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Convergence of derivative free iterative methods

IOANNIS K. ARGYROS and SANTHOSH GEORGE

ABSTRACT. We present the local as well as the semi-local convergence of some iterative methods free of
derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method
as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Hölder
continuous hypotheses. The results are of theoretical and practical interest. In particular the method is com-
pared favorably to other methods using concrete numerical examples to solve systems of equations containing
a nondifferentiable term.

1. INTRODUCTION

Numerous problems in mathematics, computational sciences and also in engineering
using mathematical modeling can be reduced to solving a nonlinear equation like

(1.1) F (x) := H(x) +H1(x) = 0,

where H : D ⊂ X −→ Y,H1 : D ⊂ X −→ Y,H,H1 are continuous operators, X and Y
are Banach spaces and D is a nonempty open set. We would like to find a locally unique
solution x∗ of equation (1.1) preferably in closed form. However, this task is achieved only
in special cases. Hence, we utilize iterative methods to generate a sequence converging to
x∗ under certain hypotheses.

Zabrejko and Nguen [23] have used a variant of Newton’s method defined for each
n = 0, 1, 2, . . . by

(1.2) vn+1 = vn −H ′(vn)−1(H(vn) +H1(vn))

where vn is an initial point. Numerous others [1–3, 6–12, 16–20] have improved the semi-
local convergence of method (1.2). Method (1.2) uses the computationaly expensive in-
verse of Fréchet-derivative of H making it unsuitable for solving equation (1.1), when
F is a non-differentiable operator. We propose the iterative method defined for each
n = 0, 1, 2, . . . , by

(1.3) xn+1 = xn −A−1
n F (xn),

where x−1, x0 ∈ D, 2x0 − x−1 ∈ D, [., .;H] : D × D −→ L(X,Y ), [., .;H1] : D × D −→
L(X,Y ) are divided differences of order one [1] andAn = [2xn−xn−1, xn−1;H]+[xn−1, xn;H1].
Notice that if H = 0, we obtain the secant method [1], whereas if H1 = 0 method (1.3)
reduces to the Kurchatov method [18].

The convergence analysis uses weaker conditions than before [1]- [23] leading to the
extension of the applicability of these methods. The technique used in this paper can be
used to show convergence of other iterative methods. Section 2 and Section 3 contain
the semi-local and local convergence of method (1.3). The numerical examples appear in
Section 4.
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2. SEMI-LOCAL CONVERGENCE

Let y ∈ X and µ > 0. We shall denote by B(y, µ) the open ball of center y with radius
µ and by B̄(y, µ) its closure. The senilocal convergence of method (1.3) is based on the
hypotheses (C):

(c1) H : D ⊂ X −→ Y,H1 : D ⊂ X −→ Y are continuous operators and there exist
divided differences of order one [., .;H] : D×D −→ L(X,Y ), [., .;H1] : D×D −→
L(X,Y ).

(c2) For some x−1, x0 ∈ D,A−1
0 ∈ L(Y,X) and there exist parameters β > 0, η0 ≥

0, η > 0 such that ‖A−1
0 ‖ ≤ β, ‖x−1 − x0‖ ≤ η0 and ‖A−1

0 F (x0)‖ ≤ η
(c3) For each x, y ∈ D =⇒ 2y − x ∈ D.
(c4) There exist continuous and increasing functions

ω̄ : [0,+∞) × [0,+∞) −→ R, ω̄1 : [0,+∞) × [0,+∞) −→ R such that for each
x, y ∈ D

‖A−1
0 ([2y − x, x;H]− [2x0 − x−1, x−1;H])‖ ≤ ω̄(‖2y − x−1 − 3x‖, ‖x− x−1‖)

and

‖A−1
0 ([2y − x, x;H1]− [2x0 − x−1, x−1, ;H1])‖ ≤ ω̄1(‖x− x−1 − 3x‖, ‖y − x0‖).

(c5) Equation ω̄(3t + η0, t + η0) + ω̄1(t + η0, t) = 1 has positive solutions. Denote by ρ
the smallest such solution. Set D0 = D ∩B(x0, ρ).

(c6) There exist continuous and nondecreasing functions
ω : [0, ρ)× [0, ρ) −→ R, ω1 : [0, ρ) −→ R such that for each x, y, u, v ∈ D0

‖[x, y;H]− [u, v;H]‖ ≤ ω(‖x− u‖, ‖y − v‖)

and

‖[x, y;H1]− [u, y;H1]‖ ≤ ω1(‖x− u‖).

(c7) Set α = βmax{ω(η + η0, η0) + ω1(η + η0), ω(2η, η) + ω1(2η)}. Equation

t(1− α

β[ω̄(3t+ η0, t+ η0) + ω̄1(η0 + t, t)]
)− η = 0

has positive solutions. Denote by t∗ the smallest such solution.
(c9)

β[ω̄(3t∗ + η0, t
∗ + η0) + ω̄1(η0 + t∗, t∗)] < 1

δ =
α

1− β[ω̄(3t∗ + η0, t∗ + η0) + ω̄1(η0 + t∗, t∗)]
< 1

and B̄(x0, t
∗) ⊆ D.

(c8) There exists t̄∗ ≥ t∗ such that

β[ω̄(3t̄∗ + η0, t̄
∗ + η0) + ω̄1(η0 + t̄∗, t̄∗)] < 1.

Set D1 = D ∩ B̄(x0, t̄
∗).

Theorem 2.1. Suppose that the conditions (C) hold. Then, the sequence {xn} starting at x−1, x0

and generated by method (1.3) is well defined in B(x0, t
∗), remains in B(x0, t

∗), for each n =
−1, 0, 1, . . . and converges to a unique solution x∗ ∈ D1 of equation F (x) = 0.

Proof. We prove, by induction, that the sequence {xn} given by (1.3) is well defined and
xn ∈ B(x0, t

∗) for each n = 0, 1, 2, . . . . By the definition of t∗, we have t∗ = η
1−δ > η. By
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the condition (c2), x1 is well defined, and x1 ∈ B(x0, t
∗). Using (c4), we obtain

‖I −A−1
0 A1‖ = ‖A−1

0 ([2x1 − x0, x0;H]− [2x0 − x1 , x−1;H])(2.4)

+A−1
0 ([x0, x−1;H1]− [x−1, x0;H1])‖

≤ β[ω̄(‖2x1 + x−1 − 3x0‖, ‖x0 − x−1‖)
+ω̄1(‖x0 − x−1‖, ‖x1 − x0‖)‖]

≤ β[ω̄(2η + η0, η0) + ω̄1(η0, η)]

≤ β[ω̄(3t∗ + η0, t
∗ + η0) + ω̄(η0 + t∗, t∗)] < 1.

It follows from (2.5) and the Banach lemma on invertible operators [13] that A−1
1 exists

and

(2.5) ‖A−1
1 ‖ ≤

β

1− β[ω̄(3t∗ + η0, t∗ + η0) + ω̄(η0 + t∗, t∗)]
.

Consequently, the iterate x2 is well defined. We can also obtain from (1.3) and (c6) that

‖F (x1)‖ = ‖F (x1)− F (x0) + F (x0)‖(2.6)
= ‖H(x1)−H(x0) +H1(x1)−H1(x0)−A0(x1 − x0)‖
= ‖([x1, x0;H]− [2x0 − x−1;x−1;H]

+[x1, x0;H1]− [x−1, x0;H1](x1 − x0)‖
≤ [ω(‖x1 + x−1 − 2x0‖, ‖x0 − x−1‖) + ω1(‖x1 − x−1‖)]‖x1 − x0‖
≤ [ω(η + η0, η0) + ω1(η + η0)]‖x1 − x0‖.

In view of (1.3), (2.5), (c8) and (2.7), we have

‖x2 − x1‖ ≤ ‖A−1
1 ‖‖F (x1)‖(2.7)

≤ α

1− β[ω̄(3t∗ + η0, t∗ + η0) + ω̄(η0 + t∗, t∗)]
‖x1 − x0‖

≤ δ‖x1 − x0‖.

We also get

(2.8) ‖x2 − x0‖ ≤ (δ + 1)‖x1 − x0‖ ≤ (δ + 1)η <
η

1− δ
= t∗,

so x2 ∈ B(x0, t
∗).

Next we will prove by induction the following for i = 1, 2, . . .

(I1) A−1
i exists and ‖A−1

i ‖ ≤ α
1−β[ω̄(3t∗+η0,t∗+η0)+ω̄(η0+t∗,t∗)] ,

(II) ‖xi+1 − xi‖ ≤ δ‖xi − xi−1‖ ≤ δi‖x1 − x0‖ < η.
Suppose that the operator Ai are invertible and xi+1 ∈ B(x0, t

∗) for 1 ≤ i ≤ k − 1, and
k ≥ 2 is a fixed integer, we obtain

‖I −A−1
0 Ak‖ = ‖A−1

0 ([2xk − xk−1, xk−1;H]− [2x0 − x−1, x−1;H](2.9)

+A−1
0 ([xk−1, xk;H1]− [x−1, x0;H1])‖

≤ β[ω̄(‖2(xk − x0)− (xk−1 − x−1)‖, ‖xk−1 − x−1‖)
ω̄1(‖xk−1 − x−1‖, ‖xk − x0‖)]

≤ β[ω̄(3t∗ + η, t∗ + η) + ω̄1(η0 + t∗, t∗)] < 1.

It follows from (2.10) and the Banach lemma on invertible operators that A−1
k exists, so

that

(2.10) ‖A−1
k ‖ ≤

β

1− β[ω̄(3t∗ + η, t∗ + η) + ω̄1(η0 + t∗, t∗)]
,
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and the iterate xk+1 is well defined. Similarly to (2.7), we can get

‖F (xk)‖ = ‖F (xk)− F (xk−1) + F (xk−1)‖(2.11)
= ‖H(xk)−H(xk−1) +H1(xk)−H1(xk−1)−Ak−1(xk − xk−1)‖
= ‖([xk, xk−1;H]− [2xk−1 − xk−2;xk−2;H]

+[xk, xk−1;H1]− [xk−2, xk−1;H1])(xk − xk−1)‖
≤ [ω(‖xk + xk−2 − 2xk−1‖, ‖xk−1 − xk−2‖)

+ω1(‖xk − xk−2‖)]‖xk − xk−1‖
≤ [ω((δk−1 + δk−2)η, δk−2η) + ω1((δk−1 + δk−2)η)]‖xk − xk−1‖

≤ [ω(2η, η) + ω1(2η)]‖xk − xk−1‖ ≤
α

β
‖xk − xk−1‖.(2.12)

Hence, we get

(2.13) ‖xk+1 − xk‖ ≤ ‖A−1
k ‖‖F (xk)‖ ≤ δ‖xk − xk−1‖ ≤ δk‖x1 − x0‖ < η.

Then, from (c2) and (IIi), it follows that

‖xk+1 − xk‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ . . .‖ x1 − x0‖(2.14)

≤ (δk + δk−1 + . . .+ 1)‖x1 − x0‖

≤ 1− δk+1

1− δ
η <

η

1− δ
= t∗.

That is, xk+1 ∈ B(x0, t
∗) and the induction is complete.

Moreover, we prove that {xn} is a complete sequence. For k ≥ 1, we obtain

‖xn+k − xn‖ ≤ ‖xn+k − xn+k−1‖+ ‖xn+k−1 − xn+k−2‖+ . . .+ ‖xn+1 − xn‖
≤ (δk−1 + δk−2 + . . .+ 1)‖xn+1 − xn‖(2.15)

≤ 1− δk

1− δ
δn‖x1 − x0‖ <

δn

1− δ
‖x1 − x0‖.

Hence {xn} is a complete sequence on a Banach space X and as such it converges to
x∗B̄(x0, t

∗). Setting n −→∞ in (2.12), we obtain F (x∗) = 0.
Furthermore, to show the uniqueness, we assume that there exists a solution y∗ ∈ D1.

Consider the operator A = [y∗, x∗;H] + [y∗, x∗;H1], if the operator A is invertible, then
since A(y∗ − x∗) = F (y∗)− F (x∗), we have x∗ = y∗. In particular we obtain in turn

‖I −A−1
0 A‖ = ‖A−1

0 (A−A0)‖(2.16)

≤ ‖A−1
0 ‖(‖[y∗, x∗, H]− [2x0 − x−1, x−1;H]‖

+‖[y∗, x∗;H1]− [x−1, x0;H1]‖)
≤ β[ω̄(‖y∗ + x−1 − 2x0‖, ‖x∗ − x−1‖)

+ω̄1(‖y∗ − x−1‖, ‖x∗ − x0‖)]
≤ β[ω̄(t∗ + η0, t

∗ + η0) + ω̄1(t∗ + η0, t
∗)] < 1,

so operator A−1 exists. �

Remark 2.1. Condition (c3) is satisfied if e.g.,D = X. It can also be dropped if in (c8),
B̄(x0, t

∗) ⊆ D is replaced by B̄(x0, 3t
∗) ⊆ D. Indeed, we shall have in this case that for

x, y ∈ B̄(x0, t
∗)

‖2y − x− x0‖ ≤ 2‖y − x0‖+ ‖x− x0‖ ≤ 3t∗,

so 2y − x ∈ B̄(x0, 3t
∗). Similar replacements of (a3) can be made for condition (c3) in the

local convergence analysis that follows.
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3. LOCAL CONVERGENCE

The local convergence analysis of method (1.3) is based on the hypotheses (A):

(a1) H : D ⊂ X −→ Y is a Fréchet-differentiable operator, H1 : D ⊂ X −→ Y is
a continuous operator and there exist divided differences of order one [., .;H] :
D ×D −→ L(X,Y ), [., .;H1] : D ×D −→ L(X,Y ).

(a2) There exist x∗ ∈ D and x̃ ∈ D be such that F (x∗) = 0, ‖x̃ − x∗‖ = ξ, so that
operator A−1

∗ = (H ′(x∗) + [x̃, x∗;H1])−1 exists and ‖A−1
∗ ‖ ≤ λ.

(1) (a3)=(c3)
(a4) There exist continuous and increasing functions

w̄ : [0,+∞) × [0,+∞) −→ R, w̄1 : [0,+∞) × [0,+∞) −→ R such that for each
x, y ∈ D

‖[x, y;H]−H ′(x∗)‖ ≤ w̄(‖x− x∗‖, ‖y − x∗‖)

and

‖[2y − x, x;H1]− [x̃, x∗;H1])‖ ≤ w̄1(‖2y − x− x̃‖, ‖x− x∗‖).

(a5) Define function ϕ : [0,+∞) −→ R by ϕ(t) = λ(w̄(t, t) + w̄1(3t + ξ, t)). Suppose
equation ϕ(t) = 1 has positive solutions. Denote by r the smallest such solution.
Set D2 = D ∩B(x∗, r).

(a6) There exist continuous and increasing functions
w : [0, r)× [0, r) −→ R, w1 : [0, r) −→ R such that for each x, y, u, v ∈ D2

‖[x, y;H1]− [y, x∗; ;H1]‖ ≤ w1(‖x− y‖, ‖y − x∗‖)

and

‖[2y − x, x;H]− [y, x∗;H]‖ ≤ w(‖y − x‖, ‖x− x∗‖).

(a7) Equation ψ(t) = 1, has positive solutions, where

ψ(t) =
λ(w(2t, t) + w1(2t, t))

1− ϕ(t)
.

Denote by r∗ the smallest such solution.
(a8) ϕ(r∗) < 1 and B̄(x∗, r∗) ⊆ D.
(a9) There exists continuous and increasing functions v : [0, r) −→ R and v1 : [0, r) −→

R such that

‖[y, x∗;H]−H ′(x∗)‖ ≤ v(‖y − x∗‖)

and

‖[y, x∗;H1]− [x̃, x∗;H1]‖ ≤ v1(‖y − x̃‖).

Equation λ(v(t) + v1(t+ ξ)) = 1 has positive solutions. Denote by r1 the smallest
such solution. There exists r2 ≥ r1. Set D3 = D ∩ B̄(x∗, r2).

Theorem 3.2. Suppose that the conditions (A) hold. Then, sequence {xn} starting from x−1, x0, 2x0−
x−1 ∈ B(x∗, r∗) − {x∗} and generated by method (1.3) is well defined in B(x∗, r∗), remains in
B(x∗, r∗) for each n = −1, 0, 1, . . . and converges to x∗. Moreover, the following estimates hold

(3.17) ‖xn+1 − x∗‖ ≤ ψ(r∗)‖xn − x∗‖.

Furthermore, the point x∗ is the only solution of equation F (x) = 0 in D3.
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Proof. Let x, y, 2y − x ∈ B(x∗, r∗). Using the definition of r and (a4), we get in turn that

‖A−1
∗ ([x, y;H] + [2y − x, x;H1]−A∗)‖(3.18)

≤ ‖A−1
∗ ‖[‖[x, y;H]−H ′(x∗)‖

+‖[2y − x, x;H1]− [x̃, x∗;H1]‖]
≤ λ(ω̄(‖x− x∗‖, ‖y − x∗‖) + ω̄1(‖2y − x− x̃‖, ‖x− x̃‖))
≤ λ(ω̄(r, r) + ω̄1(3r + ξ, r)) = ϕ(r) < 1,

so A = A(x, y) = [x, y;H] + [2y − x, x;H1] is invertible and

‖A−1A∗‖ ≤
λ

1− ϕ(r)
.(3.19)

We can write

A− (H +H1)(y)(3.20)
= [2y − x, x;H] + [x, y;H1]

−[y, x∗;H]− [y, x∗;H1]

= ([2y − x, x;H]− [y, x∗;H1]) + ([x, y;H1]− [y, x∗;H1])

so by (a6)

‖A− (H +H1)(y)‖ ≤ w(‖2y − x− y‖, ‖x− x∗‖) + w1(‖x− y‖, ‖y − x∗‖)(3.21)
≤ w(‖x− x∗‖+ ‖y − x∗‖, ‖x− x∗‖)

+w1(‖x− x∗‖+ ‖y − x∗‖, ‖y − x∗‖)
≤ w(2r, r) + w1(2r, r).

In particular, for x = xn−1, y = xn, we get by (1.3), (a2), (a7), (3.21) , (3.22) that

‖xn+1 − x∗‖ ≤ ‖xn − x∗ −A−1
n (H +H1)(xn)‖(3.22)

≤ ‖A−1
n ‖‖An − (H +H1)(xn)‖‖xn − x∗‖

≤ λ(w(2r∗, r∗) + w1(2r∗, r∗))

1− ϕ(r∗)
‖xn − x∗‖ ≤ c‖xn − x∗‖

≤ ‖xn − x∗‖ < r∗,

so (3.17) holds and xn+1 ∈ B(x∗, r∗), where c = ψ(r∗) ∈ [0, 1). Therefore limn−→+∞ xn =
x∗.

To show the uniqueness part, as in (2.17) but using (a9), we obtain in turn for y∗ ∈ D3

with F (y∗) = 0 that

‖A−1
∗ ‖‖A∗ −A‖ ≤ λ‖([y∗, x∗;H]−H ′(x∗))(3.23)

+([y∗, x∗;H1]− [x̃, x∗;H1])‖
≤ λ(v(‖y∗ − x∗‖) + v1(‖y∗ − x̃‖))
≤ λ(v(r2) + v1(r2 + ξ)) < 1.

�

4. NUMERICAL EXAMPLES

We complete this study with a numerical example.

Example 4.1. Let X = Y = (R2, ‖.‖∞). Consider the system

3x2y + y2 − 1 + |x− 1| = 0,

x4 + xy3 − 1 + |y| = 0.
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n x
(1)
n x

(2)
n ‖xn − xn−1‖

-1 5 5
0 1 0 5.000E+00
1 0.989800874210782 0.012627489072365 1.262E-02
2 0.921814765493287 0.307939916152262 2.953E-01
3 0.900073765669214 0.325927010697792 2.174E-02
4 0.894939851625105 0.327725437396226 5.133E-03
5 0.894658420586013 0.327825363500783 2.814E-04
6 0.894655375077418 0.327826521051833 3.045E-04
7 0.094655373334698 0.3278266521746293 1.742E-09
8 0.894655373334687 0.327826521746298 1.076E-14
9 0.894655373334687 0.327826521746298 5.421E-20

TABLE 1. Iterations and error for secant method

Set
‖x‖∞ = ‖(x′, x′′)‖∞ = max{|x′|, |x′′|},

H = (P1, P2), H1 = (Q1, Q2), and F = H +H1.

For x = (x′, x′′) ∈ R2 we take

P1(x′, x′′) = 3(x′)2x′′ + (x′′)2 − 1, P2(x′, x′′) = (x′)4 + x′(x′′)3 − 1,

Q1(x′, x′′) = |x′ − 1|, Q2(x′, x′′) = |x′′|.
We shall take [x, y,H1] ∈M2×2(R) as

[x, y;H]i,1 =
Pi(y

′, y′′)− Pi(x′, y′′)
y′ − x′

,

[x, y;H]1,2 =
Pi(x

′, y′′)− Pi(x′, x′′)
y′′ − x′′

, i = 1, 2,

provided that y′ 6= x′ and y′′ 6= x′′. Otherwise define [x, y;H] to be the zero matrix in
M2×2(R. Similarly we define divided difference [2y − x, x;H1]. Using the secant method
with x−1 = (5, 5), and x0 = (1, 0), we obtain the values in Table 1. It is clear that the
hypotheses of Theorem 2.1 are satisfied for the methods for the starting points close to the
solution

x∗ = (0.894655373334687, 0.327826521746298).
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