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On solutions of functional equations with polynomial
translations

MITROFAN M. CHOBAN and LARISA M. SALI

ABSTRACT. In this paper, we study polynomial functional equations of the form af(p(x))+bf(q(x)) = g(x),
where p(x), q(x) are given polynomials and g(x) is a given function. Theorems 2.1 and 2.2 contain sufficient
conditions under which the functional equation has a solution of the special form. In Section 3 we present an
algorithm of constructing polynomial solutions of the functional equations. Other non-polynomial solutions
depend on solutions of the homogeneous equation af(p(x)) + bf(q(x)) = 0. That case is analyzed in Section 4.
Finally, we present a simple method of constructing examples with desirable properties.

1. INTRODUCTION

Theory of functional equations is a large and important domain of mathematics [1, 4,
5, 7, 9, 8]. Formally, a functional equation is a relation between concrete variables where
some variables are functions or functions with their derivatives. Some properties of so-
lutions of a given differential equation may be determined without finding their exact
form [9, 8]. We study the functional equations without derivatives of solution. One of the
general forms of a functional equation is the following:

(1.1) F (x1, x2, ..., xn, f(g1(x1, x2, ..., xn)), ..., f(gm(x1, x2, ..., xn))) = 0,

A solution of this equation is a function f , which satisfies the functional equation. There
are many books which analyze concrete equations, but propose only outlines of solving
methods [3, 5, 6].

We analyze the functional equations of the form af(p(x)) + bf(q(x)) = g(x) in the fol-
lowing two cases:

1. p(x), q(x), g(x) are given polynomials;
2. p(x), q(x) are given polynomials and g(x) is a given function.
The domain of the definition of solutions coincides with the common domain of defi-

nition of the given functions p(x), q(x), g(x). We say that p(x) and q(x) are the translation
polynomials (functions). If the function g(x) is a polynomial, then we say that the func-
tional equation is polynomial.

Our goal is to present a general approach to solving functional equations with polyno-
mial translations. This approach is important from the didactic point of view. The pro-
cess of composing problems has the aim of forming the capability to analyze notions and
their properties, of consolidating knowledge, of creating premises for their application,
of developing school students’ mathematical creativity etc. The notions of equation and
function are fundamental in the course of elementary mathematics and encapsulate a rich
potential for solving problems of an inter- and trans-disciplinary character. The general
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approach allows the structuring of the algorithm of composing concrete equations, whose
”spicy” character arises from the way of selecting the coefficients a, b, the coefficients of
polynomials p(x), q(x) and the degrees of polynomial g(x). Some problems of this type
are sometimes declared as ”trick problems”. As a rule, functional equations are consid-
ered on the field of reals R. However, the main results are true for the field of complex
number and, more general, for topological commutative fields.

2. FUNCTIONAL EQUATIONS WITH SOME CONDITIONS OF SYMMETRY

Fix a topological commutative field (G,+, ·).

Theorem 2.1. The equation

(2.2) mf(ax+ b) + nf(−ax+ c) = g(x),

where x, m, n, a, b, c ∈ G, m2 6= n2, a 6= 0 and g : G→ G is a function, has a canonical solution
ϕ : G→ G, where ϕ(x) = (m2−n2)−1(mg(a−1(x− b))−ng(a−1(−x+ b))). The function ϕ is
continuous if and only if the function g is continuous. The function ϕ is a polynomial if and only
if the function g is a polynomial.

Proof. Let u = ax+ b. In this case, the equation 2.2 is equivalent with the functional equa-
tion

(2.3) mf(u) + nf(−u+ b+ c) = g(a−1(u− b)).

If v = −u+ c, then we obtain the equation

(2.4) mf(−v + b+ c) + nf(v) = g(a−1(−v + c)).

Hence, we obtain the following system of equations

(2.5)

{
mf(x) + nf(−x+ b+ c) = g(a−1(x− b))
nf(x) +mf(−x+ b+ c) = g(a−1(−x+ c))

Hence, (m2 − n2)f(x) = mg(a−1(x− b))− ng(a−1(−x+ c)) and the function ϕ(x) = (m2 −
n2)−1(mg(a−1(x− b))−ng(a−1(−x+ c))) is a solution of the equation 2.2. We say that the
function ϕ is the canonical solution of the equation 2.2. Obviously, the function ϕ has the
desired properties in the dependence of the function g. The proof is complete. �

As a rule, the canonical solution ϕ of the equation 2.2 is not unique.

Example 2.1. Consider the equationmf(ax+b)+nf(−ax−b) = g(x), wherem2 6= n2 and
mn 6= 0, with the canonical solution ϕ(x) = (m2 − n2)−1(mg(a−1(x− b))− ng(−a−1(−x+
b))). Let h : G −→ G be a function with the property h(x) = −m−1nh(−x). Then f = ϕ+h
is a solution of the equation. Any solution of the equation has that form. Thus the given
equation has infinitely many solutions. The condition m2 6= n2 is essential.

Example 2.2. Let G be an algebraic number field. In the field G the following equation
f(x) + f(−x) = 4x2 + 4x + 1 has no solutions. Indeed, let h(x) be some solution of the
equation f(x) + f(−x) = 4x2 + 4x+ 1. In this case, we have h(x) + h(−x) = 4x2 + 4x+ 1
and h(x) + h(−x) = 4x2 − 4x+ 1. Hence h(x) + h(−x) = 4x2 + 1. Therefore, for any x we
have 4x = −4x, a contradiction.
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Example 2.3. In any algebraic number field G, the following equation f(x) + f(−x) =
4x4 + 2x2 − 8 has infinitely many polynomial solutions of the form h(x) = 2x4 + x2 − 4 +
a1x + a2x

3 + . . . + anx
2n−1, where n is a natural number and a1, a2, ..., an are arbitrary

elements from G. Indeed, if h(x) = 2x4 + x2 − 4+ a1x+ a2x
3 + . . .+ anx

2n−1 , then h(−x)
= 2x4 + x2 − 4− a1x− a2x3 − . . .− anx2n−1 and h(x) + h(−x) = 4x4 + 2x2 − 8.

Remark 2.1. Let m 6= n, m2 6= n2, a 6= 0 and the function g is a polynomial. Then the
function ϕ(x) = (m2−n2)−1(mg(a−1(x− b))−ng(a−1(−x+ b))) is the unique polynomial
solution of the equation 2.2.

Theorem 2.2. Let (G,+, ·) be a topological commutative field. The equation

(2.6) mf(ax) + nf

(
− 1

ax

)
= g(x),

where x, m, n, a ∈ G, m2 6= n2, ax 6= 0, G′ = G \ {0} and g : G′ → G is a function, has a
canonical solution ψ(x), where ψ(x) = (m2 − n2)−1(mg(a−1x)− ng(−a−1x−1)). The function
ψ is continuous on G′ if and only if the function g is continuous on G′.

Proof. Let u = ax and v = − 1
ax . In this case, the equation 2.6 is equivalent with the func-

tional equations

(2.7) mf(u) + nf

(
− 1

u

)
= g

(u
a

)
,

and

(2.8) mf

(
−1

v

)
+ nf(v) = g

(
− 1

av

)
.

Hence, we obtain the following system of equations

(2.9)

{
mf(x) + nf

(
− 1

x

)
= g

(
x
a

)
nf(x) +mf

(
− 1

x

)
= g

(
− 1

ax

)
which has the form

(2.10)

{
m2f(x) +mnf

(
− 1

x

)
= mg

(
x
a

)
−n2f(x)−mnf

(
− 1

x

)
= −ng

(
− 1

ax

)
Hence (m2−n2)f(x) =mg

(
x
a

)
−ng

(
− 1

ax

)
and the function ψ(x) = (m2−n2)−1(mg(a−1x)−

ng(−a−1x−1)) is a solution of the equation 2.6. We say that the function ψ is the canonical
solution of the equation 2.6. The proof is complete. �

Remark 2.2. As in the case of Theorem 2.1, one may want to establish the essentiality of
the condition m2 6= n2 and non uniqueness of the solutions of the equation 2.6. Indeed,
if ψ is the canonical solution of the equation 2.6 and h(x) = −f

(
− 1

x

)
, then f = ψ + h is a

solution of the equation 2.6. Any solution of the equation 2.6 has this form.
If m+n 6= 0 and g(x) = g(x−1) for each x ∈ G′, then φ(x) = (m+n)−1g(x) is the second

canonical solution of the equation 2.6.

Remark 2.3. The equation 2.6 has polynomial solutions only in special cases. Assume
that k ≥ 1, g(x) = akx

k + ... + a1x + c + bkx
−k + ... + b1x

−1, anbn 6= 0 and mbi = nai for
each i ≤ k. Let a0 = (m+ n)−1c. Then π(x) = m−1(akxk + ...+ a1x) + a0 is a polynomial
solution of the equation 2.6.
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3. GENERAL METHOD OF SOLVING POLYNOMIAL EQUATIONS

In the present section we examine the functional equation

(3.11) af(p(x)) + bf(q(x)) = g(x),

where p(x), q(x), g(x) are given polynomials.
Assume that

(3.12)
p(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0,

q(x) = bmx
m + bm−1x

m−1 + . . .+ b1x+ b0,
g(x) = ckx

k + ck−1x
k−1 + . . .+ c1x+ c0,

where ab 6= 0 and anbmck 6= 0.
The equation 3.11 determines the homogeneous equation

(3.13) af(p(x)) + bf(q(x)) = 0.

Let S be the set of all solutions of the equation 3.11 and S0 be set of all solutions of the
equation 3.13. Always S0 6= ∅: the set S0 contains the function f = 0 as a solution of 3.13.

The following elementary fact establishes the relation between S and S0.

Proposition 3.1. S = {f0 + h : h ∈ S0}, where f0 ∈ S.

Corollary 3.1. Either S = ∅, or |S| = |S0|.

By virtue of the proposition 3.1, it is important to find some solution f0 of the equa-
tion 3.11. Assume that f0 is a polynomial solution of the equation 3.11 and f0(x) =
elx

l + el−1x
l−1 + . . .+ e1x+ e0. The polynomials p(x), q(x), g(x), f0(x) have the degrees

n, m, k, l respectively.
The following two facts serve as the principle of accordance of the degrees of the poly-

nomials p(x), q(x), g(x), f0(x).

Proposition 3.2. k ≤ max {nl;ml}.

Proof. Indeed, f0(p(x)) is a polynomial of the degree nl and f0(q(x)) is a polynomial of the
degree ml. The sum af0(p(x)) + bf0(q(x)) is a polynomial of the degree ≤ max {nl;ml}.
Hence k ≤ max {nl;ml}. The proof is complete. �

Proposition 3.3. If m < n, then k = nl.

Proof. The proof is similar with the proof of Proposition 3.2. �

The principle of accordance of the degrees permits to propose a general method of find
polynomial solutions of the polynomial equation 3.11.
Assume that m ≤ n. Firstly, we mention the following facts:
F1. If m < n and k 6= nl for any l ∈ N = {0, 1, 2, ...}, then the equation 3.11 has no
polynomial solutions.
F2. If m = n, aan + bbn 6= 0 and k 6= nl, then the equation 3.11 has no polynomial
solutions of degree l. Moreover, if m = n, aan + bbn 6= 0 and k 6= nl for any l ∈ N, then the
equation 3.11 has no polynomial solutions.

Now we propose the method of construction of polynomial solutions:
Step 1. Fix a natural number l where k ≤ nl. Excluding the cases F1 and F2, set one of the
variants: m < n and k = nl, or m = n, aan + bbn 6= 0 and k = nl, or m = n, aan + bbn = 0
and k < nl.
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Step 2. Fix a polynomial f0(x) = elxl + el−1x
l−1 + . . .+ e1x+ e0, el 6= 0.

Step 3. Compute the polynomial f0(p(x)) = anelxnl + dnl−1x
nl−1 + . . .+ d1x+ d0.

Step 4. Compute the polynomial f0(q(x)) = bmelxml + rml−1x
ml−1 + . . .+ r1x+ r0.

Step 5. Compute the polynomial af0(p(x)) + bf0(q(x)).
Step 6. Analyze the final results of computing.

Since we suppose that f0 is a solution of the equation 3.11, we have g(x) = af0(p(x)) +
bf0(q(x)) and we obtain nl relations between coefficients of g(x) and af0(p(x))+bf0(q(x)).
These relations between coefficients form a system of equations for the coefficients of the
solution and permit to establish if for the equation 3.11 there exists or not some polyno-
mial solutions.

In particular, polynomial solutions exist if and only if the obtained system of equa-
tions is compatible. It is convenient to calculate the coefficients of the solution f0 in the
descending order: al, al−1, ..., a1, a0.

In the case n = m = 1 the following fact is true.

Proposition 3.4. If n = m = 1 and aal1 + bbl1 6= 0 for any l ∈ N, then the equation 3.11 has
a unique polynomial solution.

Now we illustrate the algorithm with the following examples.

Example 3.4. Consider the equation 3f(x2 + x − 1) − f(2x) = g(x), where g(x) = c4x
4 +

c3x
3 + c2x

2 + c1x+ c0.
Any polynomial solution is of the degree 2. Let f0(x) = l2x

2 + l1x+ l0 be a solution of
the equation. Then 3f(x2 + x− 1)− f(2x) = 3l2x

4 + 6l2x
3 + (3l1 − 7l2)x

2 + (l1 − 6l2)x+
(2l0 − 3l1 + 3l2).

In this case: 3l2 = c4, 6l2 = c3, 3l1−7l2 = c2, l1−6l2 = c1, 2l0−3l1+3l2 = c0. If c3 6= 2c4, the
equation has no polynomial solutions. If c3 = 2c4, the equation has an unique polynomial
solution f0(x), where l2 = 1

3c4 = 1
6c3, l1 = 1

3 (c2 + 7l2), l0 = 1
2 (c0 + 3l0 − 3l2).

Example 3.5. 4f(3x2 − x)− 9f(2x) = g(x), where g(x) = c3x3 + c2x
2 + c1x+ c0.

Let f0(x) = l2x2 + l1x+ l0 be a solution of the equation. Then 4f(3x2−x)− 9f(2x2 +x)
= −60l2x3 − (6l1 + 5l2)x

2 − 13l1x− 5l0.
In this case: −60l2 = c3, 5l2 + 6l1 = −c2, 13l1 = −c1, 5l0 = −c0.
The coefficient l2 is calculated in an unique way l2 = − 1

60c3, but for l1 we obtain two
conditions, that must be satisfied simultaneously: l1 = − 1

6c2 + 1
72c3 and l1 = − 1

13c1. If
these conditions are not satisfied simultaneously, then the equation has no polynomial
solutions. In other case, we calculate l0 = − 1

5c0 and we write the polynomial solution
f0(x) = − 1

60c3x
2 − 1

13c1x−
1
5c0.

Example 3.6. f(3x2 + x)− f(2x2 − x) = g(x), where g(x) = c4x4 + c3x
3 + c2x

2 + c1x+ c0.
Any polynomial solution is of the degree 2. Let f0(x) = l2x2 + l1x+ l0 be a solution of the
equation. Then f(3x2 + x)− f(2x2 − x) = 5l2x

4 + 10l2x
3 + l1x

2 + 2l1x.
Hence: 5l2 = c4, 10l2 = c3, l1 = c2, 2l1 = c1, 0 = c0. The equation has polynomial solutions

under the conditions: c3 = 2c4, c1 = 2c2, c0 = 0.

Remark 3.4. The above method can be applied for finding polynomial solutions of the
functional equations of the form

(3.14) af(p(x))n + bf(q(x))m = g(x),

where p(x), q(x), g(x) are the given polynomials and n,m ∈ N.
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4. EXISTENCE OF PERIODIC SOLUTIONS OF THE HOMOGENEOUS EQUATION

Consider the equation

(4.15) af(p(x)) + bf(kp(x) + c) = ϕ(p(x)) + d,

where c, d are constant numbers, |k| = 1, a 6= 0 and p(x), ϕ(x) are non-constant functions.
In this case, we let t = p(x) and obtain the equation af(t) + bf(kt + c) = ϕ(t) + d. For

k = −1 this equation is solved in Section 2. Assume that k = 1 and ϕ(p(x)) + d = 0.
If a 6= 0 and b = 0, then f(x) = 0 is the unique solution of the equation 4.15.
If b 6= 0, c = 0 and a+ b 6= 0, then f(x) = 0 is the unique solution of the equation 4.15.
Assume now that ab 6= 0, a+ b 6= 0 and c 6= 0.
In this case, the equation 4.15 has the form

(4.16) f(t) = −ba−1f(t+ c).

This fact permits to determine all solutions of the equation 4.15, applying the following
algorithm.
Step 1. We set In = [nc, (n+ 1)c) for any integer n ∈ Z.
Step 2. On I0, we fix some function h0(x).
Step 3. On In, we construct the function hn(x) = (−ab−1)nh0(x− nc). Since x− nc ∈ I0 if
and only if x ∈ In, the function hn is correctly constructed.
Step 4. We let h = h|In for any n ∈ Z. Then h is a solution of the equation 4.15.

Remark 4.5. Any solution of the equation 4.15 can be constructed by the above algorithm.

Remark 4.6. If
∣∣ab−1∣∣ = 1, then the solutions 4.15 are periodic functions with the period

2c.

Remark 4.7. If we set hc = −ab−1h0(0) and the function h is continuous on [0, c], then
the solution h is continuous on R. All continuous solutions of the equation 4.15 can be
obtained in this way.

This algorithm permits to construct ”spicy” solutions of functional equations.

Example 4.7. f(2x2 + 4x+ 3)− f(2x2 + 4x+ 1) = 8(x+ 1)2

Prove that a continuous solution s(x) such that s(x) = 2x exists for any x ∈ [0, 2).
The equation has no solutions of the degree ≤ 1.
Assume that f(x) = ax2+ bx+ c is a solution of the given equation. Since f(2x2+4x+

3)−f(2x2+4x+1) = 8ax2+16ax+8a+2b, from 8ax2+16ax+8a+2b = 8x2+16x+8 we
obtain a = 1, b = 0 and c is arbitrary. Hence, the polynomials f(x) = x2 + c are solutions
of the equation.

The homogeneous equation f(2x2 +4x+3)− f(2x2 +4x+1) = 0 can be considered of
the form f(t+ 2)− f(t) = 0.

The periodic function with the period 2 forms all solutions of that equation. If In =
[2n, 2n+2), h(x) = −x2 +2x for x ∈ I0 and h(x) = −(x− 2n)2 +2(x− 2n) for x ∈ In, then
the function for h is a solution of the given homogeneous equation. Fix the solution f(x)
= x2 for the given equation. Then s(x) = f(x)+h(x) = (4n+2)x− 4(n2−n) for any x ∈ In
and n ∈ N is a solution of the given equation. We have s(x) = 2x for any x ∈ I0.

Hence, for composing functional equations may be useful the following algorithm:
Step 1. Fix two polynomials p(x) and q(x).
Step 2. Fix two numbers a and b.
Step 3. Fix a polynomial f0(x) as the solution.
Step 4. Compute the polynomial g(x) = af0(p(x)) + bf0(q(x)).



On solutions of functional equations with polynomial translations 59

We obtain the functional equation af(p(x))+bf(q(x)) = g(x) with the polynomial solution
f0(x).

After that we have one of the following cases:
Case 1. If q(x) = p(x) + c, then we fix a periodic solution h(x) of the homogeneous func-
tional equation af(x)+bf(x+c) = 0. The function f(x) = f0(x)+h(x) is a non-polynomial
solution of the equation af(p(x)) + bf(q(x)) = g(x). We may fix a priori the form of the
solution f(x) on the interval [0, c).
Case 2. We may select the polynomials p(x), q(x), h0(x) and the coefficients a, b for which
the functional equation af(p(x)) + bf(q(x)) = g(x) has infinitely many polynomials solu-
tions.
Case 3. We may select the polynomial g(x) for which the functional equation af(p(x)) +
bf(q(x)) = g(x) has no solutions.
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[8] Şuba, A. and Văcăraş, O., Cubic differential systems with an invariant straight line of maximal multiplicity

Annals of the University of Craiova - Mathematics and Computer Science Series, 42 (2015), No. 2, 427–449
[9] Zwillinger, D., Handbook of Differential Equations, Academic Press, Boston, 1997

TIRASPOL STATE UNIVERSITY

PHYSICS, MATHEMATICS AND IT
IABLOCIKIN 5, MD-2069, CHISINAU, REPUBLIC OF MOLDOVA

Email address: mmchoban@gmail.com, salilarisa@yahoo.com


