Some properties of the analytic functions with bounded radius rotation

YAŞAR POLATOĞLU, ASENA ÇETINKAYA and OYA MERT

ABSTRACT. In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with $q-$ analogues in the open unit disc D. We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with $q-$ analogues denoted by $R_k(q)$, where $k \geq 2$, $q \in (0, 1)$.

1. INTRODUCTION

Let A be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disc $D = \{z : |z| < 1\}$ and satisfy the conditions $f(0) = 0$, $f'(0) = 1$ for every $z \in D$. We say that f_1 is subordinate to f_2, written as $f_1 \prec f_2$, if there exists a Schwarz function ϕ which is analytic in D with $\phi(0) = 0$ and $|\phi(z)| < 1$, such that $f_1(z) = f_2(\phi(z))$. In particular, when f_2 is univalent, then the above subordination is equivalent to $f_1(0) = f_2(0)$ and $f_1(D) \subset f_2(D)$ (Subordination principle [3]).

In 1971, Pinchuk [4] introduced and studied the classes P_k and R_k, where R_k generalizes the class of starlike functions. Here P_k denotes the class of functions $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$, analytic in D with $p(0) = 1$ and having the representation

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t),$$

where μ is real-valued function of bounded variation for which

$$\int_0^{2\pi} d\mu(t) = 2 \quad \text{and} \quad \int_0^{2\pi} |d\mu(t)| \leq k.$$

The class R_k, defined by Pinchuk in [4], consists of those functions f which satisfy the condition

$$\int_{-\pi}^{\pi} \left| \text{Re} \left(\frac{re^{i\theta} f'(re^{i\theta})}{f(re^{i\theta})} \right) \right| d\theta \leq k \pi, 0 < r < 1, z = re^{i\theta}.$$

Geometrically, the condition (1.2) is the total variation of the angle between radius vector $f(re^{i\theta})$ makes with the positive real axis is bounded by $k \pi$. Thus R_k is the class of bounded radius rotation bounded by $k \pi$.
Denote by \mathcal{P}_q the family of functions p of the form $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$, analytic \mathbb{D} and satisfy the condition
\[
\left| p(z) - \frac{1}{1-q} \right| \leq \frac{1}{1-q},
\]
where $q \in (0, 1)$ is a fixed real number.

The following lemma is first introduced in [6], later given in [2]:

Lemma 1.1. p is an element of \mathcal{P}_q if and only if $p(z) \prec \frac{1+z}{1-qz}$. This result is sharp for the functions $p(z) = \frac{1+\phi(z)}{1-q\phi(z)}$, where ϕ is a Schwarz function.

Using the definitions \mathcal{P}_k and \mathcal{P}_q, Noor and Noor introduced the class $\mathcal{P}_k(q)$ in [5] as below:

Definition 1.1. A function p of the form $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$, analytic in \mathbb{D} with $p(0) = 1$ is said to be in the class $\mathcal{P}_k(q)$, $k \geq 2$, $q \in (0, 1)$ if and only if there exists $p_1^{(1)}, p_2^{(2)} \in \mathcal{P}_q$ such that
\[
p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1^{(1)}(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2^{(2)}(z).
\]

For $q \to 1^-$, $\mathcal{P}_k(q)$ reduces to \mathcal{P}_k, (see [4]); for $k = 2$, $\mathcal{P}_k(q)$ reduces to \mathcal{P}_q; for $k = 2$, $q \to 1^-$, $\mathcal{P}_k(q)$ reduces to \mathcal{P} which is the well known class of functions with positive real part.

In the present paper, we give a new subclass of starlike functions with bounded radius rotation associated with q– analogues denoted by $R_k(q)$.

Definition 1.2. Let f of the form (1.1) be an element of \mathcal{A}. If f satisfies the condition
\[
z \frac{f'(z)}{f(z)} = p(z), \quad p \in \mathcal{P}_k(q),
\]
with $k \geq 2$, $q \in (0, 1)$, then f is called starlike function with bounded radius rotation with q– analogues denoted by $R_k(q)$.

Motivated by Definition 1.2, we investigate growth theorem, radius of starlikeness and coefficient inequality for the class $R_k(q)$.

2. Main Results

We first give growth theorem for the class $R_k(q)$.

Theorem 2.1. If $f \in R_k(q)$, then
\[
r F(q, k, -r) \leq |f(z)| \leq r F(q, k, r),
\]
where
\[
F(q, k, r) = \left(\frac{1+qr}{1-qr}\right)^{\frac{k+1+q}{2}}.
\]

$k \geq 2$, $q \in (0, 1)$.

Proof. Let \(p \) be an element of \(\mathcal{P}_q \) and \(|z| = r < 1\), then by Lemma 1.1 we have

\[
\frac{1-r}{1+qr} \leq \text{Rep}(z) \leq |p(z)| \leq \frac{1+r}{1-qr}.
\]

After simple calculations in (2.6), we get

\[
\frac{1 - \frac{k}{2}(1+q)r + qr^2}{(1-qr)(1+qr)} \leq \text{Rep}(z) \leq \frac{1 + \frac{k}{2}(1+q)r + qr^2}{(1-qr)(1+qr)}.
\]

Inequality in (2.7) shows that the set of variability of \(p \in \mathcal{P}_k(q) \) is the closed disc

\[
\left|p(z) - \frac{1 + qr^2}{1 - q^2r^2}\right| \leq \frac{k}{2}(1+q)r
\]

On the other hand from definition of \(\mathcal{R}_k(q) \), we can write

\[
\left|zf'(z)f(z) - \frac{1 + qr^2}{1 - q^2r^2}\right| \leq \frac{k}{2}(1+q)r,
\]

which gives

\[
\frac{1 - \frac{k}{2}(1+q)r + qr^2}{r(1-qr)(1+qr)} \leq \text{Re} z f'(z)f(z) \leq \frac{1 + \frac{k}{2}(1+q)r + qr^2}{r(1-qr)(1+qr)}.
\]

Taking integration on both sides of (2.11), we obtain

\[
r F(q, k, -r) \leq |f(z)| \leq r F(q, k, r),
\]

where

\[
F(q, k, r) = \frac{(1+q)\left(\frac{q}{q - 1}\right)^{\frac{1+q}{q}}}{(1-qr)\left(\frac{q}{q + 1}\right)^{\frac{1+q}{q}}},
\]

This estimate is sharp because extremal function is

\[
f(z) = \frac{z(1+qz)^{\left(\frac{q}{q - 1}\right)^{\frac{1+q}{q}}}}{(1-qr)\left(\frac{q}{q + 1}\right)^{\frac{1+q}{q}}}.
\]

\[\square\]

Corollary 2.1. If we take \(q = 0 \) in (2.9), we obtain

\[
\left|\frac{zf'(z)}{f(z)} - 1\right| \leq \frac{kr}{2},
\]

which gives

\[
\frac{1}{r} - \frac{k}{2} \leq \frac{\partial}{\partial r} \log|f(z)| \leq \frac{1}{r} + \frac{k}{2}.
\]

Integrating both sides of (2.12), we obtain

\[
r F(k, -r) \leq |f(z)| \leq r F(k, r),
\]
where $F(k, r) = e^{kr}$. The inequality in (2.13) is sharp because extremal function is $f(z) = ze^{kr}$.

Theorem 2.2. For $k \geq 2$ and $q \in (0, 1)$, starlikeness of the class $R_k(q)$ is

$$r^*(f) = \frac{k(1 + q) - \sqrt{k^2(1 + q)^2 - 16q}}{4q}. \quad (2.14)$$

Proof. Let $f \in A$, then the real number

$$r^*(f) = \sup \left\{ r > 0 \mid \Re \left(z \frac{f'(z)}{f(z)} \right) > 0 \text{ for all } z \in \mathbb{D} \right\}$$

is called the starlikeness of the class A. Then the inequality in (2.10) gives the starlikeness of the class $R_k(q)$, that is

$$\Re \left(z \frac{f'(z)}{f(z)} \right) \geq 1 - \frac{k}{2} (1 + q)r + qr^2.$$

Hence for $r < r^*$ the right side of the preceding inequality is positive if

$$r^*(f) = \frac{k(1 + q) - \sqrt{k^2(1 + q)^2 - 16q}}{4q}.$$

\square

Remark 2.1. If $q \to 1^-$, then radius in (2.14) reduces to $r^*(f) = \frac{k - \sqrt{k^2 - 4}}{2}$. This is the radius of starlikeness of the class R_k which was obtained by Pinchuk [4].

We now prove coefficient inequality for the class $R_k(q)$. For our main theorem, we need the following two lemmas.

Lemma 2.2. [1] If p is an element of P_q, then $|p_n| \leq 1 + q$ for all $n \geq 1$. This result is sharp.

Lemma 2.3. Let $p(z) = 1 + p_1z + p_2z^2 + \ldots$ be an element of $P_k(q)$, then

$$|p_n| \leq \frac{k}{2} (1 + q)$$

for all $n \geq 1$, $k \geq 2$ and $q \in (0, 1).$ This result is sharp for the functions

$$p(z) = \left(\frac{k}{4} + \frac{1}{2} \right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2(z),$$

where $p_1^{(1)}, p_2^{(2)} \in P_q$.

Proof. Let $p_1^{(1)} = 1 + a_1z + a_2z^2 + \ldots$ and $p_2^{(2)} = 1 + b_1z + b_2z^2 + \ldots$. Since $p \in P_k(q)$, then we have

$$p(z) = \left(\frac{k}{4} + \frac{1}{2} \right) p_1^{(1)}(z) - \left(\frac{k}{4} - \frac{1}{2} \right) p_2^{(2)}(z)$$

$$= \left(\frac{k}{4} + \frac{1}{2} \right) (1 + a_1z + a_2z^2 + \ldots) - \left(\frac{k}{4} - \frac{1}{2} \right) (1 + b_1z + b_2z^2 + \ldots).$$

Then, for nth term, we have

$$p_n = \left(\frac{k}{4} + \frac{1}{2} \right) a_n - \left(\frac{k}{4} - \frac{1}{2} \right) b_n.$$
Taking into account Lemma 2.2, \(|a_n| \leq 1 + q\) and \(|b_n| \leq 1 + q\) for all \(n \geq 1\). Therefore

\[
|p_n| = \left| \left(\frac{k}{4} + \frac{1}{2} \right) a_n - \left(\frac{k}{4} - \frac{1}{2} \right) b_n \right|
\leq \left(\frac{k}{4} + \frac{1}{2} \right) |a_n| + \left(\frac{k}{4} - \frac{1}{2} \right) |b_n|
\leq \left(\frac{k}{4} + \frac{1}{2} \right) (1 + q) + \left(\frac{k}{4} - \frac{1}{2} \right) (1 + q).
\]

This shows that,

\[
|p_n| \leq \frac{k}{2} (1 + q)
\]

for all \(n \geq 1, k \geq 2\) and \(q \in (0, 1)\).

Theorem 2.3. If \(f \in \mathcal{R}_k(q)\), then

\[
|a_n| \leq \frac{1}{(n-1)!} \prod_{\nu=0}^{n-2} \left(\nu + \frac{k}{2} (1 + q) \right).
\]

This inequality is sharp for every \(n \geq 2, k \geq 2\) and \(q \in (0, 1)\).

Proof. In view of definition of the class \(\mathcal{R}_k(q)\) and subordination principle, we can write

\[
z f'(z) = p(z),
\]

where \(p \in \mathcal{P}_k(q)\) with \(p(0) = 1\). Since \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n\) and \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots\), then we have

\[
z f'(z) = f(z) p(z).
\]

Therefore,

\[
z + 2 a_2 z^2 + 3 a_3 z^3 + \ldots = z + (a_2 + p_1) z^2 + (a_3 + p_1 a_2 + p_2) z^3 + (a_4 + p_1 a_3 + p_2 a_2 + p_3) z^4 + \ldots
\]

Comparing the coefficients of \(z^n\) on both sides, we obtain

\[
n a_n = a_n + p_1 a_{n-1} + p_2 a_{n-2} + \ldots + p_{n-2} a_2 + p_{n-1}
\]

for all integer \(n \geq 2\). In view of Lemma 2.3, we get

\[
(n-1) |a_n| \leq \frac{k}{2} (1 + q) (|a_{n-1}| + \ldots + |a_2| + 1),
\]

or equivalently

\[
|a_n| \leq \frac{1}{(n-1)!} \frac{k}{2} (1 + q) \sum_{\nu=1}^{n-1} |a_{\nu}|, \quad |a_1| = 1.
\]

Induction shows that we have

\[
|a_n| \leq \frac{1}{(n-1)!} \prod_{\nu=0}^{n-2} \left(\nu + \frac{k}{2} (1 + q) \right).
\]

This estimate is sharp because extremal function is

\[
z f'(z) = \left(\frac{k}{4} + \frac{1}{2} \right) \frac{1 + z}{1 - qz} - \left(\frac{k}{4} - \frac{1}{2} \right) \frac{1 - z}{1 + qz}
\]

which gives

\[
f(z) = \frac{z(1 + q z)^{(\frac{k}{4} - \frac{1}{2}) (1 + q)}}{(1 - q z)^{(\frac{k}{4} + \frac{1}{2}) (1 + q)}}.
\]
Remark 2.2. Taking $q \to 1^-$ and choosing $k = 2$ in (2.15), we get $|a_n| \leq n$ for every $n \geq 2$. This result is the well known coefficient inequality for starlike functions.

REFERENCES