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Abel extensions of some classical Tauberian theorems

ERDAL GUL and MEHMET ALBAYRAK

ABSTRACT. The well-known classical Tauberian theorems given for Ay (the discrete Abel mean) by Armitage
and Maddox in [Armitage, H. D and Maddox, ]. I., Discrete Abel means, Analysis, 10 (1990), 177-186] is general-
ized. Similarly the ”"one-sided” Tauberian theorems of Landau and Schmidt for the Abel method are extended
by replacing lim As with Abel-lim Ac?, (s). Slowly oscillating of {s,} is a Tauberian condition of the Hardy-
Littlewood Tauberian theorem for Borel summability which is also given by replacing lim¢(Bs); = ¢, where tis
a continuous parameter, with lim(Bs)n = ¢, and further replacing it by Abel-lim(Bo?(s))n = ¢, where B is
the Borel matrix method.

1. INTRODUCTION

Let u = {u,} be a sequence in R (or C).
Definition 1.1. ([2], [3], [5] ) A series k%jouk of real (or complex) numbers is called Abel

o0
summable to / if the series kEos Rz is convergent for 0 < = < 1 and

lim (1 — x)Zskxk =/, where s, = Zuk.
k=0 k=0

z—1—

In this case, we write Abel — lim s,, = £.

Definition 1.2. ([1]) A series k%jOUk of real (or complex) numbers is called A, (the discrete

k

» is convergent for all » and

oo
Abel mean) convergent to ¢ if the series kEOska;

oo
%1’1_{1%7(1 — ) kZ:O spah =1,
where A = {)\,} is a given sequence such that 1 < Ay < A\; < ... < A, — o0 and the
sequence {z, } is defined by z, = 1 — % Clearly 0 < zp < 21 < ... < , — 1. In this
case, we write A, — lims,, = 4.

From definition 1.2, we say that the {s,,} is in the domain of the method A, if the sequence
(Axs)p = (1— xn)kozoloskxﬁ is convergent for all n.

Fori € Nand n € N*, define
n
1 i—1 . .
nHZJZk (s) if i>1
k=0

Sn if i=0.
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Abel’s well- known Limit Theorem says that the Abel summability method is regular
if lim sn =/ implies Abel — lim s,, = £. As we know the converse is false in general, e.g

1
Abel- Z Abel) but hm Z k£ 3 Also, it is obvious that Abel —lim s,, = ¢

1mp11es A y—lims, = ¢. Hence A, also defines a regular method. A, summability method
is regular; that is, if, Ay — lims,, = £ then A, — limo}(s) = ¢.
By [7], the series X252 ,u,, is Borel summable to ¢ provided that

00 k
lim e~¢ ﬂ

t—o0 k'
k=0

=/

Consider as in [4] the summability matrix B = (b,,;,) is given by

e~ "nk

=

By [11], it is known that {s,,} is slowly oscillating if for any given ¢ > 0, there exists
d =6(e) > 0and N = N(e) such that

|$m — $n| <ceif n>N(e) andn <m < (14 d)n,
and {s,} of real numbers is slowly decreasing if

. .m
liminf(s,, — s,) > 0 whenever n — oo, m >n with — — 1.
n

Thus, in particular, {s,,} is slowly oscillating when nAs,, is bounded and {s,,} is slowly
decreasing when nAs,, is bounded below.
Also, we say that {s,} is strongly slowly oscillating if

(Sm — $n) = 0 whenever n — oo, m >n with % =0(1);
and {s,} is strongly slowly decreasing if {s,,} is real and

liminf(s,, — s,) > 0 whenever n — co, m >n with m_ o(1).
n

Define t,, = Zkuk = ZkAsk and Asy = s — s,—1,5-1 = 0. We will prove that
k=1 k=1

tn = Zkuk =(n+1)s Zsk (1.1)

We prove this by using mathemat1cal induction. We show that our claims true forn =1:
t1 = 1u; =281 — (sg+81) =281 — 81 — Sg = S1 — S0 = Uq.
For n=2, to=wu;+2us =3s2— (so+ 81+ 82) =282 — 859 — §1 = 2ug + ug.
Assume that it is true for n = m;

m

Zkuk =(m+1)s Zsk (1.2)

and we prove that it is true for n = m + 1: we add both s1des (m + 1)upm41 of the equality
(1.2)

m

tm + (M4 Dy = Zkuk + (m4 Dupmyr = (m+ D) spm + (m 4+ Dugypr — Zsk
k=1 k=0
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m—+1

tmt1 = ka = (m+1)Sm+1 + Smt1 — Sm41 — Zsk
k=1 k=0
m—+1 m—+1

m+1 Z kuk m + 2 87n+1 Z Sk-

Thus proof is done. We obtam from (1.1)

Zp = nt—_’;l =8, —0oL(s) = %_HZkAsk =nAc}(s)

k=1
and

0'(2) = 0 (s) — i1 (5) = nAGEH(s).
Here, {z,} is known as the Kronecker identity. The classical control modulo of the oscil-
latory behaviour of a sequence {s, } is denoted by w?(s) = nAs,, . The general control
modulo of the oscillatory behaviour of nonnegative integer order m > 1 of a sequence
{sn} is defined inductively in [3] by w(s) = w™ ! (s) — ol (w™~1(s)). General control
modulo is developed by Canak in [2].

Throughout this paper, the symbols s, = o(1) and s, = O(1) mean that s,, — 0 as

n — oo and that {s,, } is bounded for large enough n, respectively.

Theorem 1.1. ([1]) Let {)\,} be a strictly increasing sequence of real numbers which tends to
infinity such that
1. )\71+1
i ——

n

=1

Ifthe Ay — lims,, = £ and {s,} is slowly decreasing, then lim s,, = ¢.
Lemma 1.1. ([1]) If {s,} is slowly decreasing, then { fn } is bounded below.
n

Now, we will prove that the hypothesis Ay —lim s,, = £ and slowly decreasing of {s,, } can
be replaced by Ay — lim o’ (s) = £ and slowly decreasing of {z,}. So, we generalize some
classical types of Tauberian theorems for given A. Moreover, we extend the “one-sided”
Tauberian theorems of Landau and Schmidt’s Tauberian theorems for the Abel method
by replacing lim As with Abel-lim Ao’ (s).

Before proving our statements, we recall more results that we will need in the sequel.

Theorem 1.2. ([9], [11])
(1) If Abel-lim s,, = £ and nAs,, > —c for a positive number ¢ then lim s,, = ¢.
(2) Let a sequence {s,,} of real numbers be slowly decreasing. Then
Abel — lim s,, = £ implies lim s, = £.
(3) If Borel — lim s,, = £ and As,, = o(1) then lim o (s) = L.

2. MAIN RESULTS

Lemma 2.2. If the {s,} is in the domain of method Ay for which X,, = n?, for some B > 1 and
nls,, > —cfor some positive c, then the transformed sequence nA(Axc' (s))y is also of one-sided,
that is nA(Axoi(s))n > c1 for some positive c;.

Proof. By the proof of Theorem 2.5 in [6], if nAs, > —c for a positive number ¢ then
2k

nAdct (s) > —c. In [1] Armitage and Maddox showed that if we let vi(x) = ? then

o0

(1-x) ZO’ )z :ZAUIQ(S)xk:Zyk(vk(x)—vkﬂ(ﬂﬁ))’ 0<z <1,
k=0 k=1

k=1
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where y;, = Z]AO’ . It follows that from nAc? (s) > —c, yp = ZJAJ > —ke.
Hence we see that since {0} (s)} verifies the one-sided Tauberian condltlon {yr} is

bounded below by —kM for some positive number M. If the Abel transform of {o? (s)} is
denoted by A(z) = (Aci(s)), then, for such a positive constant M, we have

nAA(z,) = n(A(:En) — A(zp—1 ) = n(Zyk / )dy)

27n<MZk/ k=l(] — )dy>:f( /Zkykl )
:_”<M/n(1_y)_ldy>2”< Mlog 25 ) > ~Mlos (255)”

— ~Mlog (255 + Gty ) = ~Mlog (€7 + D7)

“MlogCn[14(2)7]" =~ log(27)" +log(1+ 35"

—Mlﬁlog(unil)"ﬂog[[u(;)B]
a1 247)" (v ) e [+ (2)]] )

Hence, we obtain
liminf, nAAx(z,) >

liminf, —M | S log {(1—1— Loyl 4 L

| —

v
[E——

+

—

[}

F}
—
—

—_

+
—
~—

[E—
3
®
3
-
|
P

= —M limsup,, lﬁ log [(1 + )"+ ﬁ)] + log Hl + (i)ﬂrﬁrlﬁl

= —-M(B+loge) = —M§p.

Consequently, we see that the sequence (4,07 (s)), obeys the one-sided Tauberian condi-
tion. g

Lemma 2.3. If the {s,} is in the domain of the method Ay and is of slowly decreasing then the
transformed sequence (Axct(s))n is also of slowly decreasing.

Proof. Proof is similar to one of Lemma 2.2. O
Lemma 2.4. If {s,} is slowly decreasing then {o? (s)} for all i > 1 is slowly decreasing.

Proof. We claim that {o},(s)} for all i > 1 is slowly decreasing. We will prove this by

using mathematical induction. We show that our claims true for i = 1. Let {s,,} be slowly

tr .
decreasing. By Lemma 1.1, z,, = ZL = s, — 0. (s) is bounded below. Hence, 2, = nAc}(s)

is bounded below. Consequently, {o}.(s)} is slowly decreasing. Assume that it is true for
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i = t—1, and we will prove that it is true for ¢ = ¢. By assumption, since {c/,"!(s)} is slowly
decreasmg and applying Lemma 1.1, we obtain ¢!, 1(2)) = nAc?,(s) is bounded below.
Hence, there exits a positive constant M such that nAafl(s) > —M for all n. For n large

enough, n > N, ol (s)—ol(s) = Y Ach(s) > = D> H=-M(gg+om+.+3) >
k=n+1 k=n+1
_M(n+1+n+1+ +n+1)>_M(1_%)2_M(1_1):0, by 7 — 1. O

Lemma 2.5. If {s,,} is slowly oscillating then {o? (u)} for all i > 1 is slowly oscillating.

Proof. Proof is similar to one of Lemma 2.4. O
Lemma 2.6. If {s,} is slowly oscillating then {(Bo}.(s)),} is slowly oscillating.

Proof. By Lemma 2.5, slow oscillating of {s} implies both {o%(s)} for all i > 1 is slowly

oscillating and Ao (s) = o(1). It follows that } Z Aol (s )‘ < % for n large enough. Thus
k=n-+1
we have

|(Bo())m — (Boi(s))n

= |(Boi())nsr — (Boi ()

oo p oo
= Z Z b’r',jbn,p—jU;(s) - Z bn,kalic(s)‘
p=0 j=0 k=0

oo

. Z brs Z by 30 (5) — Z bu k7 (5)]

= Zbrjzbnkak+] an’iak ‘
=0

- zb,Jankam ~ ak(s))]

k=0

= ‘ ijo brj Do bk Zp:l Aaiifﬂ;(s)‘
SZ r,'z nkZ|A0k+p |+Zbrjzbnk:’ Z A0k+p ‘
: =

j=0 k=0 p=jo+1

o0 ) Jo 1 0o o0
Szbr,jzbn,kZW'i_Z T,J an,k;

7=0 k=0 p=1 7=0 k=0

oo oo 7 1 o) oo
SZbTJan)kZm‘i‘gar]ank

j=0 k=0 p=1 j=0 k=0

) oo 1 0o 1
<Dty b +5 = bt 5

3=0 k=0

= n g 1 n €
:kzz()b"’kn(k+l)+§_nz_: "R rl 2
_lib Le_ Ll e e =
B e R Rl B R

for n > ny large enough. O
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Theorem 2.3 extends the Theorem 1.1 which is given in [1].

Theorem 2.3. Let lim,,_, ’\;:1 = 1.If Ay — lim o' (s) = ¢ and {2, } is slowly decreasing then
lims, = /.

Proof. Since Ay method is regular, A)—lim o’ !(s) = £. Hence, we have A, —lim o/, () = 0.
By Lemma 2.4, as z, = nAc;} (s) is slowly decreasing, (c%,(2)) = nAcitl(s) foralli > 11is
slowly decreasing. Since {o?(2)} is A\ summability to 0, lim ¢? (2) = limnAcit(s) = 0.
limnAcitl(s) = 0 implies nAcit!(s) is bounded below, that is, nAcit1(s) > —c for some
positive c. It follows that {c%1(s)} is slowly decreasing. If 0! (z) = of(s) — o’1(s) is
slowly decreasing, then {o?(s)} is slowly decreasing. From A, — limo’,(s) = ¢, we have
limo? (s) = ¢. By the fact that every sequence (C, 1) limitable is Abel limitable, we have
Abel —limoi1(s) = €. Abel —lim o’ ! (s) = £ implies Ay —lim o’ ! (s) = £. If we continue

in that way, we obtain, Ay — lims,, = ¢. By Theorem 1.1, lim s,, = ¢. O

Theorem 2.3 generalises Theorem 1.1. For example, if we consider the case i = 1 then
the sequence {s, } which is the Taylor coefficients of the function f defined by f(t) =
sin(1—¢)"'on 0 < ¢ < 1is not A, convergent however, Cesaro of the sequence {s,,} is A,
convergent.

An immediate consequence of Theorem 2.3 is that the boundedness below of nAz,, is a
Tauberian condition for Aj.

A . - ..
Corollary 2.1. Let lim,,_, )\'—H =1.If Ay —limo}, (s) = £ and nAz, > —c for some positive
c, then lim s,, = £. "

Also, by considering {s,} as a complex sequence we deduce the following result.

)\n+1

Corollary 2.2. Let lim, = 1. If Ay — lim o (s) = £ and slowly oscillating of {z,} , then

lims, = /. "

The proof of Lemma 1.1 in [1] can be modified to show that if {z,} is strongly slowly
decreasing , then liminf ( tn"> > 0. In view of this, the proof of Theorem 2.3 can be

adapted to yield the following result:

An-&-l

Theorem 2.4. Let =O0(1).If A\ —lim o' (s) = £ and {z,} is the strongly slowly decreas-

n

ing, then lim s,, = £.
It follows that for a complex sequence {0 (s)} the strongly slowly oscillating of {z,} is a

Tauberian condition for Ay when % =0(1).

Theorem 2.4 is a generalization of the Theorem 7 in [1]. The strongly slowly decreasing
of {z,} does not imply the strongly slowly decreasing of {s, }. As an example, if we take
Sn = Dy i% T e E 2 é, we see that z, = >0, i% is slowly decreasing but
clearly, {s,} is not slowly decreasing. ’

Next theorem extends the classical Tauberian theorems of Hardy and Littlewood in [7]
and [10] respectively.

An . ;
Theorem 2.5. Let lim,, oo TH = land \,, = nP, for some B > 1. If Abel-lim(Axo? (s))x = ¢

n
and nAs, > —c, then lim s,, = £.
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Proof. By the proof of Theorem 2.5 of in [6], nAs,, > —c for a positive number ¢ implies
nAdc? (s) > —c. Hence, by Lemma 2.2, we see that (4,07, (s))x obeys the one-sided Taube-
rian condition. From Abel-lim(A4,0%(s))r = ¢, we have lim A)o! (s) = ¢, by above (1)
in Theorem 1.2. Now by Theorem 1.1 implies that o/ (s) is Abel summable to ¢. Since
nAdct (s) > —c, lim ! (s) = £. By the fact that every sequence (C, 1) limitable is Abel lim-
itable, we have Abel — limoi~1(s) = £. Since Abel — lim ! ~1(s) = £ and nAc’1(s) > —c,
we obtain that lim o%~!(s) = ¢. If we continue in that way, we obtain, Abel — lims,, = /.

By (1) in Theorem 1.2, lim s,, = ¢. O

Remark 2.1. The following result, which is analogous to Theorem 2.5, may be proved for
the slow decrease condition by using the Tauberian theorems results provided in [11] and
Lemma 2.4. This then extends the classical Tauberian theorem of Schmidt [11].

Theorem 2.6. Let lim,,_, % = 1. If Abel-lim(Axc’ (s))x = £ and the {s,} is slowly de-

n

creasing then lim s, = £.

Final theorem is a Abel extension of Hardy and Littlewood’s Tauberian theorem in [8] for
Borel summability.

Theorem 2.7. If Abel-lim(Bo? (s))x = £ and {s,,} is slowly oscillating then lim s,, = /.

Proof. By Lemma 2.3, slowly oscillating of {s,, } implies both slowly oscillating of {o/,(s)}
and Ac? (s) = o(1). By Lemma 2.6, we conclude that (Bc? (s)); is slowly oscillating. This
allows us to apply (2) in Theorem 1.2 that lim(Bo?,(s)), = ¢. Now (3) in Theorem 1.2 gives
lim o1 (s) = ¢. By the fact that every sequence (C, 1) limitable is Abel limitable, we have
Abel — lim ol (s) = £. Since Abel — limo?(s) = £ and {of(s)} is slowly decreasing, we
obtain lim ¢, (s) = £. If we continue in that way, we obtain Abel — lim s,, = {. Again by (2)
in Theorem 1.2, we get lim s, = £. O

Acknowledgements. The authors want to thank the anonymous referee for the valuable
comments.

REFERENCES

[1] Armitage, H. D and Maddox, J. L., Discrete Abel means, Analysis, 10 (1990), 177-186
[2] Canak, 1., An extended Tauberian theorem for the (C, 1) summability method, Appl. Math. Lett., 21 (2008), No. 1,
74-80
[3] Dik, M., Tauberian theorems for sequences with moderately oscillatory control moduli, Mathematica Moravica, 5
(2001), 5794
[4] Fridy, A. ] and Khan, M. K., Statistical extension of some classical Tauberian theorems, Proc. Amer. Math. Soc.,
18 (2000), 23472355
[5] Giil, E. and Albayrak, M., On Abel convergent series of functions.,Journal of Advances in Mathematics. 11
(2016), No. 9, 5639-5644
[6] Giil, E. and Albayrak, M., Tauberian Theorems for Statistical Convergence. Tamkang Journal of Mathematics 11
(2017), No. 4, 321-330
[7] Hardy, H. G. and Littlewood, J. E., Tauberian theorems concerning power series and Dirichlet’s series whose
coecients are positive, Proc. London Math. Soc., 13 (1914), No. 2, 174-191
[8] Hardy, H. G and Littlewood, J. E., Theorems concerning the summability of series by Borel’s exponential method,
Rend. Circ. Mat. Palermo., 41 (1910), No. 2, 36-53
[9] Landau, E., Uber die Bedeutung einiger neuen Grenzwertsitze der Herren Hardy und Axer, Prace Mat.-Fiz., 21
(1910), 97-177
[10] Littlewood, J. E., The converse of Abel’s theorems on power series, P. Lond. Math. Soc., 9 (1910), No. 2, 434-448
[11] Schmidt, R., Uber divergente Folgen und lineare Mittelbildungen, Math. Z., 22 (1925), 89-152



112 Erdal Giil and Mehmet Albayrak

DEPARTMENT OF MATHEMATICS

YILDIZ TECHNICAL UNIVERSITY

ESENLER, 34210, ISTANBUL, TURKEY

Email address: gul@yildiz.edu.tr

Email address: mehmetalbayrakl2@gmail.com



