Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2019.01.12

Some properties of the analytic functions with bounded radius rotation

YAŞAR POLATOĞLU, ASENA ÇETINKAYA and OYA MERT

ABSTRACT. In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with q- analogues in the open unit disc \mathbb{D} . We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with q- analogues denoted by $\mathcal{R}_k(q)$, where $k \ge 2, q \in (0, 1)$.

1. INTRODUCTION

Let \mathcal{A} be the class of functions f of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disc $\mathbb{D} = \{z : |z| < 1\}$ and satisfy the conditions f(0) = 0, f'(0) = 1 for every $z \in \mathbb{D}$. We say that f_1 is subordinate to f_2 , written as $f_1 \prec f_2$, if there exists a Schwarz function ϕ which is analytic in \mathbb{D} with $\phi(0) = 0$ and $|\phi(z)| < 1$, such that $f_1(z) = f_2(\phi(z))$. In particular, when f_2 is univalent, then the above subordination is equivalent to $f_1(0) = f_2(0)$ and $f_1(\mathbb{D}) \subset f_2(\mathbb{D})$ (Subordination principle [3]).

In 1971, Pinchuk [4] introduced and studied the classes \mathcal{P}_k and \mathcal{R}_k , where \mathcal{R}_k generalizes the class of starlike functions. Here \mathcal{P}_k denotes the class of functions $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$, analytic in \mathbb{D} with p(0) = 1 and having the representation

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} d\mu(t),$$

where μ is real-valued function of bounded variation for which

$$\int_{0}^{2\pi} d\mu(t) = 2 \text{ and } \int_{0}^{2\pi} |d\mu(t)| \le k$$

The class \mathcal{R}_k , defined by Pinchuk in [4], consists of those functions f which satisfy the condition

(1.2)
$$\int_{-\pi}^{\pi} \left| Re\left(re^{i\theta} \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right) \right| d\theta \le k\pi, 0 < r < 1, z = re^{i\theta}.$$

Geometrically, the condition (1.2) is the total variation of the angle between radius vector $f(re^{i\theta})$ makes with the positive real axis is bounded by $k\pi$. Thus \mathcal{R}_k is the class of bounded radius rotation bounded by $k\pi$.

Received: 22.06.2018. In revised form: 03.12.2018. Accepted: 10.12.2018

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. *Bounded radius rotation, growth theorem, radius of starlikeness, coefficient estimate.* Corresponding author: Asena Çetinkaya; asnfigen@hotmail.com

Denote by \mathcal{P}_q the family of functions p of the form $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$, analytic \mathbb{D} and satisfy the condition

$$\left| p(z) - \frac{1}{1-q} \right| \le \frac{1}{1-q},$$

where $q \in (0, 1)$ is a fixed real number.

The following lemma is first introduced in [6], later given in [2]:

Lemma 1.1. p is an element of \mathcal{P}_q if and only if $p(z) \prec \frac{1+z}{1-qz}$. This result is sharp for the functions $p(z) = \frac{1+\phi(z)}{1-q\phi(z)}$, where ϕ is a Schwarz function.

Using the definitions \mathcal{P}_k and \mathcal{P}_q , Noor and Noor introduced the class $\mathcal{P}_k(q)$ in [5] as below:

Definition 1.1. A function p of the form $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$, analytic in \mathbb{D} with p(0) = 1 is said to be in the class $\mathcal{P}_k(q)$, $k \ge 2$, $q \in (0, 1)$ if and only if there exists $p_1^{(1)}, p_2^{(2)} \in \mathcal{P}_q$ such that

(1.3)
$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1^{(1)}(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2^{(2)}(z).$$

For $q \to 1^-$, $\mathcal{P}_k(q)$ reduces to \mathcal{P}_k , (see [4]); for k = 2, $\mathcal{P}_k(q)$ reduces to \mathcal{P}_q ; for k = 2, $q \to 1^-$, $\mathcal{P}_k(q)$ reduces to \mathcal{P} which is the well known class of functions with positive real part.

In the present paper, we give a new subclass of starlike functions with bounded radius rotation associated with q- analogues denoted by $\mathcal{R}_k(q)$.

Definition 1.2. Let f of the form (1.1) be an element of A. If f satisfies the condition

(1.4)
$$z\frac{f'(z)}{f(z)} = p(z), \quad p \in \mathcal{P}_k(q),$$

with $k \ge 2, q \in (0, 1)$, then f is called starlike function with bounded radius rotation with q- analogues denoted by $\mathcal{R}_k(q)$.

Motivated by Definition 1.2, we investigate growth theorem, radius of starlikeness and coefficient inequality for the class $\mathcal{R}_k(q)$.

2. MAIN RESULTS

We first give growth theorem for the class $\mathcal{R}_k(q)$.

Theorem 2.1. *If* $f \in \mathcal{R}_k(q)$ *, then*

(2.5)
$$rF(q,k,-r) \le |f(z)| \le rF(q,k,r),$$

where

$$F(q,k,r) = \frac{\left(1+qr\right)^{\left(\frac{k}{4}-\frac{1}{2}\right)\frac{(1+q)}{q}}}{\left(1-qr\right)^{\left(\frac{k}{4}+\frac{1}{2}\right)\frac{(1+q)}{q}}},$$

 $k \ge 2, q \in (0, 1).$

Some Properties of the Analytic Functions with ...

Proof. Let *p* be an element of \mathcal{P}_q and |z| = r < 1, then by Lemma 1.1 we have

(2.6)
$$\frac{1-r}{1+qr} \le Rep(z) \le |p(z)| \le \frac{1+r}{1-qr}.$$

After simple calculations in (2.6), we get

(2.7)
$$\frac{1 - \frac{k}{2}(1+q)r + qr^2}{(1-qr)(1+qr)} \le Rep(z) \le \frac{1 + \frac{k}{2}(1+q)r + qr^2}{(1-qr)(1+qr)}$$

Inequality in (2.7) shows that the set of variability of $p \in \mathcal{P}_k(q)$ is the closed disc

(2.8)
$$\left| p(z) - \frac{1+qr^2}{1-q^2r^2} \right| \le \frac{\frac{k}{2}(1+q)r}{1-q^2r^2}.$$

On the other hand from definition of $\mathcal{R}_k(q)$, we can write

(2.9)
$$\left| z \frac{f'(z)}{f(z)} - \frac{1+qr^2}{1-q^2r^2} \right| \le \frac{\frac{k}{2}(1+q)r}{1-q^2r^2},$$

which gives

(2.10)
$$\frac{1 - \frac{k}{2}(1+q)r + qr^2}{(1-qr)(1+qr)} \le Rez \frac{f'(z)}{f(z)} \le \frac{1 + \frac{k}{2}(1+q)r + qr^2}{(1-qr)(1+qr)}$$

Since

$$Re\left(z\frac{f'(z)}{f(z)}\right) = r\frac{\partial}{\partial r}log|f(z)|,$$

then the equality (2.10) can be written

(2.11)
$$\frac{1 - \frac{k}{2}(1+q)r + qr^2}{r(1-qr)(1+qr)} \le \frac{\partial}{\partial r} \log|f(z)| \le \frac{1 + \frac{k}{2}(1+q)r + qr^2}{r(1-qr)(1+qr)}.$$

Taking integration on both sides of (2.11), we obtain

$$rF(q,k,-r) \le |f(z)| \le rF(q,k,r),$$

where

$$F(q,k,r) = \frac{\left(1+qr\right)^{\left(\frac{k}{4}-\frac{1}{2}\right)\frac{(1+q)}{q}}}{\left(1-qr\right)^{\left(\frac{k}{4}+\frac{1}{2}\right)\frac{(1+q)}{q}}}.$$

This estimate is sharp because extremal function is

$$f(z) = \frac{z(1+qz)^{(\frac{k}{4}-\frac{1}{2})\frac{(1+q)}{q}}}{(1-qz)^{(\frac{k}{4}+\frac{1}{2})\frac{(1+q)}{q}}}.$$

. 6		

Corollary 2.1. If we take q = 0 in (2.9), we obtain

$$\left|z\frac{f'(z)}{f(z)} - 1\right| \le \frac{kr}{2},$$

which gives

(2.12)
$$\frac{1}{r} - \frac{k}{2} \le \frac{\partial}{\partial r} log|f(z)| \le \frac{1}{r} + \frac{k}{2}$$

Integrating both sides of (2.12), we obtain

(2.13)
$$rF(k, -r) \le |f(z)| \le rF(k, r),$$

where $F(k,r) = e^{\frac{kr}{2}}$. The inequality in (2.13) is sharp because extremal function is

$$f(z) = ze^{\frac{kz}{2}}.$$

Theorem 2.2. For $k \ge 2$ and $q \in (0, 1)$, starlikeness of the class $\mathcal{R}_k(q)$ is

(2.14)
$$r^*(f) = \frac{k(1+q) - \sqrt{k^2(1+q)^2 - 16q}}{4q}$$

Proof. Let $f \in A$, then the real number

$$r^*(f) = \sup\left\{r > 0, Re(z\frac{f'(z)}{f(z)}) > 0 \text{ for all } z \in \mathbb{D}
ight\}$$

is called the starlikeness of the class A. Then the inequality in (2.10) gives the starlikeness of the class $\mathcal{R}_k(q)$, that is

$$Re\left(z\frac{f'(z)}{f(z)}\right) \ge \frac{1-\frac{k}{2}(1+q)r+qr^2}{(1-qr)(1+qr)}.$$

Hence for $r < r^*$ the right side of the preceding inequality is positive if

$$r^*(f) = \frac{k(1+q) - \sqrt{k^2(1+q)^2 - 16q}}{4q}.$$

П

Remark 2.1. If $q \to 1^-$, then radius in (2.14) reduces to $r^*(f) = \frac{k - \sqrt{k^2 - 4}}{2}$. This is the radius of starlikeness of the class \mathcal{R}_k which was obtained by Pinchuk [4].

We now prove coefficient inequality for the class $\mathcal{R}_k(q)$. For our main theorem, we need the following two lemmas.

Lemma 2.2. [1] If p is an element of \mathcal{P}_q , then $|p_n| \le 1 + q$ for all $n \ge 1$. This result is sharp. **Lemma 2.3.** Let $p(z) = 1 + p_1 z + p_2 z^2 + ...$ be an element of $\mathcal{P}_k(q)$, then

$$|p_n| \le \frac{k}{2}(1+q)$$

for all $n \ge 1$, $k \ge 2$ and $q \in (0, 1)$. This result is sharp for the functions

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1^{(1)}(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2^{(2)}(z),$$

where $p_1^{(1)}, p_2^{(2)} \in \mathcal{P}_q$.

Proof. Let $p_1^{(1)} = 1 + a_1z + a_2z^2 + \dots$ and $p_2^{(2)} = 1 + b_1z + b_2z^2 + \dots$. Since $p \in \mathcal{P}_k(q)$, then we have

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1^{(1)}(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2^{(2)}(z)$$

= $\left(\frac{k}{4} + \frac{1}{2}\right) (1 + a_1 z + a_2 z^2 + ...) - \left(\frac{k}{4} - \frac{1}{2}\right) (1 + b_1 z + b_2 z^2 + ...).$

Then, for n th term, we have

$$p_n = \left(\frac{k}{4} + \frac{1}{2}\right)a_n - \left(\frac{k}{4} - \frac{1}{2}\right)b_n.$$

Taking into account Lemma 2.2, $|a_n| \le 1 + q$ and $|b_n| \le 1 + q$ for all $n \ge 1$. Therefore

$$\begin{aligned} |p_n| &= \left| \left(\frac{k}{4} + \frac{1}{2} \right) a_n - \left(\frac{k}{4} - \frac{1}{2} \right) b_n \right| \\ &\leq \left(\frac{k}{4} + \frac{1}{2} \right) |a_n| + \left(\frac{k}{4} - \frac{1}{2} \right) |b_n| \\ &\leq \left(\frac{k}{4} + \frac{1}{2} \right) (1+q) + \left(\frac{k}{4} - \frac{1}{2} \right) (1+q). \end{aligned}$$

This shows that,

$$|p_n| \le \frac{k}{2}(1+q)$$

for all $n \ge 1$, $k \ge 2$ and $q \in (0, 1)$.

Theorem 2.3. If $f \in \mathcal{R}_k(q)$, then

(2.15)
$$|a_n| \le \frac{1}{(n-1)!} \prod_{\nu=0}^{n-2} \left(\nu + \frac{k}{2}(1+q)\right).$$

This inequality is sharp for every $n \ge 2$ *,* $k \ge 2$ *and* $q \in (0, 1)$ *.*

Proof. In view of definition of the class $\mathcal{R}_k(q)$ and subordination principle, we can write

$$z\frac{f'(z)}{f(z)} = p(z),$$

where $p \in \mathcal{P}_k(q)$ with p(0) = 1. Since $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $p(z) = 1 + p_1 z + p_2 z^2 + ...,$ then we have z f'(z) = f(z)p(z).

Therefore.

 $z + 2a_2z^2 + 3a_3z^3 + \ldots = z + (a_2 + p_1)z^2 + (a_3 + p_1a_2 + p_2)z^3 + (a_4 + p_1a_3 + p_2a_2 + p_3)z^4 + \ldots$. Comparing the coefficients of z^n on both sides, we obtain

$$na_n = a_n + p_1a_{n-1} + p_2a_{n-2} + \dots + p_{n-2}a_2 + p_{n-1}$$

for all integer $n \ge 2$. In view of Lemma 2.3, we get

$$(n-1)|a_n| \le \frac{k}{2}(1+q)(|a_{n-1}| + \dots + |a_2| + 1),$$

or equivalently

(2.16)
$$|a_n| \le \frac{1}{(n-1)} \frac{k}{2} (1+q) \sum_{\nu=1}^{n-1} |a_\nu|, \quad |a_1| = 1.$$

Induction shows that we have

$$|a_n| \le \frac{1}{(n-1)!} \prod_{\nu=0}^{n-2} \left(\nu + \frac{k}{2}(1+q)\right).$$

This estimate is sharp because extremal function is

$$z\frac{f'(z)}{f(z)} = \left(\frac{k}{4} + \frac{1}{2}\right)\frac{1+z}{1-qz} - \left(\frac{k}{4} - \frac{1}{2}\right)\frac{1-z}{1+qz}$$

which gives

$$f(z) = \frac{z(1+qz)^{\left(\frac{k}{4}-\frac{1}{2}\right)\frac{(1+q)}{q}}}{\left(1-qz\right)^{\left(\frac{k}{4}+\frac{1}{2}\right)\frac{(1+q)}{q}}}.$$

 \square

Remark 2.2. Taking $q \to 1^-$ and choosing k = 2 in (2.15), we get $|a_n| \le n$ for every $n \ge 2$. This result is the well known coefficient inequality for starlike functions.

REFERENCES

- [1] Çetinkaya, A., Kahramaner, Y. and Polatoğlu, Y., Some results on *q*-starlike functions of complex order, Submitted, 2017
- [2] Çetinkaya, A. and Mert, O., A certain class of harmonic mappings related to functions of bounded boundary rotation, Proc. of 12th Symposium on Geometric Function Theory and Applications, (2016), 67–76
- [3] Goodman, A. W., Univalent functions volume I and II, Polygonal Pub. House, 1983
- [4] Pinchuk, B., Functions of Bounded Boundary Rotation, Isr. J. Math., 10 (1971), 6–16
- [5] Noor, K. I. and Noor, M. A., Linear combinations of generaized q- starlike functions, Appl. Math. Inf. Sci., 11 (2017), 745–748
- [6] Yemişci, A. and Polatoğlu, Y., Growth and distortion theorems for q convex functions, Submitted, 2016

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES ISTANBUL KÜLTÜR UNIVERSITY ISTANBUL, TURKEY Email address: y.polatoglu@iku.edu.tr

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES ISTANBUL KÜLTÜR UNIVERSITY ISTANBUL, TURKEY *Email address*: asnfigen@hotmail.com

DEPARTMENT OF BASIC SCIENCES ISTANBUL ALTINBAŞ UNIVERSITY ISTANBUL, TURKEY *Email address*: oya.mert@altinbas.edu.tr