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Existence of countably many symmetric positive solutions
for system of even order time scale boundary value
problems in Banach spaces

K. R. PRASAD and MD. KHUDDUSH

ABSTRACT. This paper establishes the existence and uniqueness of the solutions to the system of even order
differential equations on time scales,

(−1)nu(∆∇)n

1 (t) = ω1(t)f1

(
u1(t), u2(t)

)
, t ∈ [0, T ]T, n ∈ Z

+
,

(−1)nu(∆∇)m

2 (t) = ω2(t)f2

(
u1(t), u2(t)

)
, t ∈ [0, T ]T, m ∈ Z

+
,

satisfying two-point Sturm—Liouville integral boundary conditions

αi+1u
(∆∇)i

1 (0)− βi+1u
(∆∇)i∆
1 (0) =

∫ T

0
ai+1(s)u

(∆∇)i

1 (s)∇s, 0 ≤ i ≤ n− 1,

αi+1u
(∆∇)i

1 (T ) + βi+1u
(∆∇)i∆
1 (T ) =

∫ T

0
ai+1(s)u

(∆∇)i

1 (s)∇s, 0 ≤ i ≤ n− 1,

γj+1u
(∆∇)j

2 (0)− δj+1u
(∆∇)j∆
2 (0) =

∫ T

0
bj+1(s)u

(∆∇)j

2 (s)∇s, 0 ≤ j ≤ m− 1,

γj+1u
(∆∇)j

2 (T ) + δj+1u
(∆∇)j∆
2 (T ) =

∫ T

0
bj+1(s)u

(∆∇)j

2 (s)∇s, 0 ≤ j ≤ m− 1,

by utilizing Schauder fixed point theorem. We also establish the existence of countably many symmetric positive
solutions for the above problem by applying Hölder’s inequality and Krasnoselskii’s fixed point theorem.

1. INTRODUCTION

Recently, researchers are shown much interest on the existence of positive solutions to
boundary value problems for dynamic equations on time scales [3, 5, 6, 7, 11, 12, 15]. This
has been mainly due to unification of the theory of differential and difference equations
in time scale dynamics. The theory is widely applied to various situations, like, in the
study of insect population models, neural networks, heat transfer, and epidemic models
[2, 7]. For details on time scale calculus we refer to the books by Bohner and Peterson
[7, 8], Lakshmikantham et al.[23] and the papers [1, 4, 20].

The boundary value problems with integral boundary conditions occur in the study of
nonlocal phenomena in different areas of applied mathematics, physics and engineering,
in particular, in heat conduction, chemical engineering, underground waterflow, thermo-
elasticity, plasma physics [3, 11, 12, 21, 22, 25, 32, 35]. Recently, much attention is paid
to establish the existence of positive solutions to boundary value problems with integral
boundary conditions on time scales [10, 13, 14, 19, 24, 26, 31, 33] and for the existence
of symmetric positive solutions for higher order boundary value problems with different
types of boundary conditions [9, 17, 18, 28, 29].
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In [26], Oguz and Topal studied following system of boundary value problems on time
scales,

(−1)nu
(∆∇)n

k (t) = fk
(
t, u1(t), u2(t)

)
, t ∈ [a, b]T, k = 1, 2,

αu
(∆∇)i

k (a)− βu(∆∇)i∆
k (a) = 0, 0 ≤ i ≤ n− 1, k = 1, 2,

αu
(∆∇)i

k (b) + βu
(∆∇)i∆
k (b) = 0, 0 ≤ i ≤ n− 1, k = 1, 2,

under the conditions that fk (k = 1, 2) are non-increasing with respect to u1, u2 and es-
tablished a necessary condition for the existence and uniqueness of symmetric positive
solutions by the method of monotone iterative technique.

Motivated by the work mentioned above, we consider the system of even order differ-
ential equations on time scales,{

(−1)nu
(∆∇)n

1 (t) = ω1(t)f1

(
u1(t), u2(t)

)
, t ∈ [0, T ]T,

(−1)mu
(∆∇)m

2 (t) = ω2(t)f2

(
u1(t), u2(t)

)
, t ∈ [0, T ]T,

(1.1)

satisfying the Sturm-Liouville integral boundary conditions

αi+1u
(∆∇)i

1 (0)− βi+1u
(∆∇)i∆
1 (0) =

∫ T

0

ai+1(s)u
(∆∇)i

1 (s)∇s, 0 ≤ i ≤ n− 1,

αi+1u
(∆∇)i

1 (T ) + βi+1u
(∆∇)i∆
1 (T ) =

∫ T

0

ai+1(s)u
(∆∇)i

1 (s)∇s, 0 ≤ i ≤ n− 1,

γj+1u
(∆∇)j

2 (0)− δj+1u
(∆∇)j∆
2 (0) =

∫ T

0

bj+1(s)u
(∆∇)j

2 (s)∇s, 0 ≤ j ≤ m− 1,

γj+1u
(∆∇)j

2 (T ) + δj+1u
(∆∇)j∆
2 (T ) =

∫ T

0

bj+1(s)u
(∆∇)j

2 (s)∇s, 0 ≤ j ≤ m− 1,

(1.2)

where n,m ∈ Z+(positive integers), T is a symmetric time scale, T ∈ T, fk ∈ C
(
R×R,R

)
,

ωk(t) ∈ Lp∇[0, 1]T(k = 1, 2) for some p ≥ 1 and establish the existence and uniqueness of
the solutions for the above system by applying Schauder fixed point theorem and the exis-
tence of countably many symmetric positive solutions by allowing ωk(t)(k = 1, 2) to have
countably many singularities in (0, T2 )T using the Hölder’s inequality and Krasnoselskii’s
cone fixed point theorem in a Banach Space.

The rest of the paper is organized in the following fashion. In Section 2, we provide
some definitions and lemmas which are useful to study the behavior of solution of the
boundary value problem (1.1)-(1.2). In Section 3, we construct the Green’s function for
the homogeneous problem corresponding to (1.1)-(1.2), estimate bounds for the Green’s
function, and some lemmas which are needed in establishing our main results are pro-
vided. In Section 4, we obtain existence and uniqueness of a solution for (1.1)-(1.2), due
to Schauder fixed point theorem. In Section 5, we establish a criteria for the existence of
countably many symmetric positive solutions for the boundary value problem (1.1)-(1.2)
by applying Hölder’s inequality and Krasnoselskii’s cone fixed point theorem in a Banach
space. Finally, we provide an example of a family of functions ω(t) that satisfy required
conditions.

2. PRELIMINARIES

In this section, we provide some definitions and lemmas which are useful for our later
discussions; for details, see [3, 5, 6, 7, 16, 30, 34].
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Definition 2.1. A time scale T is a nonempty closed subset of the real numbers R. T has
the topology that it inherits from the real numbers with the standard topology. It follows
that the jump operators σ, ρ : T→ T,

σ(t) = inf{r ∈ T : r > t}, ρ(t) = sup{r ∈ T : r < t}

(supplemented by inf ∅ := supT and sup ∅ := inf T) are well defined. The point t ∈ T is
left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) >
t, respectively. If T has right-scattered minimum m, define Tk = T − {m}; otherwise set
Tk = T. If T has left-scattered maximum M, define Tk = T− {m}; otherwise let Tk = T.

Definition 2.2. An interval time scale T = [a, b]T is said to be symmetric if for any given
t ∈ T, we have b + a − t ∈ T and a function u : T → R is said to be symmetric on T if for
any given t ∈ T, u(t) = u(b+ a− t).

By an interval time scale, we mean the intersection of a real interval with a given time
scale. i.e., [a, b]T = [a, b] ∩ T. Similarly other intervals can be defined.

Definition 2.3. A function u : T → R is said to be concave if for any t1, t2 ∈ T and
c ∈ [0, 1], u(ct1 + (1− c)t2) ≥ cu(t1) + (1− c)u(t2).

Definition 2.4. Let µ∆ and µ∇ be the Lebesgue ∆−measure and the Lebesgue∇−measure
on T, respectively. If A ⊂ T satisfies µ∆(A) = µ∇(A), then we call A is measurable on T,
denoted µ(A) and this value is called the Lebesgue measure of A. Let P denote a propo-
sition with respect to t ∈ T.

(i) If there exists E1 ⊂ A with µ∆(E1) = 0 such that P holds on A\E1, then P is said
to hold ∆–a.e. on A.

(ii) If there exists E2 ⊂ A with µ∇(E2) = 0 such that P holds on A\E2, then P is said
to hold ∇–a.e. on A.

Definition 2.5. Let E ⊂ T be a ∇–measurable set and p ∈ R̄ ≡ R ∪ {−∞,+∞} be such
that p ≥ 1 and let f : E → R̄ be ∇–measurable function. We say that f belongs to Lp∇(E)
provided that either ∫

E

|f |p(s)∇s <∞ if p ∈ R,

or there exists a constant M ∈ R such that

|f | ≤M, ∇− a.e. on E if p = +∞.

Lemma 2.1. Let E ⊂ T be a ∇–measurable set. If f : T→ R is a ∇–integrable on E, then∫
E

f(s)∇s =

∫
E

f(s)ds+
∑
i∈IE

(
ti − ρ(ti)

)
f(ti),

where IE := {i ∈ I : ti ∈ E} and {ti}i∈I , I ⊂ N, is the set of all left-scattered points of T.

For convenience, we introduce the following notation throughout the paper: For τ ∈
(0, T2 )T,

ξi :=

∫ T

0

ai(r)∇r, ζi :=
αi

αi − ξi
, ξ′i :=

∫ T

0

bi(r)∇r, ζ ′i :=
γi

γi − ξ′i
,

gi :=

∫ T

0

Gi(r, r)∇r, g′i :=

∫ T

0

Gi(r, r)∇r, gi(τ) :=

∫ T−τ

τ

Gi(r, r)∇r,

g∗i (τ) :=

∫ T−τ

τ

Gi(r, r)∇r,
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where

Gi(t, s) :=
1

αidi

{
(βi + αit)(βi + αi(T − s)), t ≤ s,
(βi + αis)(βi + αi(T − t)), s ≤ t,

in which di = αiT + 2βi,

Gi(t, s) :=
1

γid′i

{
(δi + γit)(δi + γi(T − s)), t ≤ s,
(δi + γis)(δi + γi(T − t)), s ≤ t,

in which d′i = γiT + 2δi.

We make the following assumptions: J := [0, T ]T and for 1 ≤ i ≤ 2 :

(H1) there exists a sequence {tk}∞k=1 (k ∈ N), t1 <
T
2 , limk→∞ tk = t∗ ≥ 0 and

limt→tk ωi(t) = +∞ for k = 1, 2, 3, · · · ,
(H2) ωi ∈ Lp∇(J) for some 1 ≤ p ≤ +∞ and there exists ε > 0 such that ωi(t) ≥ ε for all

[t∗, 1− t∗]T,
(H3) αi, βi, γj , δj ≥ 0 such that di := αiT + 2βi > 0, d′j := γjT + 2δj > 0 for each

1 ≤ i ≤ n and 1 ≤ j ≤ m,
(H4) aj , bj ∈ L1

∇(J) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m are nonnegative and αi > ξi, γj > ξ′j
for all 1 ≤ i ≤ n, 1 ≤ j ≤ m on J.

3. GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the homogeneous problem corre-
sponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

Lemma 3.2. Let (H3), (H4) hold. Then for any g1(t) ∈ C(J), the boundary value problem,

−u∆∇
1 (t) = g1(t), t ∈ J, (3.3)

αiu1(0)− βiu∆
1 (0) =

∫ T

0

ai(s)u1(s)∇s, 1 ≤ i ≤ n, (3.4)

αiu1(T ) + βiu
∆
1 (T ) =

∫ T

0

ai(s)u1(s)∇s, 1 ≤ i ≤ n, (3.5)

has a unique solution

u1(t) =

∫ T

0

Hi(t, s)g1(s)∇s, for 1 ≤ i ≤ n, (3.6)

where

Hi(t, s) = Gi(t, s) +
1

αi − ξi

∫ T

0

Gi(r, s)ai(r)∇r, (3.7)

for 1 ≤ i ≤ n.

Proof. Suppose u1 is a solution of (3.3), then, we have

u1(t) = −
∫ t

0

∫ s

0

g1(r)∇r∆s+At+B

= −
∫ t

0

(t− s)g1(s)∇s+At+B

where A = limt→0+ u∆(t) and B = u(0). Using the boundary conditions (3.4), (3.5), we
can determined A and B as

A =
1

di

∫ T

0

[αi(T − s)− βi]g1(s)∇s

B =
1

di

[ ∫ T

0

βi
αi

[(αi(T − s) + βi)g1(s)∇s+

∫ T

0

1

αi
[αiT + 2βi]ai(s)u1(s)∇s

]
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Thus, we have

u1(t) =
1

αidi

[ ∫ t

0

(βi + αis)(βi + αi(T − t))g1(s)∇s

+

∫ T

t

(βi + αit)(βi + αi(T − s))g1(s)∇s
]

+
1

αi

∫ T

0

ai(s)u1(s)∇s

from which, we obtain

u1(t) =

∫ T

0

Gi(t, s)g1(s)∇s+
1

αi

∫ T

0

ai(s)u1(s)∇s. (3.8)

After certain computations we can determined,∫ T

0

ai(s)u(s)∇s =
αi

αi − ξi

∫ T

0

[ ∫ T

0

Gi(s, r)ai(s)∇s
]
g1(r)∇r. (3.9)

Hence

u(t) =

∫ T

0

Gi(t, s)g1(s)∇s+
1

αi − ξi

∫ T

0

[ ∫ T

0

Gi(s, r)ai(s)∇s
]
g1(r)∇r

=

∫ T

0

[
Gi(t, s) +

1

αi − ξi

∫ T

0

Gi(s, r)ai(s)∇s
]
g1(r)∇r

=

∫ T

0

Hi(t, s)g1(s)∇s,

where Hi(t, s) is defined in (3.7). �

Lemma 3.3. Assume that (H3), (H4) hold and for τ ∈ (0, T2 )T define ηi(τ) = αiτ+βi
αiT+βi

. Then
Gi(t, s) satisfies the following properties for 1 ≤ i ≤ n,

(i) 0 < Gi(t, s) ≤ Gi(s, s) for all t, s ∈ J,
(ii) ηi(τ)Gi(s, s) ≤ Gi(t, s) for all t ∈ [τ, T − τ ]T and s ∈ J,

(iii) Gi(1− t, 1− s) = Gi(t, s) for all t, s ∈ J,
(iv) For each s ∈ J, the functions Gi(., s) are concave in the first argument on J.

Lemma 3.4. Assume that (H3), (H4) hold and for τ ∈ (0, T2 )T. Then Hi(t, s) have the follow-
ing properties for 1 ≤ i ≤ n,

(i) 0 < Hi(t, s) ≤ ζiGi(s, s) for all t, s ∈ J,
(ii) ζiηi(τ)Gi(s, s) ≤ Hi(t, s) for all t ∈ [τ, T − τ ]T and s ∈ J,

(iii) Hi(1− t, 1− s) = Hi(t, s) for all t, s ∈ J,
(iv) For each s ∈ J, the functions Hi(., s) are concave in the first argument on J.

Lemma 3.5. Assume that (H3), (H4) hold and Hi(t, s) is given in (3.7) for 1 ≤ i ≤ n,. Let
K1(t, s) = H1(t, s) and define recursively

Ki(t, s) =

∫ T

0

Ki−1(t, r)Hi(r, s)∇r, for 2 ≤ i ≤ n. (3.10)

Then Kn(t, s) is the Green’s function for the homogeneous boundary value problem

(−1)nu
(∆∇)n

1 (t) = 0, t ∈ J,

αi+1u
(∆∇)i

1 (0)− βi+1u
(∆∇)i∆
1 (0) =

∫ T

0

ai+1(s)u
(∆∇)i

1 (s)∇s, 0 ≤ i ≤ n− 1,

αi+1u
(∆∇)i

1 (T ) + βi+1u
(∆∇)i∆
1 (T ) =

∫ T

0

ai+1(s)u
(∆∇)i

1 (s)∇s, 0 ≤ i ≤ n− 1.



168 K. R. Prsad and Md. Khuddush

Lemma 3.6. Assume that (H3), (H4) hold and for τ ∈ (0, T2 )T. Define

g∗n =

n∏
i=1

gi, ζ
∗
n =

n∏
i=1

ζi, Ln(τ) =

n∏
i=1

ζiηi(η), gn(τ) =

n−1∏
i=1

gi(τ),

then the Green’s function Kn(t, s) satisfies the following inequalities:

(i) 0 < Kn(t, s) ≤ ζ∗ng∗nGn(s, s), for all t, s ∈ J and
(ii) Kn(t, s) ≥ Ln(τ)gn(τ)Gn(s, s), for all t ∈ [τ, T − τ ]T and s ∈ J,

Proof. It is clear that Green’s function Hn(t, s) ≥ 0, for all t, s ∈ J. Now we prove the
inequality by induction on n and denote the statement by p(n).
From (3.7) we have K1(t, s) = H1(t, s) ≤ ζ1G1(s, s) and

K2(t, s) =

∫ T

0

K1(t, r)H2(r, s)∇r

≤
∫ T

0

ζ1G1(r, r)ζ2G2(s, s)∇r

≤
2∏
i=1

ζi

1∏
i=1

giG2(s, s)

Now for t ∈ [τ, 1− τ ]T, we have K1(t, s) = H1(t, s) ≥ ζ1η1(τ)G1(s, s), and

K2(t, s) =

∫ T

0

K1(t, r)H2(r, s)∇r

≥ ζ1η1(τ)

∫ T−τ

τ

G1(r, r)H2(r, s)∇r

≥ ζ1η1(τ)

∫ T−τ

τ

G1(r, r)ζ2η2(τ)G2(s, s)∇r

≥
2∏
i=1

ζiηi(τ)

1∏
i=1

gi(τ)G2(s, s).

Hence, p(1), p(2) are true. Suppose p(k) is true, then from (3.11), we have

Kk+1(t, s) =

∫ T

0

Kk(t, r)Hk+1(r, s)∇r

≤
k∏
i=1

ζi

k−1∏
i=1

gi

∫ T

0

Gk(r, r)Hk+1(r, s)∇r

≤
k∏
i=1

ζi

k−1∏
i=1

gi

∫ T

0

Gk(r, r)ζk+1Gk+1(s, s)∇r

≤
k+1∏
i=1

ζi

k∏
i=1

giGk+1(s, s)
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and for t ∈ [τ, 1− τ ]T,

Kk+1(t, s) =

∫ T

0

Kk(t, r)Hk+1(r, s)∇r

≥
k∏
i=1

ζiηi(τ)

k−1∏
i=1

gi(τ)

∫ T

0

Gk(r, r)Gk+1(r, s)∇r

≥
k∏
i=1

ζiηi(τ)

k−1∏
i=1

gi(τ)

∫ T−τ

τ

Gk(r, r)Gk+1(r, s)∇r

≥
k+1∏
i=1

ζiηi(τ)

k∏
i=1

gi(τ)Gk+1(s, s).

So, p(k + 1) holds. This completes the proof. �

Lemma 3.7. The Green’s function Ki(t, s) for 1 ≤ i ≤ n, satisfies the following conditions

Ki(t, s) = Ki(1− t, 1− s)∀ t, s ∈ J (3.11)

and for each s ∈ J, Ki(·, s) (1 ≤ i ≤ n) is concave in the first argument on J.

Proof. The proof is by induction. For i = 1, the equation (3.11) is clear and assume that the
equation (3.11) is true for fixed i ≥ 2. Then from (3.10) and using transformation r1 = 1−r,
we have

Ki+1(t, s) =

∫ T

0

Ki(t, r)Hj+1(r, s)∇r

=

∫ T

0

Ki(1− t, 1− r)Hi+1(1− r, 1− s)∇r

=

∫ T

0

Ki(1− t, r1)Hi+1(r1, 1− s)∇r1

= Ki+1(1− t, 1− s).
Now, to prove concavity of Kn(., s), let c ∈ [0, 1] and t, r, s ∈ J with t ≤ r and using
Lemma 3.3. For n = 1,

K1(ct+ (1− c)r, s) = H1(ct+ (1− c)r, s)
≥ cH1(t, s) + (1− c)H1(r, s)

≥ cK1(t, s) + (1− c)K1(r, s).

Next, we assume that Ki(ct+ (1− c)r, s) ≥ cKi(t, s) + (1− c)Ki(r, s) for fixed i ≥ 2.
Then

Ki+1(ct+ (1− c)r, s) =

∫ T

0

Ki(ct+ (1− c)r, s1)Hi+1(s1, s)∇s

≥
∫ T

0

[
cKi(t, s1) + (1− c)Ki(r, s1)

]
Hi+1(s1, s)∇s

≥ c
∫ T

0

Ki(t, s1)Hi+1(s1, s)∇s

+ (1− c)
∫ T

0

Ki(r, s1)Gi+1(s1, s)∇s

≥ cKi+1(t, s) + (1− c)Ki+1(r, s).

This completes the proof. �
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We can also formulate similar results as Lemmas 3.2–3.7 above follows:

Lemma 3.8. Let (H3), (H4) hold. Then for any g2(t) ∈ C(J), the boundary value problem,

−u∆∇
2 (t) = g2(t), t ∈ J, (3.12)

γju2(0)− δju∆
2 (0) =

∫ T

0

bj(s)u2(s)∇s, 1 ≤ j ≤ m, (3.13)

γju2(T ) + δju
∆
2 (T ) =

∫ T

0

bj(s)u2(s)∇s, 1 ≤ j ≤ m, (3.14)

has a unique solution

u2(t) =

∫ T

0

Hj(t, s)g2(s)∇s, for 1 ≤ j ≤ m, (3.15)

where

Hj(t, s) = Gj(t, s) +
1

γj − ξ′j

∫ T

0

Gj(r, s)bj(r)∇r, (3.16)

for 1 ≤ j ≤ m,

Lemma 3.9. Assume that (H3), (H4) hold and for τ ∈ (0, T2 )T define η∗j (τ) =
γjτ+δj
γjT+δj

. Then
Gj(t, s) for 1 ≤ j ≤ m, satisfies the following properties:

(i) 0 < Gj(t, s) ≤ Gj(s, s) for all t, s ∈ J,
(ii) η∗j (τ)Gj(s, s) ≤ Gj(t, s) for all t ∈ [τ, T − τ ]T and s ∈ J,

(iii) Gj(1− t, 1− s) = Gj(t, s) for all t, s ∈ J.
(iv) For each s ∈ J, the functions Gj(., s) are concave in the first argument on J.

Lemma 3.10. Assume that (H3), (H4) holds and for τ ∈ (0, T2 )T. Then Hj(t, s) for 1 ≤ j ≤ m,
have the following properties:

(i) 0 < Hj(t, s) ≤ ζ ′jGj(s, s) for all t, s ∈ J,
(ii) ζ ′jη

∗
j (τ)Gj(s, s) ≤ Hj(t, s) for all t ∈ [τ, T − τ ]T and s ∈ J

(iii) For each s ∈ J, the functionsHj(., s) are concave in the first argument on J.

Lemma 3.11. Assume that (H3), (H4) hold and Hj(t, s) for 1 ≤ j ≤ m, is given in (3.16). Let
K1(t, s) = H1(t, s) and recursively define

Kj(t, s) =

∫ T

0

Kj−1(t, r)Hj(r, s)∇r, for 2 ≤ j ≤ m. (3.17)

Then Km(t, s) is the Green’s function for the homogeneous boundary value problem

(−1)nu
(∆∇)m

2 (t) = 0, t ∈ J,

γj+1u
(∆∇)j

2 (0)− δj+1u
(∆∇)j∆
2 (0) =

∫ T

0

bj+1(s)u
(∆∇)j

2 (s)∇s, 0 ≤ j ≤ m− 1,

γj+1u
(∆∇)j

2 (T ) + δj+1u
(∆∇)j∆
2 (T ) =

∫ T

0

bj+1(s)u
(∆∇)j

2 (s)∇s, 0 ≤ j ≤ m− 1.

Lemma 3.12. Assume that (H3), (H4) hold and for τ ∈ (0, T2 )T. Define

g∗m =

m∏
j=1

g′j , ζ
∗
m =

m∏
j=1

ζ ′j , Lm(τ) =

m∏
j=1

ζ ′jη
∗
j (τ), gm(τ) =

m−1∏
j=1

g∗j (τ),

then the Green’s function Kn(t, s) satisfies the following inequalities:
(i) 0 < Km(t, s) ≤ ζ∗mg∗mGm(s, s), for all t, s ∈ J and
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(ii) Km(t, s) ≥ Lm(τ)gm(τ)Gm(s, s), for all t ∈ [τ, T − τ ]T and s ∈ J,

Lemma 3.13. The Green’s function Kj(t, s) for 1 ≤ j ≤ m, satisfies the following conditions
Kj(t, s) = Kj(1− t, 1− s)∀ t, s ∈ J (3.18)

and for each s ∈ J, Kj(·, s) (1 ≤ j ≤ m) is concave in the first argument on J.

4. EXISTENCE AND UNIQUENESS

In this section, we establish the existence and local uniqueness of a solution to the
system (1.1)-(1.2). Consider the Banach space E = C(J) with supremum norm ‖ · ‖ and
the Banach space X = E × E with the norm ‖(u1, u2)‖X = ‖u1‖+ ‖u2‖.

For k = 1, 2, we consider three possible cases for ωk ∈ Lp∇(J) : p > 1, p = 1, p = ∞.
When p > 1 we have the following theorem.

Theorem 4.1. Assume that the functions fi(u1, u2) are continuous with respect to (u1, u2) ∈
R×R for i = 1, 2. If M satisfies Λ ≤ M

ε , where

ε = max
{

2‖Gn‖Lq∇‖ω1‖Lp∇ , 2‖Gm‖Lq∇‖ω2‖Lp∇
}

and Λ > 0 satisfies
Λ ≥ max

‖(u1,u2)‖≤M

{
|f1(u1, u2)|, |f2(u1, u2)|

}
,

then the system (1.1)-(1.2) has a solution.

Proof. Let P = {(u1, u2) ∈ X : ‖(u1, u2)‖ ≤ M}. Then P is a cone in X . The cone P is
closed, bounded and convex subset of X and hence the Schauder fixed point theorem is
applicable. Define T : P → X by

T (u1, u2)(t) =
(
Tn(u1, u2)(t), Tm(u1, u2)(t)

)
where

Tn(u1, u2)(t) =

∫ T

0

Kn(t, s)ω1(s)f1(u1(s), u2(s))∇s

and

Tm(u1, u2)(t) =

∫ T

0

Km(t, s)ω2(s)f2(u1(s), u2(s))∇s

for t ∈ J. Clearly the solution of the system (1.1)− (1.2) is the fixed point of operator T . It
can be shown that the T : P → X is continuous. We claim that T : P → P. If (u1, u2) ∈ X,
then

‖T (u1, u2)‖X = ‖Tn(u1, u2)‖+ ‖Tm(u1, u2)‖

= max
t∈J

∣∣∣ ∫ T

0

Gn(t, s)ω1(s)f1(u1, u2)∇s
∣∣∣

+ max
t∈J

∣∣∣ ∫ T

0

Gm(t, s)ω2(s)f2(u1, u2)∇s
∣∣∣

≤
∫ T

0

max
t∈J
|Gn(t, s)||ω1(s)||f1(u1, u2)|∇s

+

∫ T

0

max
t∈J
|Gm(t, s)||ω2(s)||f2(u1, u2)|∇s

≤ ‖Gn‖Lq∇‖ω1‖Lp∇Λ + ‖Gm‖Lq∇‖ω2‖Lp∇Λ

≤ εΛ.

Thus, we have ‖T (u1, u2)‖X ≤M, where M satisfies Λ ≤ M
ε . �
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The following two Corollaries deal with the cases when p =∞ and p = 1, respectively.

Corollary 4.1. Assume that the functions fi(u1, u2) are continuous with respect to (u1, u2) ∈
R×R for i = 1, 2. If M satisfies Λ ≤ M

ε , where

ε = max
{

2‖Gn‖L1
∇
‖ω1‖L∞∇ , 2‖Gm‖L1

∇
‖ω2‖L∞∇

}
and Λ > 0 satisfies

Λ ≥ max
‖(u1,u2)‖≤M

{
|f1(u1, u2)|, |f2(u1, u2)|

}
,

then the system (1.1)-(1.2) has a solution.

Corollary 4.2. Assume that the functions fi(u1, u2) are continuous with respect to (u1, u2) ∈
R×R for i = 1, 2. If M satisfies Λ ≤ M

ε , where

ε = max
{

2‖Gn‖L∞∇ ‖ω1‖L1
∇
, 2‖Gm‖L∞∇ ‖ω2‖L1

∇

}
and Λ > 0 satisfies

Λ ≥ max
‖(u1,u2)‖≤M

{
|f1(u1, u2)|, |f2(u1, u2)|

}
,

then the system (1.1)-(1.2) has a solution.

Corollary 4.3. If the functions fi(u1, u2) are continuous and bounded on R × R for i = 1, 2,
then the system (1.1)-(1.2) has a solution.

Proof. ChooseQ > sup{|f1(u1, u2)|, |f2(u1, u2)|}. PickM > 0 large enough so thatQ < M
ε ,

where ε is defined in the Theorem 4.1. Then there is a number Λ > 0 such that Q > Λ

where Λ ≥ max
‖(u1,u2)‖≤M

{
|f1(u1, u2)|, |f2(u1, u2)|

}
.Hence, ε < M

Q < M
Λ and thus the system

has a solution by Theorem 4.1. �

5. EXISTENCE OF COUNTABLY INFINITELY MANY POSITIVE SOLUTIONS

In this section, we establish the existence of countably infinitely many symmetric posi-
tive solutions to the system (1.1)-(1.2) by applying Hölder’s inequality and Krasnoselskii’s
fixed point theorem in cones. Assume throughout this section that ωk, (k = 1, 2) have
countably many singularies in (0, T2 )T.

Theorem 5.2. (Krasnoselskii fixed point theorem, [15]). Let B be a Banach space and let
P ⊂ B be a cone in B. Assume that Ω1,Ω2 are open with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let T :
P ∩ (Ω̄2\Ω1)→ P be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω̄2\Ω1).

Theorem 5.3. (Hölder’s inequality, [5, 27]) Let f ∈ Lp∇(J∗) with p > 1, g ∈ Lq∇(J∗) with
q > 1, and 1

p + 1
q = 1. Then fg ∈ L1

∇(J∗) and ‖fg‖L1
∇
≤ ‖f‖Lp∇‖g‖Lq∇ .

where

‖f‖Lp∇ :=


[∫

J∗
|f |p(s)∇s

] 1
p

, p ∈ R,

inf
{
M ∈ R / |f | ≤M ∇− a.e., on J∗

}
, p =∞,

and J∗ = [a, b]T. Moreover, if f ∈ L1
∇(J∗) and g ∈ L∞∇ (J∗). Then fg ∈ L1

∇(J) and ‖fg‖L1
∇
≤

‖f‖L1
∇
‖g‖L∞∇ .
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For τ ∈ (0, T2 )T, define the cone Pτ ⊂ X by

Pτ =
{

(u1, u2) ∈ X : u1(t) ≥ 0, u2(t) ≥ 0 are symmetric, concave and

min
t∈[τ, T−τ ]T

(
u1(t) + u2(t)

)
≥ γτ

γ
‖
(
u1(t), u2(t)

)
‖X
}
,

where γτ = min
{
Ln(τ)gn(τ), Lm(τ)gm(τ)

}
and γ = max

{
ζ∗ng
∗
n, ζ
∗
mg
∗
m

}
.

For any (u1, u2) ∈ Pτ , define an operator F : Pτ → X by

F (u1, u2)(t) =
(
Fn(u1, u2), Fm(u1, u2)

)
,

where

Fn(u1, u2) =

∫ T

0

Kn(t, s)ω1(s)f1(u1, u2)∇s

and

Fm(u1, u2) =

∫ T

0

Km(t, s)ω2(s)f2(u1, u2)∇s

Lemma 5.14. Assume that (H1)-(H4) hold. Then F (Pτ ) ⊂ Pτ and F : Pτ → Pτ is completely
continuous for each τ ∈ (0, T2 )T.

Proof. Fix τ ∈ (0, T2 )T. First note that (u1, u2) ∈ P implies that Fn(u1, u2)(t) ≥ 0 and
Fn(u1, u2)(t) ≥ 0 for all t ∈ J. On the other hand, by Lemma 3.6 and Lemma 3.12 we
obtain

Fn(u1, u2)(t) + Fm(u1, u2)(t)

=

∫ T

0

Kn(t, s)ω1(s)f1(u1, u2)∇s+

∫ T

0

Km(t, s)ω2(s)f2(u1, u2)∇s

≤ ζ∗ng∗n
∫ T

0

Gn(s, s)ω1(s)f1(u1, u2)∇s+ ζ∗mg
∗
m

∫ T

0

Gm(s, s)ω2(s)f2(u1, u2)∇s

≤ γ
(∫ T

0

Gn(s, s)ω1(s)f1(u1, u2)∇s+

∫ T

0

Gm(s, s)ω2(s)f2(u1, u2)∇s
)

and

min
t∈[τ, T−τ ]T

(
Fn(u1, u2)(t) + Fm(u1, u2)(t)

)
= min
t∈[τ, T−τ ]T

(∫ T

0

Kn(t, s)ω1(s)f1(u1, u2)∇s+

∫ T

0

Km(t, s)ω2(s)f2(u1, u2)∇s
)

= Ln(τ)gn(τ)

∫ T

0

Gn(s, s)w1(s)f1(u1, u2)∇s

+ Lm(τ)gm(τ)

∫ T

0

Gm(s, s)w2(s)f2(u1, u2)∇s

≥ γτ
(∫ T

0

Gn(s, s)w1(s)f1(u1, u2)∇s+

∫ T

0

Gm(s, s)w2(s)f2(u1, u2)∇s
)

≥ γτ
γ
‖
(
Fn(u1, u2), Fm(u1, u2)

)
‖X

≥ γτ
γ
‖F
(
u1, u2

)
‖X .
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So, F (u1, u2) ∈ Pτ and then F (Pτ ) ⊂ Pτ . Next, by standard methods and the Arzela-
Ascoli theorem, one can easily prove that the operator T is completely continuous. The
proof is complete. �

We consider three possible cases for ω1,2 ∈ Lp∇(J) : p > 1, p = 1, p = ∞. When p > 1
we have the following theorem.

Theorem 5.4. Assume that (H1) − (H4) hold, let {τk}∞k=1 be such that tk+1 < τk < tk, k =
1, 2, 3, · · · . Let {Sk}∞k=1 and {rk}∞k=1 be such that

Sk+1 <
γτk
γ
rk < Crk < Sk, k ∈ N,

where

C = max

{
1

Ln(τ1)gn(τ1)ε
∫ 1−τ1
τ1

Gn(s, s)∇s
,

1

Lm(τ1)gm(τ1)ε
∫ 1−τ1
τ1

Gn(s, s)∇s
, 1

}
.

Assume that f satisfies

(A1) f1(u1, u2) ≤ M1Sk
2 and f2(u1, u2) ≤ M

′
1Sk
2 for all t ∈ J, 0 ≤ u1 + u2 ≤ Sk, where

M1 <
1

ζ∗ng
∗
n‖Gn‖Lq∇‖ω1‖Lp∇

and M
′

1 <
1

ζ∗mg
∗
m‖Gm‖Lq∇‖ω2‖Lp∇

(A2) f1(u1, u2) ≥ Crk or f2(u1, u2) ≥ Crk for all t ∈ [τk, T − τk]T,
γτk
γ rk ≤ u1 + u2 ≤ rk.

Then the system (1.1)-(1.2) has countably infinitely many symmetric positive solutions {(u[k]
1 , u

[k]
2 )}∞k=1.

Furthermore, rk ≤ ‖(u[k]
1 , u

[k]
2 )‖ ≤ Sk for each k ∈ N.

Proof. Consider the sequences {Ω1,k}∞k=1 and {Ω2,k}∞k=1 of open subsets of X defined by

Ω1,k = {(u1, u2) ∈ X : ‖(u1, u2)‖X < Sk},

Ω2,k = {(u1, u2) ∈ X : ‖(u1, u2)‖X < rk}.
Let {τk}∞k=1 be as in the hypothesis and note that t∗ < tk+1 < τk < tk <

T
2 , for all k ∈ N.

For each k ∈ N, define the cone Pτk by

Pτk =
{

(u1, u2) ∈ X : u1(t) ≥ 0, u2(t) ≥ 0 are symmetric, concave and

min
t∈[τk, 1−τk]T

(
u1(t) + u2(t)

)
≥ γτk

γ
‖
(
u1(t), u2(t)

)
‖X
}
.

Let (u1, u2) ∈ Pτk ∩ ∂Ω1,k. Then,

u1(s) + u2(s) ≤ Sk = ‖(u1, u2)‖X
for all s ∈ J. By (A1),

‖Fn(u1, u2)‖ = max
t∈J

∫ T

0

Kn(t, s)ω1(s)f1

(
u1(s), u2(s)

)
∇s

≤ ζ∗ng∗n
∫ T

0

Gn(s, s)ω1(s)f1(u1, u2)∇s

≤ ζ∗ng∗n‖Gn‖Lq∇‖ω1‖Lp∇
M1Sk

2

≤ Sk
2

=
‖(u1, u2)‖X

2
.
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Thus we have ‖Fn(u1, u2)‖ ≤ ‖(u1,u2)‖X
2 . Similarly we can see that

‖Fm(u1, u2)‖ ≤ ‖(u1, u2)‖X
2

.

Therefore, for (u1, u2) ∈ Pτk ∩ ∂Ω1,k, and t ∈ J we get

‖F (u1, u2)‖X = ‖
(
Fn(u1, u2), Fm(u1, u2)

)
‖X

= ‖Fn(u1, u2)‖+ ‖Fm(u1, u2)‖
≤ ‖(u1, u2)‖X .

(5.19)

Let s ∈ [τk, 1− τk]T. Then, for (u1, u2) ∈ Pτk ∩ ∂Ω2,k,

rk = ‖(u1, u2)‖ ≥ u1(s) + u2(s)

≥ min
s∈[τk, 1−τk]T

(
u1(s) + u2(s)

)
≥ γτk

γ
‖(u1, u2)‖

≥ γτk
γ
rk.

By (A2),

‖F (u1, u2)‖ = ‖Fn(u1, u2)‖+ ‖Fm(u1, u2)‖ ≥ ‖Fn(u1, u2)‖

= max
t∈J

∫ T

0

Kn(t, s)ω1(s)f1

(
u1(s), u2(s)

)
∇s

≥ max
t∈J

∫ T−τk

τk

Kn(t, s)ω1(s)f1

(
u1(s), u2(s)

)
∇s

≥ max
t∈J

∫ T−τk

τk

Kn(t, s)ω1(s)∇sCrk

≥ Crkε max
t∈[τ1, 1−τ1]T

∫ T−τ1

τ1

Kn(t, s)∇s

≥ CrkLn(τ1)gn(τ1)ε

∫ 1−τ1

τ1

Gn(s, s)∇s

≥ rk = ‖(u1, u2)‖X .

Thus, if (u1, u2) ∈ Pτk ∩ ∂Ω2,k, then

‖F (u1, u2)‖ ≥ ‖(u1, u2)‖X . (5.20)

It is obvious that 0 ∈ Ω2,k ⊂ Ω̄2,k ⊂ Ω1,k. By (5.19),(5.20), it follows from Theorem
4.1 that the operator T has a fixed point (u

[k]
1 , u

[k]
2 ) ∈ Pτk ∩

(
Ω̄1,k\Ω2,k

)
such that rk ≤

‖(u[k]
1 , u

[k]
2 )‖ ≤ Sk. Since k ∈ N was arbitrary, the proof is complete. �

Now we deal with the case p = 1.

Theorem 5.5. Assume that (H1) − (H4) hold, let {τk}∞k=1 be such that tk+1 < τk < tk, k =
1, 2, 3, · · · . Let {Sk}∞k=1 and {rk}∞k=1 be such that

Sk+1 <
γτk
γ
rk < Crk < Sk, k ∈ N,
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where C is defined in Theorem 5.4. Also assume that f satisfies

(B1) f1(u1, u2) ≤ M2Sk
2 and f2(u1, u2) ≤ M

′
2Sk
2 for all t ∈ J, 0 ≤ u1 + u2 ≤ Sk, where

M2 < min

{
1

ζ∗ng
∗
n‖Gn‖L∞∇ ‖ω1‖L1

∇

, C

}
,

M
′

2 < min

{
1

ζ∗mg
∗
m‖Gm‖L∞∇ ‖ω2‖L1

∇

, C

}
and (A2). Then the boundary value problem (1.1)–(1.2) has countably infinitely many symmetric
positive solutions {(u[k]

1 , u
[k]
2 )}∞k=1. Furthermore, for each k ∈ N, rk ≤ ‖(u[k]

1 , u
[k]
2 )‖ ≤ Sk.

Proof. For a fixed k, let Ω1,k be as in the proof of Theorem 5.4 and let (u1, u2) be an element
of Pτk ∩ ∂Ω1,k. Then

u1(s) + u2(s) ≤ Sk = ‖(u1, u2)‖X ,
for all s ∈ J. By (B1) and Theorem 5.4,

‖F (u1, u2)‖ = ‖Fn(u1, u2)‖+ ‖Fm(u1, u2)‖

≤ max
t∈J

∫ T

0

Kn(t, s)ω1(s)f1

(
u1(s), u2(s)

)
∇s

+ max
t∈J

∫ T

0

Km(t, s)ω2(s)f2

(
u1(s), u2(s)

)
∇s

≤ ζ∗ng∗n‖Gn‖L∞∇ ‖ω1‖L1
∇

M2Sk
2

+ ζ∗mg
∗
m‖Gm‖L∞∇ ‖ω2‖L1

∇

M
′

2Sk
2

≤ Sk.

Thus,
‖F (u1, u2)‖ ≤ ‖(u1, u2)‖X ,

for (u1, u2) ∈ Pτk ∩ ∂Ω1,k. Now define Ω2,k = {(u1, u2) ∈ X : ‖(u1, u2)‖X < rk}. Let
(u1, u2) ∈ Pτk ∩ ∂Ω2,k and let s ∈ [τk, 1 − τk]T. Then, the argument leading to (5.20)
carries over to the present case and completes the proof. �

Finally we consider the case of p =∞.

Theorem 5.6. Assume that (H1)− (H4) hold. Let {Sk}∞k=1 and {rk}∞k=1 be such that

Sk+1 <
γτ
γ
rk < Crk < Sk, k ∈ N,

where C is defined in Theorem 5.4. Also assume that f satisfies
(E1) f1(u1, u2) ≤M3Sk and f1(u1, u2) ≤M ′

3Sk for all t ∈ J, 0 ≤ u1 + u2 ≤ Sk, where

M3 < min

{
1

ζ∗ng
∗
n‖Gn‖L1

∇
‖ω1‖L∞∇

, C

}
,

M
′

3 < min

{
1

ζ∗mg
∗
m‖Gm‖L1

∇
‖ω2‖L∞∇

, C

}
and (A2). Then the boundary value problem (1.1)–(1.2) has countably infinitely many symmetric
positive solutions {(u[k]

1 , u
[k]
2 )}∞k=1. Furthermore, for each k ∈ N,

rk ≤ ‖(u[k]
1 , u

[k]
2 )‖ ≤ Sk.
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Proof. By (E1),

‖F (u1, u2)‖ = ‖Fn(u1, u2)‖+ ‖Fm(u1, u2)‖

≤ max
t∈J

∫ T

0

Kn(t, s)ω1(s)f1

(
u1(s), u2(s)

)
∇s

+ max
t∈J

∫ T

0

Km(t, s)ω2(s)f2

(
u1(s), u2(s)

)
∇s

≤ ζ∗ng∗n‖Gn‖L1
∇
‖ω1‖L∞∇

M3Sk
2

+ ζ∗mg
∗
m‖Gm‖L1

∇
‖ω2‖L∞∇

M
′

3Sk
2

≤ Sk.

This shows that if (u1, u2) ∈ Pτk ∩ ∂Ω1,k, where

Ω1,k = {(u1, u2) ∈ X : ‖(u1, u2)‖ < Sk}.

Then,

‖F (u1, u2)‖ ≤ ‖(u1, u2)‖.

Define Ω2,k = {(u1, u2) ∈ X : ‖(u1, u2)‖ < rk} and let (u1, u2) ∈ Pτk ∩ ∂Ω2,k. Then, the
argument employed in the proof of Theorem 5.4 applies directly to yield ‖F (u1, u2)‖ ≥
‖(u1, u2)‖. By the Theorem 4.1, completes the proof. �

6. EXAMPLE

In this section, we provide an example of a family of functions ω(t) that satisfy condi-
tions (H1), (H2) corresponding to the cases p = 1 and p = 2.

Let T = [0, 1
6 ] ∪ { 9

50 ,
1
5 ,

11
50 ,

6
25} ∪ [ 1

4 ,
3
4 ] ∪ { 19

25 ,
39
50 ,

4
5 ,

41
50} ∪ [ 5

6 , 1] be bounded symmetric
time scale and consider the family of functions ω(t, θ) : [0, 1]T → (0,+∞] given by

ω(t, θ) =



1

|t− 1
2 |θ

if 0 ≤ t ≤ 1

4
or

3

4
≤ t ≤ 1,

∞∑
l=1

χ[ϑl, ϑl−1]∣∣|t− 1
2 |+ tl − 1

2

∣∣θ if
1

4
< t <

3

4
,

where

t0 =
5

16
, tl = t0−

l−1∑
k=0

1

(k + 2)4
, l = 1, 2, 3, · · · , and ϑ0 = 1, ϑl =

1

2
(tl+tl+1), l = 1, 2, 3, · · · .

At first, it is easily seen that ω(t, θ) ≥ ω(1, θ) = 1
|1− 1

2 |θ
= 2θ, t1 = 1

4 < 1
2 , tl − tl+1 =

1
(l+2)4 , l = 1, 2, 3, · · · , and note that

∑∞
l=1

1
l4 = π4

90 . So,

t∗ = lim
l→∞

tl =
5

16
−
∞∑
k=0

1

(k + 2)4
=

5

16
−
(
π4

90
− 1

)
=

21

16
− π4

90
>

1

5
.
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We claim that if θ = 1
2 , then ω(t, θ) ∈ L1

∇[0, 1]. Note that
∑∞
l=1

1
l2 = π2

6 , we have

∫ 1

0

ω(t, θ)∇t =

∫ 1
6

0

ω(t, θ)∇t+

∫ 3
4

1
4

ω(t, θ)∇t+

∫ 1

5
6

ω(t, θ)∇t

+

[(
9

50
− 1

6

)
ω

(
9

50
, θ

)
+

(
1

5
− 9

50

)
ω

(
1

5
, θ

)
+

(
11

50
− 1

5

)
ω

(
11

50
, θ

)
+

(
6

25
− 11

50

)
ω

(
6

25
, θ

)
+

(
1

4
− 6

25

)
ω

(
1

4
, θ

)
+

(
19

25
− 3

4

)
ω

(
19

25
, θ

)
+

(
39

50
− 19

25

)
ω

(
39

50
, θ

)
+

(
4

5
− 39

50

)
ω

(
4

5
, θ

)
+

(
41

50
− 4

5

)
ω

(
41

50
, θ

)
+

(
5

6
− 41

50

)
ω

(
5

6
, θ

)]
=

∫ 1
6

0

1

|t− 1
2 |θ
∇t+

∫ 3
4

1
4

∞∑
l=1

χ[ϑl, ϑl−1]∣∣|t− 1
2 |+ tl − 1

2

∣∣θ∇t+

∫ 1

5
6

1

|t− 1
2 |θ
∇t

+
1

50

[
2×

(10

3

)θ
+ 2×

(25

7

)θ
+
(50

13

)θ
+
(25

8

)θ]
+

1

75

[(25

8

)θ
+ 3θ

]
+

1

100

[
4θ +

(50

13

)θ]

Let

Σ =
1

50

[
2×

(10

3

)θ
+ 2×

(25

7

)θ
+
(50

13

)θ
+
(25

8

)θ]
+

1

75

[(25

8

)θ
+ 3θ

]
+

1

100

[
4θ +

(50

13

)θ]

with θ = 1
2 . Then

∫ 1

0

ω(t, θ)∇t =

∞∑
l=1

∫ ϑl−1

ϑl

1∣∣|t− 1
2 |+ tl − 1

2

∣∣θ∇t+

∫ 1
6

0

1

( 1
2 − t)θ

∇t

+

∫ 1

5
6

1

(t− 1
2 )θ
∇t+ Σ

=

∞∑
l=1

[ ∫ tl

ϑl

1

(tl − t)θ
∇t+

∫ νl−1

tl

1

(t− tl)θ
∇t
]

+
2

1− θ

[
1

21−θ −
1

31−θ

]
+ Σ

=

∞∑
l=1

[ ∫ tl

tl+tl+1
2

1

(tl − t)θ
∇t+

∫ tl−1+tl
2

tl

1

(t− tl)θ
∇t
]

+
2

1− θ

[
1

21−θ −
1

31−θ

]
+ Σ
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So that∫ 1

0

ω(t, θ)∇t =
1

1− θ

∞∑
l=1

[(
tl − tl+1

2

)1−θ

+

(
tl−1 − tl

2

)1−θ

+
2

1− θ

[
1

21−θ −
1

31−θ

]
+ Σ

=
1

21−θ(1− θ)

∞∑
l=1

[
1

(l + 2)4(1−θ) +
1

(l + 1)4(1−θ)

]
+

2

1− θ

[
1

21−θ −
1

31−θ

]
+ Σ

=
√

2

∞∑
l=1

[
1

(l + 1)2
+

1

(l + 1)2

]
+ 2
√

2− 4

3

√
3 + Σ

=
√

2

(
π2

3
− 9

4

)
+ 2
√

2− 4

3

√
3 + Σ,

This shows that ω(t, θ) ∈ L1
∇[0, 1].

Next, we claim that if θ = 1
4 , then ω(t, θ) ∈ L2

∇[0, 1]. In this case, we need the cauchy
product,

∞∑
l=1

xl ·
∞∑
l=1

yl =

∞∑
l=1

zl, (6.21)

where

zl =

l∑
n=1

xnyl−n+1. (6.22)

Note that ∫ 1

0

ω2(t, θ)∇t =

∫ 1
4

0

ω2(t, θ)∇t+

∫ 3
4

1
4

[ ∞∑
l=1

χ[ϑl, ϑl−1]∣∣|t− 1
2 |+ tl − 1

2

∣∣2θ
]2

∇t

+

∫ 1

3
4

ω2(t, θ)∇t,
(6.23)

we use (6.21) and (6.22) and the fact that, if X ∩ Y = ∅, then χ[X] · χ[Y ] = 0 to simplify
the integrand, [ ∞∑

l=1

χ[ϑl, ϑl−1]

|t− tl|θ

]2

=

∞∑
l=1

l∑
n=1

χ[ϑn, ϑl−1]

|t− tn|θ
χ[ϑl−n+1, ϑl−n]

|t− tl−n+1|θ

=

∞∑
l=1

χ[ϑl, ϑl−1]

|t− tl|2θ
a.e.,

and so (6.23) may be written as∫ 1

0

ω2(t, θ)∇t =

∞∑
l=1

∫ 3
4

1
4

χ[ϑl, ϑl−1]∣∣|t− 1
2 |+ tl − 1

2

∣∣2θ∇t+

∫ 1
4

0

ω2(t, θ)∇t

+

∫ 1

3
4

ω2(t, θ)∇t
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Let

Σ =
1

75

[(25

8

)2θ

+ 32θ

]
+

1

100

[
42θ +

(50

13

)2θ
]

+
1

50

[
2×

(10

3

)2θ

+ 2×
(25

7

)2θ

+
(50

13

)2θ

+
(25

8

)2θ
]

with θ = 1
4 . Then∫ 1

0

ω2(t, θ)∇t =

∞∑
l=1

∫ ϑl−1

ϑl

1∣∣|t− 1
2 |+ tl − 1

2

∣∣2θ∇t+

∫ 1
6

0

1

( 1
2 − t)2θ

∇t

+

∫ 1

5
6

1

(t− 1
2 )2θ
∇t+ Σ

=

∞∑
l=1

[ ∫ tl

ϑl

1

(tl − t)2θ
∇t+

∫ ϑl−1

tl

1

(t− tl)2θ
∇t
]

+
2

1− 2θ

[
1

21−2θ
− 1

31−2θ

]
+ Σ

=

∞∑
l=1

[ ∫ tl

tl+tl+1
2

1

(tl − t)2θ
∇t+

∫ tl−1+tl
2

tl

1

(t− tl)2θ
∇t
]

+
2

1− 2θ

[
1

21−2θ
− 1

31−2θ

]
+ Σ

=
1

1− 2θ

∞∑
l=1

[(
tl − tl+1

2

)1−2θ

+

(
tl−1 − tl

2

)1−2θ]
+

2

1− 2θ

[
1

21−2θ
− 1

31−2θ

]
+ Σ

=
1

21−2θ(1− 2θ)

∞∑
l=1

[
1

(l + 2)4(1−2θ)
+

1

(l + 1)4(1−2θ)

]
+

2

1− 2θ

[
1

21−2θ
− 1

31−2θ

]
+ Σ

=
√

2

∞∑
l=1

[
1

(l + 1)2
+

1

(l + 1)2

]
+ 2
√

2− 4

3

√
3 + Σ

=
√

2

(
π2

3
− 9

4

)
+ 2
√

2− 4

3

√
3 + Σ.

Which implies ω(t, θ) ∈ L2
∇[0, 1].

Acknowledgements. The authors thank the referee for his valuable suggestions. One
of the authors (Khuddush Mahammad) is thankful to UGC, Government of India, New
Delhi for awarding SRF under MANF; No. F1-17.1/2016-17/MANF-2015-17-AND-54483.

REFERENCES

[1] Agarwal, R. P. and M. Bohner, M., Basic calculus on time scales and some of its applications, Result Math., 35
(1999), 3–22

[2] Agarwal, R. P., Bohner, M. and Li, W.-T., Nonoscillation and Oscillation: Theory for Functional Differential
Equations, vol. 267 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New
York, USA, (2004)



Existence of countably many symmetric positive solutions for system ... 181

[3] Agarwal, R. P., Otero-Espinar, V., Perera, K. and Vivero, D. R., Basic properties of Sobolev’s spaces on time scales,
Advan. Diff. Eqns., 2006 (2006), No. 1, 1–14

[4] Anderson, D. R. and Karaca, I. R., Higher-order three-point boundary value problem on time scales, Comput.
Math. Appl., 56 (2008), 2429–2443

[5] Anastassiou, G. A., Intelligent mathematics: computational analysis, Vol.5, Heidelberg: Springer, 2011
[6] Bohner, M. and Luo, H., Singular second-order multipoint dynamic boundary value problems with mixed deriva-

tives, Adv. Difference Equ., 2006, Art. ID 54989, 15 pp.
[7] Bohner, M. and Peterson, A., Dynamic equations on time scales: An introduction with applications, Birkhäuser,
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