bncn + cnan

Kn
, n = 0, 1, . . .

Theorem 6.5. With the above notations, the sequence (tn)n≥0 is decreasing and we have

(6.20) lim
n→∞

tn = lim
n→∞

anbn + bncn + cnan
Kn

= 4
√

3.

Proof. Using the area formula for triangle Tn, we have

anbn + bncn + cnan
Kn

= 2(
1

sinAn
+

1

sinBn
+

1

sinCn
).

Consequently, the property is equivalent to

1

sinAn
+

1

sinBn
+

1

sinCn
≥ 1

sinAn+1
+

1

sinBn+1
+

1

sinCn+1
.

The function f : (0, π) → R, defined by f(s) = 1
sin s , is convex on the interval (0, π). With

a similar argument as in Theorem 3.2, the conclusion follows.
Because limn→∞An = limn→∞Bn = limn→∞ Cn = π

3 , we obtain the limit (6.20) from
the first relation. �

Corollary 6.4. With the above notations, the sequence (tn)n≥0 is an decreasing interpolat-
ing sequence for the Weitzenböck’s inequality, i.e. we have

(6.21) 4
√

3 ≤ . . . ≤ tn ≤ . . . ≤ t1 ≤ t0 =
ab+ bc+ ca

K
.

7. INTERPOLATING CURRY’S INEQUALITY

Curry’s inequality [10] is :

(7.22) 4
√

3K ≤ 9abc

a+ b+ c
,

and it is an improvement to inequality (6.19).
Clearly, putting together these inequalities, we obtain the following interpolating in-

equalities to Weitzenböck inequality :

(7.23) 4
√

3K ≤ 9abc

a+ b+ c
≤ ab+ bc+ ca ≤ a2 + b2 + c2.

With the above notations, consider the sequence (vn)n≥0, where

vn =
9anbncn

4Kn(an + bn + cn)
, n = 0, 1, . . .
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Theorem 7.6. The sequence (vn)n≥0 is decreasing and we have

(7.24) lim
n→∞

vn = lim
n→∞

9anbncn
4Kn(an + bn + cn)

=
√

3.

Proof. Because the relation

vn =
9R

an + bn + cn
=

9

2(sinAn + sinBn + sinCn)
,

and sinAn+1 = sin(xAn+yBn+zCn) ≥ x sinAn+y sinBn+z sinCn, sinBn+1 ≥ z sinAn+
x sinBn + y sinCn, and sinCn+1 ≥ y sinAn + z sinBn + x sinCn, we get immediately the
inequality vn+1 ≤ vn. The limit follows from Theorem 2.1. �

Corollary 7.5. With the above notations, the sequence (vn)n≥0 is a decreasing interpolat-
ing sequence for the Curry’s inequality, i.e. we have

(7.25)
√

3 ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0 =
9abc

4K(a+ b+ c)
.

8. INTERPOLATING FINSLER-HAWIGER INEQUALITY

It is well-known that in every triangle ABC the following inequality holds

(8.26) a2 + b2 + c2 ≥ 4
√

3K + (a− b)2 + (b− c)2 + (c− a)2

where a, b, c are the length of the sides of the triangle and K denotes the area of ABC.
Clearly, it is a direct improvement to the Weitzenböck’s inequality (5.16). The inequality
(8.26) is known as the Finsler-Hawiger inequality [24], [13], and it is equivalent to

ab+ bc+ ca ≥ 4
√

3K +
1

2
[(a− b)2 + (b− c)2 + (c− a)2].

Therefore, it is also a strong improvement to the Gordon’s inequality (6.19). The inequality
(8.26) was intensively investigated by many authors ; C. Alsina and R. Nelsen [2], A. Cipu
[9], C. Lupu and C. Pohoaţă [16], C. Lupu, C. Mateescu, V. Matei and M. Opincariu [17],
and D. Şt. Marinescu, M. Monea, M. Opincariu and M. Stroe [19].

In what follows we use the result in Theorem 2.1 to construct a decreasing interpolat-
ing sequence for the Finsler-Hawiger inequality. With the above notations, consider the
sequence (wn)n≥0, where

wn =
a2n + b2n + c2n − (an − bn)2 − (bn − cn)2 − (cn − an)2

4Kn
, n = 0, 1, . . .

Theorem 8.7. The sequence (wn)n≥0 is decreasing and we have

(8.27) lim
n→∞

wn = lim
n→∞

a2n + b2n + c2n − (an − bn)2 − (bn − cn)2 − (cn − an)2

4Kn
=
√

3.

Proof. Firstly, we will prove the following relation

(8.28)
a2 + b2 + c2 − (a− b)2 − (b− c)2 − (c− a)2

4K
= tan

A

2
+ tan

B

2
+ tan

C

2
.

Indeed, starting with the left hand side, we have

2ab+ 2bc+ 2ca− a2 − b2 − c2

4K
=

1

sinA
+

1

sinB
+

1

sinC
− sinA

2 sinB sinC
− sinB

2 sinC sinA

− sinC

2 sinA sinB
=

1

sinA
+

1

sinB
+

1

sinC
− 1

2
(cotB+cotC+cotC+cotA+cotA+cotB) =
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1

sinA
− cotA+

1

sinB
− cotB +

1

sinC
− cotC = tan

A

2
+ tan

B

2
+ tan

C

2
,

since
1

sinA
− cotA =

1− cosA

sinA
=

2 sin2 A
2

2 sin A
2 cos A2

= tan
A

2
.

Now, to prove that the sequence (wn)n≥0 is decreasing we are using relation (8.28) to
obtain

wn+1 = tan
An+1

2
+ tan

Bn+1

2
+ tan

Cn+1

2
.

The function f : (0, π2 ) → R, defined by f(s) = tan s, is convex on the interval (0, π2 ).
With a similar argument as in Theorem 2, we obtain the inequality wn+1 ≤ wn and the
conclusion follows.

Because limn→∞An = limn→∞Bn = limn→∞ Cn = π
3 we obtain the limit (8.27) from

the first relation.
�

Corollary 8.6. With the above notations, the sequence (wn)n≥0 is a decreasing interpolat-
ing sequence for the Finsler-Hadwiger inequality, i.e. we have

(8.29)
√

3 ≤ . . . ≤ wn ≤ . . . ≤ w1 ≤ w0 =
a2 + b2 + c2 − (a− b)2 − (b− c)2 − (c− a)2

4K
.

9. INTERPOLATING PÓLYA-SZEGÖ INEQUALITY

Recall that in every triangle ABC the following inequality is due by Pólya and Szegö
[21] :

(9.30) K ≤
√

3

4
(abc)

2
3 .

Using our method we can construct an interpolating sequence for (21).

Theorem 9.8. With the above notations, the sequence ( Kn

(anbncn)
2
3

)n≥0 is increasing and we

have

(9.31) lim
n→∞

Kn

(anbncn)
2
3

=

√
3

4
.

Proof. Using the area formula for triangle AnBnCn, we have

Kn

(anbncn)
2
3

=
(anbncn)

1
3

4Rn
=

3
√

sinAn sinBn sinCn
2

,

and the property is equivalent to

sinAn sinBn sinCn ≤ sinAn+1 sinBn+1 sinCn+1.

From the argument in the proof of Theorem 3.2 for the concave function f : (0, π) → R
defined by f(s) = ln sin s, the conclusion follows. The limit (16) follows from the first
relation and the limits limn→∞An = limn→∞Bn = limn→∞ Cn = π

3 . �

Corollary 9.7. With the above notations, the sequence ( Kn

(anbncn)
2
3

)n≥0 is an increasing in-

terpolating sequence for the Pólya-Szegö inequality, i.e. we have

(9.32)
K

(abc)
2
3

≤ K1

(a1b1c1)
2
3

≤ . . . ≤ Kn

(anbncn)
2
3

≤ . . .
√

3

4
.
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10. INTERPOLATING CHEN’S INEQUALITY

In the recent paper of Y-D. Wu, V. Lokesha and H. M. Srivastava [26] it is presented a
refinement of inequality (5.16) in the form

(10.33) K ≤
√

3

4
(abc)

2
3 (

2r

R
)

1
3 ,

mentioning that this inequality is due by S.-L. Chen [7]. Using our method, we can obtain
an interpolating sequence to this result.

Theorem 10.9. With the above notations, the sequence ( Kn

(anbncn)
2
3

( 2rn
Rn

)
1
3 )n≥0 is increasing

and we have

(10.34) lim
n→∞

Kn

(anbncn)
2
3

(
2rn
Rn

)
1
3 ) =

√
3

4
.

Proof. The property does not result from the monotony of the two sequences because they
are of the opposite monotony. Observe that

Kn

(anbncn)
2
3

(
2rn
Rn

)
1
3 =

3
√

sinAn sinBn sinCn
2

· 1

3

√
8 sin An

2 sin Bn

2 sin Cn

2

=

=

3

√
cos An

2 cos Bn

2 cos Cn

2

2
.

The function f : (0, π/2) → R defined by f(s) = ln cos s is concave, and we obtain as in
the proof of Theorem 2, the inequality

ln cos
An+1

2
+ cos

Bn+1

2
+ cos

Cn+1

2
≥ ln cos

An
2

+ cos
Bn
2

+ cos
Cn
2
.

The limit (10.34) can be obtained by using the relations limn→∞An = limn→∞Bn =
limn→∞ Cn = π

3 . �

Corollary 10.8. The sequence ( Kn

(anbncn)
2
3

( 2rn
Rn

)
1
3 )n≥0 is an increasing interpolating sequence

for the Chen’s inequality, i.e. we have

(10.35)
K

(abc)
2
3

(
2r

R
)

1
3 ≤ K1

(a1b1c1)
2
3

(
2r1
R1

)
1
3 ≤ . . . ≤ Kn

(anbncn)
2
3

(
2rn
Rn

)
1
3 ≤ . . . ≤

√
3

4
.
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[19] Marinescu, D. Şt., Monea, M., Opincariu, M. and Stroe, M., Note on Hawiger-Finsler’s inequalities, Math.

Inequal. Appl., 6 (2012), No. 1, 57–64
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Mathematics with Applications, 60 (2010), 761–770
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