Existence of countably many symmetric positive solutions for system of even order time scale boundary value problems in Banach spaces

K. R. PRASAD and Md. KHUDDUSH

ABSTRACT. This paper establishes the existence and uniqueness of the solutions to the system of even order differential equations on time scales,

\[-1^n \alpha_1\Delta^n u_1(t) = \omega_1(t), \quad t \in [0, T], \quad n \in \mathbb{Z}_+,
\]

\[-1^n \alpha_2\Delta^n u_2(t) = \omega_2(t), \quad t \in [0, T], \quad m \in \mathbb{Z}_+,
\]

satisfying two-point Sturm-Liouville integral boundary conditions

\[\begin{align*}
\alpha_{i+1}\Delta_i u_1(0) - \beta_i \Delta_i u_1(T) &= \int_0^T a_i(s)u_1(s,t)\,ds, \\
\gamma_{j+1}\Delta_j u_2(0) - \delta_j \Delta_j u_2(T) &= \int_0^T b_j(s)u_2(s,t)\,ds,
\end{align*}\]

by utilizing Schauder fixed point theorem. We also establish the existence of countably many symmetric positive solutions for the above problem by applying Hölder’s inequality and Krasnoselskii’s fixed point theorem.

1. INTRODUCTION

Recently, researchers are shown much interest on the existence of positive solutions to boundary value problems for dynamic equations on time scales [3, 5, 6, 7, 11, 12, 15]. This has been mainly due to unification of the theory of differential and difference equations in time scale dynamics. The theory is widely applied to various situations, like, in the study of insect population models, neural networks, heat transfer, and epidemic models [2, 7]. For details on time scale calculus we refer to the books by Bohner and Peterson [7, 8], Lakshmikantham et al. [23] and the papers [1, 4, 20].

The boundary value problems with integral boundary conditions occur in the study of nonlocal phenomena in different areas of applied mathematics, physics and engineering, in particular, in heat conduction, chemical engineering, underground workflow, thermoelasticity, plasma physics [3, 11, 12, 21, 22, 25, 32, 35]. Recently, much attention is paid to establish the existence of positive solutions to boundary value problems with integral boundary conditions on time scales [10, 13, 14, 19, 24, 26, 31, 33] and for the existence of symmetric positive solutions for higher order boundary value problems with different types of boundary conditions [9, 17, 18, 28, 29].
In [26], Oguz and Topal studied following system of boundary value problems on time scales,
\[
(-1)^nu_k^{(\Delta \nabla)^n}(t) = f_k(t, u_1(t), u_2(t)), \ t \in [a, b]_\mathbb{T}, \ k = 1, 2,
\]
\[
\alpha u_k^{(\Delta \nabla)^i}(a) - \beta u_k^{(\Delta \nabla)^i}(a) = 0, \ 0 \leq i \leq n - 1, \ k = 1, 2,
\]
\[
\alpha u_k^{(\Delta \nabla)^i}(b) + \beta u_k^{(\Delta \nabla)^i}(b) = 0, \ 0 \leq i \leq n - 1, \ k = 1, 2,
\]
under the conditions that \(f_k (k = 1, 2)\) are non-increasing with respect to \(u_1, u_2\) and established a necessary condition for the existence and uniqueness of symmetric positive solutions by the method of monotone iterative technique.

Motivated by the work mentioned above, we consider the system of even order differential equations on time scales,
\[
\left\{
\begin{aligned}
(-1)^nu_1^{(\Delta \nabla)^n}(t) &= \omega_1(t)f_1(u_1(t), u_2(t)), \ t \in [0, T]_\mathbb{T}, \\
(-1)^nu_2^{(\Delta \nabla)^n}(t) &= \omega_2(t)f_2(u_1(t), u_2(t)), \ t \in [0, T]_\mathbb{T},
\end{aligned}
\right.
\]
satisfying the Sturm-Liouville integral boundary conditions
\[
\left\{
\begin{aligned}
\alpha_{i+1}u_1^{(\Delta \nabla)^i}(0) - \beta_{i+1}u_1^{(\Delta \nabla)^i}\Delta(0) &= \int_0^T a_{i+1}(s)u_1^{(\Delta \nabla)^i}(s)\nabla s, \ 0 \leq i \leq n - 1, \\
\alpha_{i+1}u_1^{(\Delta \nabla)^i}(T) + \beta_{i+1}u_1^{(\Delta \nabla)^i}\Delta(T) &= \int_0^T a_{i+1}(s)u_1^{(\Delta \nabla)^i}(s)\nabla s, \ 0 \leq i \leq n - 1, \\
\gamma_{j+1}u_2^{(\Delta \nabla)^j}(0) - \delta_{j+1}u_2^{(\Delta \nabla)^j}\Delta(0) &= \int_0^T b_{j+1}(s)u_2^{(\Delta \nabla)^j}(s)\nabla s, \ 0 \leq j \leq m - 1, \\
\gamma_{j+1}u_2^{(\Delta \nabla)^j}(T) + \delta_{j+1}u_2^{(\Delta \nabla)^j}\Delta(T) &= \int_0^T b_{j+1}(s)u_2^{(\Delta \nabla)^j}(s)\nabla s, \ 0 \leq j \leq m - 1,
\end{aligned}
\right.
\]
where \(n, m \in \mathbb{Z}^+\) (positive integers), \(\mathbb{T}\) is a symmetric time scale, \(T \in \mathbb{T}, f_k \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})\), \(\omega_k(t) \in L^p_\mathbb{T}[0, 1]_\mathbb{T}(k = 1, 2)\) for some \(p \geq 1\) and establish the existence and uniqueness of the solutions for the above system by applying Schauder fixed point theorem and the existence of countably many symmetric positive solutions by allowing \(\omega_k(t) (k = 1, 2)\) to have countably many singularities in \((0, \frac{T}{2})_\mathbb{T}\) using the H"{o}lder’s inequality and Krasnoselskii’s cone fixed point theorem in a Banach Space.

The rest of the paper is organized in the following fashion. In Section 2, we provide some definitions and lemmas which are useful to study the behavior of solution of the boundary value problem (1.1)-(1.2). In Section 3, we construct the Green’s function for the homogeneous problem corresponding to (1.1)-(1.2), estimate bounds for the Green’s function, and some lemmas which are needed in establishing our main results are provided. In Section 4, we obtain existence and uniqueness of a solution for (1.1)-(1.2), due to Schauder fixed point theorem. In Section 5, we establish a criteria for the existence of countably many symmetric positive solutions for the boundary value problem (1.1)-(1.2) by applying H"{o}lder’s inequality and Krasnoselskii’s cone fixed point theorem in a Banach space. Finally, we provide an example of a family of functions \(\omega(t)\) that satisfy required conditions.

2. Preliminaries

In this section, we provide some definitions and lemmas which are useful for our later discussions; for details, see [3, 5, 6, 7, 16, 30, 34].
Definition 2.1. A time scale \( T \) is a nonempty closed subset of the real numbers \( \mathbb{R} \). \( T \) has the topology that it inherits from the real numbers with the standard topology. It follows that the jump operators \( \sigma, \rho : T \to \mathbb{R} \),
\[
\sigma(t) = \inf\{r \in T : r > t\}, \quad \rho(t) = \sup\{r \in T : r < t\}
\]
(supplemented by \( \inf \emptyset := \sup T \) and \( \sup \emptyset := \inf T \)) are well defined. The point \( t \in T \) is left-dense, left-scattered, right-dense, right-scattered if \( \rho(t) = t, \rho(t) < t, \sigma(t) = t, \sigma(t) > t \), respectively. If \( T \) has right-scattered minimum \( m \), define \( T_k = T - \{m\} \); otherwise set \( T_k = T \). If \( T \) has left-scattered maximum \( M \), define \( T^k = T - \{m\} \); otherwise let \( T^k = T \).

Definition 2.2. An interval time scale \( T = [a, b]_T \) is said to be symmetric if for any given \( t \in T \), we have \( b + a - t \in T \) and a function \( u : T \to \mathbb{R} \) is said to be symmetric on \( T \) if for any given \( t \in T \), \( u(t) = u(b + a - t) \).

By an interval time scale, we mean the intersection of a real interval with a given time scale. i.e., \( [a, b]_T = [a, b] \cap T \). Similarly other intervals can be defined.

Definition 2.3. A function \( u : T \to \mathbb{R} \) is said to be concave if for any \( t_1, t_2 \in T \) and \( c \in [0, 1] \), \( u(ct_1 + (1 - c)t_2) \geq cu(t_1) + (1 - c)u(t_2) \).

Definition 2.4. Let \( \mu_\Delta \) and \( \mu_\nabla \) be the Lebesgue \( \Delta \)-measure and the Lebesgue \( \nabla \)-measure on \( T \), respectively. If \( A \subset T \) satisfies \( \mu_\Delta(A) = \mu_\nabla(A) \), then we call \( A \) is measurable on \( T \), denoted \( \mu(A) \) and this value is called the Lebesgue measure of \( A \). Let \( P \) denote a proposition with respect to \( t \in T \).

(i) If there exists \( E_1 \subset A \) with \( \mu_\Delta(E_1) = 0 \) such that \( P \) holds on \( A \setminus E_1 \), then \( P \) is said to hold \( \Delta \)-a.e. on \( A \).

(ii) If there exists \( E_2 \subset A \) with \( \mu_\nabla(E_2) = 0 \) such that \( P \) holds on \( A \setminus E_2 \), then \( P \) is said to hold \( \nabla \)-a.e. on \( A \).

Definition 2.5. Let \( E \subset T \) be a \( \nabla \)-measurable set and \( p \in \mathbb{R} \equiv \mathbb{R} \cup \{-\infty, +\infty\} \) be such that \( p \geq 1 \) and let \( f : E \to \mathbb{R} \) be a \( \nabla \)-measurable function. We say that \( f \) belongs to \( L^p(E) \) provided that either
\[
\int_E |f|^p(s) \nabla s < \infty \quad \text{if} \quad p \in \mathbb{R},
\]
or there exists a constant \( M \in \mathbb{R} \) such that
\[
|f| \leq M, \quad \nabla \text{-} a.e. \text{ on } E \text{ if } p = +\infty.
\]

Lemma 2.1. Let \( E \subset T \) be a \( \nabla \)-measurable set. If \( f : T \to \mathbb{R} \) is a \( \nabla \)-integrable on \( E \), then
\[
\int_E f(s) \nabla s = \int_E f(s) ds + \sum_{i \in I_E} (t_i - \rho(t_i)) f(t_i),
\]
where \( I_E := \{i \in I : t_i \in E\} \) and \( \{t_i\}_{i \in I}, I \subset \mathbb{N}, \) is the set of all left-scattered points of \( T \).

For convenience, we introduce the following notation throughout the paper: For \( \tau \in (0, T)_T \),
\[
\xi_i := \int_0^T a_i(r) \nabla r, \quad \zeta_i := \frac{\alpha_i}{\alpha_i - \xi_i}, \quad \zeta_i' := \int_0^T b_i(r) \nabla r, \quad \gamma_i := \frac{\gamma_i}{\gamma_i - \xi_i},
\]
\[
g_i := \int_0^T G_i(r, r) \nabla r, \quad g_i' := \int_0^T G_i(r, r) \nabla r, \quad g_i(\tau) := \int_\tau^{T-\tau} G_i(r, r) \nabla r,
\]
\[
g_i^*(\tau) := \int_\tau^{T-\tau} G_i(r, r) \nabla r,
\]
where
\[
G_i(t, s) := \frac{1}{\alpha_i d_i} \begin{cases} 
(\beta_i + \alpha_i t)(\beta_i + \alpha_i (T - s)), \ t \leq s, \\
(\beta_i + \alpha_i s)(\beta_i + \alpha_i (T - t)), \ s \leq t,
\end{cases} \text{ in which } d_i = \alpha_i T + 2\beta_i,
\]

\[
G_i(t, s) := \frac{1}{\gamma_i d'_i} \begin{cases} 
(\delta_i + \gamma_i t)(\delta_i + \gamma_i (T - s)), \ t \leq s, \\
(\delta_i + \gamma_i s)(\delta_i + \gamma_i (T - t)), \ s \leq t,
\end{cases} \text{ in which } d'_i = \gamma_i T + 2\delta_i.
\]

We make the following assumptions: \(J := [0, T] \mathbb{T}\) and for \(1 \leq i \leq 2\):

(H1) there exists a sequence \(\{t_k\}_{k=1}^{\infty} (k \in \mathbb{N}), t_1 < \frac{T}{2}, \lim_{k \to \infty} t_k = t^* \geq 0\) and \(\lim_{t \to t_k} \omega_i(t) = +\infty\) for \(k = 1, 2, 3, \cdots\),

(H2) \(\omega_i \in L^p_{\mathbb{T}}(J)\) for some \(1 \leq p \leq +\infty\) and there exists \(\epsilon > 0\) such that \(\omega_i(t) \geq \epsilon\) for all \([t^*, 1 - t^*]_{\mathbb{T}}\),

(H3) \(\alpha_i, \beta_i, \gamma_i, \delta_j \geq 0\) such that \(d_i := \alpha_i T + 2\beta_i > 0, d'_j := \gamma_j T + 2\delta_j > 0\) for each \(1 \leq i \leq n\) and \(1 \leq j \leq m\),

(H4) \(a_j, b_j \in L^p_{\mathbb{T}}(J)\) for all \(1 \leq i \leq n, 1 \leq j \leq m\) are nonnegative and \(\alpha_i > \xi_i, \gamma_j > \xi'_j\) for all \(1 \leq i \leq n, 1 \leq j \leq m\) on \(J\).

3. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous problem corresponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

**Lemma 3.2.** Let (H3), (H4) hold. Then for any \(g_1(t) \in C(J)\), the boundary value problem,
\[
-\Delta u^\gamma(t) = g_1(t), \ t \in J,
\]

\[
\alpha_i u_1(0) - \beta_i u^\Delta_1(0) = \int_0^T a_i(s) u_1(s) \nabla s, \ 1 \leq i \leq n,
\]

\[
\alpha_i u_1(T) + \beta_i u^\Delta_1(T) = \int_0^T a_i(s) u_1(s) \nabla s, \ 1 \leq i \leq n,
\]

has a unique solution
\[
u_1(t) = \int_0^T H_i(t, s) g_1(s) \nabla s, \ \text{for } 1 \leq i \leq n,
\]

where
\[
H_i(t, s) = G_i(t, s) + \frac{1}{\alpha_i - \xi_i} \int_0^T G_i(r, s) a_i(r) \nabla r,
\]

for \(1 \leq i \leq n\).

**Proof.** Suppose \(u_1\) is a solution of (3.3), then, we have
\[
u_1(t) = -\int_0^t \int_0^s g_1(r) \nabla r \Delta s + At + B
\]

\[
= -\int_0^t (t - s) g_1(s) \nabla s + At + B
\]

where \(A = \lim_{t \to 0^+} u^\Delta(t)\) and \(B = u(0)\). Using the boundary conditions (3.4), (3.5), we can determined \(A\) and \(B\) as
\[
A = \frac{1}{d_i} \int_0^T \alpha_i (T - s) - \beta_i) g_1(s) \nabla s
\]

\[
B = \frac{1}{d_i} \left[ \int_0^T \frac{\beta_i}{\alpha_i} [(\alpha_i (T - s) + \beta_i) g_1(s) \nabla s + \int_0^T \frac{1}{\alpha_i} [\alpha_i T + 2\beta_i] a_i(s) u_1(s) \nabla s] \right]
\]
Thus, we have
\[
 u_1(t) = \frac{1}{\alpha_i d_i} \left[ \int_0^T (\beta_i + \alpha_i t)(\beta_i + \alpha_i (T - t)) g_1(s) \nabla s \right. \\
+ \int_t^T (\beta_i + \alpha_i t)(\beta_i + \alpha_i (T - s)) g_1(s) \nabla s \left. \right] + \frac{1}{\alpha_i} \int_0^T a_i(s) u_1(s) \nabla s
\]
from which, we obtain
\[
 u_1(t) = \int_0^T G_i(t, s) g_1(s) \nabla s + \frac{1}{\alpha_i} \int_0^T a_i(s) u_1(s) \nabla s. \tag{3.8}
\]
After certain computations we can determined,
\[
 \int_0^T a_i(s) u(s) \nabla s = \frac{\alpha_i}{\alpha_i - \zeta_i} \int_0^T \left[ \int_0^T G_i(s, r) a_i(s) \nabla s \right] g_1(r) \nabla r. \tag{3.9}
\]
Hence
\[
 u(t) = \int_0^T G_i(t, s) g_1(s) \nabla s + \frac{1}{\alpha_i - \zeta_i} \int_0^T \left[ \int_0^T G_i(s, r) a_i(s) \nabla s \right] g_1(r) \nabla r \\
= \int_0^T \left[ G_i(t, s) + \frac{1}{\alpha_i - \zeta_i} \int_0^T G_i(s, r) a_i(s) \nabla s \right] g_1(r) \nabla r \\
= \int_0^T H_i(t, s) g_1(s) \nabla s,
\]
where \( H_i(t, s) \) is defined in (3.7).

**Lemma 3.3.** Assume that (H3), (H4) hold and for \( \tau \in (0, \frac{T}{2}) \mathbb{T} \) define \( \eta_i(\tau) = \frac{\alpha_i + \beta_i}{\alpha_i T + \beta_i} \). Then \( G_i(t, s) \) satisfies the following properties for \( 1 \leq i \leq n \),

\begin{enumerate}[(i)]
  \item \( 0 < G_i(t, s) \leq G_i(s, s) \) for all \( t, s \in J \),
  \item \( \eta_i(\tau) G_i(s, s) \leq G_i(t, s) \) for all \( t \in [\tau, T - \tau] \mathbb{T} \) and \( s \in J \),
  \item \( G_i(1 - t, 1 - s) = G_i(t, s) \) for all \( t, s \in J \),
  \item For each \( s \in J \), the functions \( G_i(\cdot, s) \) are concave in the first argument on \( J \).
\end{enumerate}

**Lemma 3.4.** Assume that (H3), (H4) hold and for \( \tau \in (0, \frac{T}{2}) \mathbb{T} \). Then \( H_i(t, s) \) have the following properties for \( 1 \leq i \leq n \),

\begin{enumerate}[(i)]
  \item \( 0 < H_i(t, s) \leq \zeta_i G_i(s, s) \) for all \( t, s \in J \),
  \item \( \zeta_i \eta_i(\tau) G_i(s, s) \leq H_i(t, s) \) for all \( t \in [\tau, T - \tau] \mathbb{T} \) and \( s \in J \),
  \item \( H_i(1 - t, 1 - s) = H_i(t, s) \) for all \( t, s \in J \),
  \item For each \( s \in J \), the functions \( H_i(\cdot, s) \) are concave in the first argument on \( J \).
\end{enumerate}

**Lemma 3.5.** Assume that (H3), (H4) hold and \( H_i(t, s) \) is given in (3.7) for \( 1 \leq i \leq n \). Let \( K_1(t, s) = H_i(t, s) \) and define recursively
\[
 K_i(t, s) = \int_0^T K_{i-1}(t, r) H_i(r, s) \nabla r, \quad \text{for} \quad 2 \leq i \leq n. \tag{3.10}
\]
Then \( K_n(t, s) \) is the Green’s function for the homogeneous boundary value problem
\[
 (-1)^n u_1^{(\Delta \nabla)^n}(t) = 0, \quad t \in J,
\]
\[
 \alpha_{i+1} u_1^{(\Delta \nabla)^i}(0) - \beta_{i+1} u_1^{(\Delta \nabla)^i}(0) = \int_0^T a_{i+1}(s) u_1^{(\Delta \nabla)^i}(s) \nabla s, \quad 0 \leq i \leq n - 1,
\]
\[
 \alpha_{i+1} u_1^{(\Delta \nabla)^i}(T) + \beta_{i+1} u_1^{(\Delta \nabla)^i}(T) = \int_0^T a_{i+1}(s) u_1^{(\Delta \nabla)^i}(s) \nabla s, \quad 0 \leq i \leq n - 1.
\]
Lemma 3.6. Assume that \((H3), (H4)\) hold and for \(\tau \in (0, \frac{T}{2})_{\mathbb{T}}\). Define

\[
g_n^* = \prod_{i=1}^{n} g_i, \quad \zeta_n^* = \prod_{i=1}^{n} \zeta_i, \quad L_n(\tau) = \prod_{i=1}^{n} \zeta_i \eta_i(\eta), \quad g_n(\tau) = \prod_{i=1}^{n-1} g_i(\tau),
\]

then the Green’s function \(K_n(t, s)\) satisfies the following inequalities:

1. \(0 < K_n(t, s) \leq \zeta_n^* g_n^* G_n(s, s)\), for all \(t, s \in J\) and
2. \(K_n(t, s) \geq L_n(\tau) g_n(\tau) G_n(s, s)\), for all \(t \in [\tau, T - \tau]_{\mathbb{T}}\) and \(s \in J\).

Proof. It is clear that Green’s function \(H_n(t, s) \geq 0\), for all \(t, s \in J\). Now we prove the inequality by induction on \(n\) and denote the statement by \(p(n)\).

From (3.7) we have

\[
K_1(t, s) = H_1(t, s) \leq \zeta_1 G_1(s, s) \quad \text{and} \quad K_2(t, s) = \int_0^T K_1(t, r) H_2(r, s) \mathrm{d}r \leq \zeta_1 G_1(s, s),
\]

Now for \(t \in [\tau, 1 - \tau]_{\mathbb{T}}\), we have

\[
K_1(t, s) = H_1(t, s) \geq \zeta_1 \eta_1(\tau) G_1(s, s) \quad \text{and} \quad K_2(t, s) = \int_0^T K_1(t, r) H_2(r, s) \mathrm{d}r \geq \zeta_1 \eta_1(\tau) G_1(s, s),
\]

Hence, \(p(1), p(2)\) are true. Suppose \(p(k)\) is true, then from (3.11), we have

\[
K_{k+1}(t, s) = \int_0^T K_k(t, r) H_{k+1}(r, s) \mathrm{d}r \leq \prod_{i=1}^{k} \zeta_i \prod_{i=1}^{k-1} g_i \int_0^T G_k(r, r) H_{k+1}(r, s) \mathrm{d}r \leq \prod_{i=1}^{k} \zeta_i \prod_{i=1}^{k-1} g_i G_{k+1}(s, s)
\]
and for \( t \in [\tau, 1 - \tau] \),

\[
K_{k+1}(t, s) = \int_0^T K_k(t, r) H_{k+1}(r, s) \nabla r
\]

\[
\geq \prod_{i=1}^k \zeta_i \eta_i(\tau) \prod_{i=1}^{k-1} g_i(\tau) \int_0^T G_k(r, r) G_{k+1}(r, s) \nabla r
\]

\[
\geq \prod_{i=1}^k \zeta_i \eta_i(\tau) \prod_{i=1}^{k-1} g_i(\tau) \int_{\tau}^{T-\tau} G_k(r, r) G_{k+1}(r, s) \nabla r
\]

\[
\geq \prod_{i=1}^{k+1} \zeta_i \eta_i(\tau) \prod_{i=1}^{k} g_i(\tau) G_{k+1}(s, s).
\]

So, \( p(k + 1) \) holds. This completes the proof. \( \square \)

**Lemma 3.7.** The Green’s function \( K_i(t, s) \) for \( 1 \leq i \leq n \), satisfies the following conditions

\[
K_i(t, s) = K_i(1 - t, 1 - s) \forall t, s \in J
\]

(3.11)

and for each \( s \in J \), \( K_i(\cdot, s) (1 \leq i \leq n) \) is concave in the first argument on \( J \).

**Proof.** The proof is by induction. For \( i = 1 \), the equation (3.11) is clear and assume that the equation (3.11) is true for fixed \( i \geq 2 \). Then from (3.10) and using transformation \( r_1 = 1 - r \), we have

\[
K_{i+1}(t, s) = \int_0^T K_i(t, r) H_{j+1}(r, s) \nabla r
\]

\[
= \int_0^T K_i(1 - t, 1 - r) H_{i+1}(1 - r, 1 - s) \nabla r
\]

\[
= \int_0^T K_i(1 - t, r_1) H_{i+1}(r_1, 1 - s) \nabla r_1
\]

\[
= K_{i+1}(1 - t, 1 - s).
\]

Now, to prove concavity of \( K_n(\cdot, s) \), let \( c \in [0, 1] \) and \( t, r, s \in J \) with \( t \leq r \) and using Lemma 3.3. For \( n = 1 \),

\[
K_1(ct + (1 - c)r, s) = H_1(ct + (1 - c)r, s)
\]

\[
\geq cH_1(t, s) + (1 - c)H_1(r, s)
\]

\[
\geq cK_1(t, s) + (1 - c)K_1(r, s).
\]

Next, we assume that \( K_i(ct + (1 - c)r, s) \geq cK_i(t, s) + (1 - c)K_i(r, s) \) for fixed \( i \geq 2 \). Then

\[
K_{i+1}(ct + (1 - c)r, s) = \int_0^T K_i(ct + (1 - c)r, s_1) H_{i+1}(s_1, s) \nabla s
\]

\[
\geq \int_0^T \left[ cK_i(t, s_1) + (1 - c)K_i(r, s_1) \right] H_{i+1}(s_1, s) \nabla s
\]

\[
\geq c \int_0^T K_i(t, s_1) H_{i+1}(s_1, s) \nabla s
\]

\[
+ (1 - c) \int_0^T K_i(r, s_1) G_{i+1}(s_1, s) \nabla s
\]

\[
\geq cK_{i+1}(t, s) + (1 - c)K_{i+1}(r, s).
\]

This completes the proof. \( \square \)
Lemma 3.10. Let (H3), (H4) hold. Then for any \( g_2(t) \in C(J) \), the boundary value problem,
\[
-u_2^{\Delta \nabla}(t) = g_2(t), \quad t \in J,
\]
has a unique solution
\[
u_2(t) = \int_0^T \mathcal{H}_j(t, s)g_2(s)\nabla s, \quad \text{for} \; 1 \leq j \leq m,
\]
where
\[
\mathcal{H}_j(t, s) = \mathcal{G}_j(t, s) + \frac{1}{\gamma_j - \xi_j} \int_0^T \mathcal{G}_j(r, s)b_j(r)\nabla r,
\]
for \( 1 \leq j \leq m \).

Lemma 3.9. Assume that (H3), (H4) hold and for \( \tau \in (0, \frac{T}{2})_\mathbb{T} \) define \( \eta^*_j(\tau) = \frac{\gamma_j \tau + \delta_j}{\gamma_j \tau + \delta_j} \). Then \( \mathcal{G}_j(t, s) \) for \( 1 \leq j \leq m \), satisfies the following properties:

(i) \( 0 < \mathcal{G}_j(t, s) \leq \mathcal{G}_j(s, s) \) for all \( t, s \in J \),

(ii) \( \eta^*_j(\tau)\mathcal{G}_j(t, s) \leq \mathcal{G}_j(t, s) \) for all \( t \in [\tau, T - \tau]_\mathbb{T} \) and \( s \in J \),

(iii) \( \mathcal{G}_j(1 - t, 1 - s) = \mathcal{G}_j(t, s) \) for all \( t, s \in J \).

(iv) For each \( j \in J \), the functions \( \mathcal{G}_j(., s) \) are concave in the first argument on \( J \).

Lemma 3.10. Assume that (H3), (H4) holds and for \( \tau \in (0, \frac{T}{2})_\mathbb{T} \). Then \( \mathcal{H}_j(t, s) \) for \( 1 \leq j \leq m \), have the following properties:

(i) \( 0 < \mathcal{H}_j(t, s) \leq \zeta_j \mathcal{G}_j(s, s) \) for all \( t, s \in J \),

(ii) \( \zeta_j \eta^*_j(\tau)\mathcal{H}_j(t, s) \leq \mathcal{H}_j(t, s) \) for all \( t \in [\tau, T - \tau]_\mathbb{T} \) and \( s \in J \),

(iii) For each \( j \in J \), the functions \( \mathcal{H}_j(., s) \) are concave in the first argument on \( J \).

Lemma 3.11. Assume that (H3), (H4) hold and \( \mathcal{H}_j(t, s) \) for \( 1 \leq j \leq m \), is given in (3.16). Let \( \mathcal{K}_1(t, s) = \mathcal{H}_1(t, s) \) and recursively define
\[
\mathcal{K}_j(t, s) = \int_0^T \mathcal{K}_{j-1}(t, \tau)\mathcal{H}_j(\tau, s)\nabla \tau, \quad \text{for} \; 2 \leq j \leq m.
\]

Then \( \mathcal{K}_m(t, s) \) is the Green’s function for the homogeneous boundary value problem
\[
(-1)^nu_2^{(\Delta \nabla^m)}(t) = 0, \quad t \in J,
\]
\[
\gamma_{j+1}u_2^{(\Delta \nabla^j)}(0) - \delta_{j+1}u_2^{(\Delta \nabla^j)}(T) = \int_0^T b_{j+1}(s)u_2^{(\Delta \nabla^j)}(s)\nabla s, \quad 0 \leq j \leq m - 1,
\]
\[
\gamma_{j+1}u_2^{(\Delta \nabla^j)}(T) + \delta_{j+1}u_2^{(\Delta \nabla^j)}(0) = \int_0^T b_{j+1}(s)u_2^{(\Delta \nabla^j)}(s)\nabla s, \quad 0 \leq j \leq m - 1.
\]

Lemma 3.12. Assume that (H3), (H4) hold and for \( \tau \in (0, \frac{T}{2})_\mathbb{T} \). Define
\[
g_m^* = \prod_{j=1}^m g_j^*, \quad \zeta_m = \prod_{j=1}^m \zeta_j^*, \quad L_m(\tau) = \prod_{j=1}^m \zeta_j^*\eta_j^*(\tau), \quad g_m(\tau) = \prod_{j=1}^{m-1} g_j^*(\tau),
\]
then the Green’s function \( \mathcal{K}_m(t, s) \) satisfies the following inequalities:

(i) \( 0 < \mathcal{K}_m(t, s) \leq \zeta_m g_m^* \mathcal{G}_m(s, s) \), for all \( t, s \in J \) and
Proof. Let \( X \) be a closed, bounded and convex subset of \( \mathbb{R} \times \mathbb{R} \) where \( p > 1 \) for \( t, s \in J \). It can be shown that the \( T \) is continuous with respect to \( (u_1, u_2) \in \mathbb{R} \times \mathbb{R} \) for \( i = 1, 2 \). Define \( T : P \to X \) by

\[
T(u_1, u_2)(t) = (T_n(u_1, u_2)(t), T_m(u_1, u_2)(t))
\]

where

\[
T_n(u_1, u_2)(t) = \int_0^T K_n(t, s) \omega_1(s) f_1(u_1(s), u_2(s)) \nabla s
\]

and

\[
T_m(u_1, u_2)(t) = \int_0^T K_m(t, s) \omega_2(s) f_2(u_1(s), u_2(s)) \nabla s
\]

for \( t \in J \). Clearly the solution of the system (1.1) − (1.2) is the fixed point of operator \( T \). It can be shown that \( T : P \to X \) is continuous. We claim that \( T : P \to P \). If \( (u_1, u_2) \in X \), then

\[
\|T(u_1, u_2)\|_X = \|T_n(u_1, u_2)\| + \|T_m(u_1, u_2)\|
\]

\[
\leq \max_{t \in J} \int_0^T G_n(t, s) \omega_1(s) |f_1(u_1(s), u_2(s))| \nabla s
\]

\[
+ \max_{t \in J} \int_0^T G_m(t, s) \omega_2(s) |f_2(u_1(s), u_2(s))| \nabla s
\]

\[
\leq \int_0^T \max_{t \in J} |G_n(t, s)||\omega_1(s)||f_1(u_1(s), u_2(s))| \nabla s
\]

\[
+ \int_0^T \max_{t \in J} |G_m(t, s)||\omega_2(s)||f_2(u_1(s), u_2(s))| \nabla s
\]

\[
\leq \|G_n\|_{L^p} \|\omega_1\|_{L^p} \|\Lambda\| + \|G_m\|_{L^p} \|\omega_2\|_{L^p} \|\Lambda\|
\]

Thus, we have \( \|T(u_1, u_2)\|_X \leq M \), where \( M \) satisfies \( \Lambda \leq \frac{M}{\varepsilon} \). □

Existence of countably many symmetric positive solutions for system ... 171
The following two Corollaries deal with the cases when \( p = \infty \) and \( p = 1 \), respectively.

**Corollary 4.1.** Assume that the functions \( f_i(u_1, u_2) \) are continuous with respect to \((u_1, u_2) \in \mathbb{R} \times \mathbb{R} \) for \( i = 1, 2 \). If \( M \) satisfies \( \Lambda \leq \frac{M}{\varepsilon} \), where

\[
\varepsilon = \max \left\{ 2\|G_n\|_{L^p}, 2\|G_m\|_{L^p} \right\}
\]

and \( \Lambda > 0 \) satisfies

\[
\Lambda \geq \max_{\|\omega\|_{\mathcal{L}}} \left\{ |f_1(u_1, u_2)|, |f_2(u_1, u_2)| \right\},
\]

then the system (1.1)-(1.2) has a solution.

**Corollary 4.2.** Assume that the functions \( f_i(u_1, u_2) \) are continuous with respect to \((u_1, u_2) \in \mathbb{R} \times \mathbb{R} \) for \( i = 1, 2 \). If \( M \) satisfies \( \Lambda \leq \frac{M}{\varepsilon} \), where

\[
\varepsilon = \max \left\{ 2\|G_n\|_{L^\infty}, 2\|G_m\|_{L^\infty} \right\}
\]

and \( \Lambda > 0 \) satisfies

\[
\Lambda \geq \max_{\|\omega\|_{\mathcal{L}}} \left\{ |f_1(u_1, u_2)|, |f_2(u_1, u_2)| \right\},
\]

then the system (1.1)-(1.2) has a solution.

**Corollary 4.3.** If the functions \( f_i(u_1, u_2) \) are continuous and bounded on \( \mathbb{R} \times \mathbb{R} \) for \( i = 1, 2 \), then the system (1.1)-(1.2) has a solution.

**Proof.** Choose \( Q > \sup \{|f_1(u_1, u_2)|, |f_2(u_1, u_2)|\} \). Pick \( M > 0 \) large enough so that \( Q < \frac{M}{\varepsilon} \), where \( \varepsilon \) is defined in Theorem 4.1. Then there is a number \( \Lambda > 0 \) such that \( Q > \Lambda \) where \( \Lambda \geq \max_{\|\omega\|_{\mathcal{L}}} \left\{ |f_1(u_1, u_2)|, |f_2(u_1, u_2)| \right\} \). Hence, \( \varepsilon < \frac{M}{Q} < \frac{M}{\Lambda} \) and thus the system has a solution by Theorem 4.1. \( \square \)

5. Existence of Countably Infinitely Many Positive Solutions

In this section, we establish the existence of countably infinitely many symmetric positive solutions to the system (1.1)-(1.2) by applying Hölder’s inequality and Krasnoselskii’s fixed point theorem in cones. Assume throughout this section that \( \omega_k, (k = 1, 2) \) have countably many singularities in \((0, \frac{T}{2})\).

**Theorem 5.2.** (Krasnoselskii fixed point theorem, [15]) Let \( B \) be a Banach space and let \( P \subset B \) be a cone in \( B \). Assume that \( \Omega_1, \Omega_2 \) are open with \( 0 \in \Omega_1, \bar{\Omega}_1 \subset \Omega_2 \), and let \( T : P \cap (\Omega_2 \setminus \Omega_1) \to P \) be a completely continuous operator such that either

(i) \( \|Tu\| \leq \|u\|, u \in P \cap \partial \Omega_1 \), and \( \|Tu\| \geq \|u\|, u \in P \cap \partial \Omega_2 \), or

(ii) \( \|Tu\| \geq \|u\|, u \in P \cap \partial \Omega_1 \), and \( \|Tu\| \leq \|u\|, u \in P \cap \partial \Omega_2 \).

Then \( T \) has a fixed point in \( P \cap (\Omega_2 \setminus \Omega_1) \).

**Theorem 5.3.** (Hölder’s inequality, [5, 27]) Let \( f \in L^p_{\mathcal{V}}(J^*) \) with \( p > 1 \), \( g \in L^q_{\mathcal{V}}(J^*) \) with \( q > 1 \), and \( \frac{1}{p} + \frac{1}{q} = 1 \). Then \( fg \in L^1_{\mathcal{V}}(J) \) and \( \|fg\|_{L^1_{\mathcal{V}}} \leq \|f\|_{L^p_{\mathcal{V}}} \|g\|_{L^q_{\mathcal{V}}} \).

where

\[
\|f\|_{L^p_{\mathcal{V}}} := \left\{ \int_{J^*} |f|^p(s) \nabla s \right\}^{\frac{1}{p}}, \quad p \in \mathbb{R},
\]

and \( J^* = [a, b] \setminus \mathbb{T} \). Moreover, if \( f \in L^\infty_{\mathcal{V}}(J^*) \) and \( g \in L^\infty_{\mathcal{V}}(J^*) \). Then \( fg \in L^1_{\mathcal{V}}(J) \) and \( \|fg\|_{L^1_{\mathcal{V}}} \leq \|f\|_{L^1_{\mathcal{V}}} \|g\|_{L^\infty_{\mathcal{V}}} \).
For $\tau \in (0, \frac{T}{2})\mathbb{T}$, define the cone $P_{\tau} \subset X$ by

$$
P_{\tau} = \left\{ (u_1, u_2) \in X : u_1(t) \geq 0, u_2(t) \geq 0 \text{ are symmetric, concave and} \right\}$$

where $\gamma_{\tau} = \min \{L_n(\tau)g_n(\tau), L_m(\tau)g_m(\tau)\}$ and $\gamma = \max \{\zeta_n^*g_n^*, \zeta_m^*g_m^*\}$.

For any $(u_1, u_2) \in P_{\tau}$, define an operator $F : P_{\tau} \rightarrow X$ by

$$F(u_1, u_2)(t) = (F_n(u_1, u_2), F_m(u_1, u_2)),$$

where

$$F_n(u_1, u_2) = \int_0^T K_n(t, s)\omega_1(s)f_1(u_1, u_2)\nabla s$$

and

$$F_m(u_1, u_2) = \int_0^T K_m(t, s)\omega_2(s)f_2(u_1, u_2)\nabla s$$

**Lemma 5.14.** Assume that (H1)-(H4) hold. Then $F(P_{\tau}) \subset P_{\tau}$ and $F : P_{\tau} \rightarrow P_{\tau}$ is completely continuous for each $\tau \in (0, \frac{T}{2})\mathbb{T}$.

**Proof.** Fix $\tau \in (0, \frac{T}{2})\mathbb{T}$. First note that $(u_1, u_2) \in P$ implies that $F_n(u_1, u_2)(t) \geq 0$ and $F_m(u_1, u_2)(t) \geq 0$ for all $t \in J$. On the other hand, by Lemma 3.6 and Lemma 3.12 we obtain

$$F_n(u_1, u_2)(t) + F_m(u_1, u_2)(t)$$

$$= \int_0^T K_n(t, s)\omega_1(s)f_1(u_1, u_2)\nabla s + \int_0^T K_m(t, s)\omega_2(s)f_2(u_1, u_2)\nabla s$$

$$\leq \zeta_n^*g_n^*\int_0^T G_n(s, s)\omega_1(s)f_1(u_1, u_2)\nabla s + \zeta_m^*g_m^*\int_0^T G_m(s, s)\omega_2(s)f_2(u_1, u_2)\nabla s$$

$$\leq \gamma \left( \int_0^T G_n(s, s)\omega_1(s)f_1(u_1, u_2)\nabla s + \int_0^T G_m(s, s)\omega_2(s)f_2(u_1, u_2)\nabla s \right)$$

and

$$\min_{t \in [\tau, T-\tau]\mathbb{T}} \left( F_n(u_1, u_2)(t) + F_m(u_1, u_2)(t) \right)$$

$$= \min_{t \in [\tau, T-\tau]\mathbb{T}} \left( \int_0^T K_n(t, s)\omega_1(s)f_1(u_1, u_2)\nabla s + \int_0^T K_m(t, s)\omega_2(s)f_2(u_1, u_2)\nabla s \right)$$

$$= L_n(\tau)g_n(\tau) \int_0^T G_n(s, s)w_1(s)f_1(u_1, u_2)\nabla s$$

$$+ L_m(\tau)g_m(\tau) \int_0^T G_m(s, s)w_2(s)f_2(u_1, u_2)\nabla s$$

$$\geq \gamma_{\tau} \left( \int_0^T G_n(s, s)w_1(s)f_1(u_1, u_2)\nabla s + \int_0^T G_m(s, s)w_2(s)f_2(u_1, u_2)\nabla s \right)$$

$$\geq \frac{\gamma_{\tau}}{\gamma} \| (F_n(u_1, u_2), F_m(u_1, u_2)) \|_X$$

$$\geq \frac{\gamma_{\tau}}{\gamma} \| F(u_1, u_2) \|_X.$$
So, \( F(u_1, u_2) \in P_r \) and then \( F(P_r) \subset P_r \). Next, by standard methods and the Arzela-Ascoli theorem, one can easily prove that the operator \( T \) is completely continuous. The proof is complete.

We consider three possible cases for \( \omega_{1,2} \in L^p_P(J) : p > 1, p = 1, p = \infty \). When \( p > 1 \) we have the following theorem.

**Theorem 5.4.** Assume that (H1) – (H4) hold, let \( \{\tau_k\}_{k=1}^\infty \) be such that \( t_{k+1} < \tau_k < t_k, k = 1, 2, 3, \ldots \). Let \( \{S_k\}_{k=1}^\infty \) and \( \{r_k\}_{k=1}^\infty \) be such that

\[
S_k + \frac{\gamma r_k}{\gamma} \tau_k < C r_k < S_k, \quad k \in \mathbb{N},
\]

where

\[
C = \max \left\{ \frac{1}{L_n(\tau_1)g_n(\tau_1)c \int_{\tau_1}^{1-\tau_1} g_n(s, s) \nabla s}, \frac{1}{L_m(\tau_1)g_m(\tau_1)c \int_{\tau_1}^{1-\tau_1} g_m(s, s) \nabla s} \right\}.
\]

Assume that \( f \) satisfies

(A1) \( f_1(u_1, u_2) \leq \frac{M_1 S_k}{2} \) and \( f_2(u_1, u_2) \leq \frac{M'_1 S_k}{2} \) for all \( t \in J, 0 \leq u_1 + u_2 \leq S_k \), where

\[
M_1 < \frac{\zeta_n g_n^*}{L^\infty_P} \|G_n\|_{L^\infty_P} \|\omega_1\|_{L^\infty_P} \quad \text{and} \quad M'_1 < \frac{\zeta_n g_n^*}{L^\infty_P} \|G_m\|_{L^\infty_P} \|\omega_2\|_{L^\infty_P}.
\]

(A2) \( f_1(u_1, u_2) \geq C r_k \) or \( f_2(u_1, u_2) \geq C r_k \) for all \( t \in [\tau_k, T - \tau_k] \). Then, \( \frac{\gamma r_k}{\gamma} \tau_k \leq u_1 + u_2 \leq r_k \).

Then the system (1.1)-(1.2) has countably infinitely many symmetric positive solutions \( \{(u^{[k]}_1, u^{[k]}_2)\}_{k=1}^\infty \). Furthermore, \( r_k \leq \|(u^{[k]}_1, u^{[k]}_2)\| \leq S_k \) for each \( k \in \mathbb{N} \).

**Proof.** Consider the sequences \( \{\Omega_{1,k}\}_{k=1}^\infty \) and \( \{\Omega_{2,k}\}_{k=1}^\infty \) of open subsets of \( X \) defined by

\[
\Omega_{1,k} = \{(u_1, u_2) \in X : \|(u_1, u_2)\|_X < S_k\},
\]

\[
\Omega_{2,k} = \{(u_1, u_2) \in X : \|(u_1, u_2)\|_X < r_k\}.
\]

Let \( \{\gamma_k\}_{k=1}^\infty \) be as in the hypothesis and note that \( \delta_1 < \tau_{k+1} < \tau_k < \tau_k + \frac{T}{2} \), for all \( k \in \mathbb{N} \). For each \( k \in \mathbb{N} \), define the cone \( P_{r_k} \) by

\[
P_{r_k} = \left\{ (u_1, u_2) \in X : u_1(t) \geq 0, u_2(t) \geq 0 \text{ are symmetric, concave and} \right\}
\]

\[
\min_{t \in [\tau_{k-1}, 1-\tau_k]} (u_1(t) + u_2(t)) \geq \frac{\gamma \tau_k}{\gamma} \|(u_1(t), u_2(t))\|_X \right\}.
\]

Let \( (u_1, u_2) \in P_{r_k} \cap \partial \Omega_{1,k} \). Then,

\[
u_1(s) + u_2(s) \leq S_k = \|(u_1, u_2)\|_X
\]

for all \( s \in J \). By (A1),

\[
\|F_n(u_1, u_2)\| = \max_{t \in J} \int_0^T K_n(t, s) \omega_1(s) f_1(u_1(s), u_2(s)) \nabla s
\]

\[
\leq \zeta_n g_n^* \int_0^T G_n(s, s) \omega_1(s) f_1(u_1(s), u_2(s)) \nabla s
\]

\[
\leq \zeta_n g_n^* \|G_n\|_{L^\infty_P} \|\omega_1\|_{L^\infty_P} \frac{M_1 S_k}{2}
\]

\[
\leq \frac{S_k}{2} = \frac{\|(u_1, u_2)\|}{2}.
\]
Therefore, for \((u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{1,k}\), and \(t \in J\) we get
\[
\|F(u_1, u_2)\|_X = \|(F_n(u_1, u_2), F_m(u_1, u_2))\|_X \\
= \|F_n(u_1, u_2)\| + \|F_m(u_1, u_2)\| \\
\leq \|(u_1, u_2)\|_X. \tag{5.19}
\]

Let \(s \in [\tau_k, 1 - \tau_k] \mathbb{T}\). Then, for \((u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{2,k}\),
\[
r_k = \|(u_1, u_2)\| \geq u_1(s) + u_2(s) \\
\geq \min_{s \in [\tau_k, 1 - \tau_k] \mathbb{T}} (u_1(s) + u_2(s)) \\
\geq \frac{\gamma r_k}{\gamma} \|(u_1, u_2)\| \\
\geq \frac{\gamma r_k}{\gamma} r_k.
\]

By (A2),
\[
\|F(u_1, u_2)\| = \|F_n(u_1, u_2)\| + \|F_m(u_1, u_2)\| \geq \|F_n(u_1, u_2)\| \\
= \max_{t \in J} \int_0^T K_n(t, s) \omega_1(s) f_1(u_1(s), u_2(s)) \nabla s \\
\geq \max_{t \in J} \int_{\tau_k}^{T-\tau_k} K_n(t, s) \omega_1(s) f_1(u_1(s), u_2(s)) \nabla s \\
\geq \max_{t \in J} \int_{\tau_k}^{T-\tau_k} K_n(t, s) \omega_1(s) \nabla s Cr_k \\
\geq Ct \max_{t \in \tau_k} \int_{\tau_k}^{T-\tau_1} K_n(t, s) \nabla s \\
\geq Ct L_n(\tau_1) g_n(\tau_1) \int_{\tau_1}^{1-\tau_1} G_n(s, s) \nabla s \\
\geq r_k = \|(u_1, u_2)\|_X.
\]

Thus, if \((u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{2,k}\), then
\[
\|F(u_1, u_2)\| \geq \|(u_1, u_2)\|_X. \tag{5.20}
\]

It is obvious that \(0 \in \Omega_{2,k} \subset \bar{\Omega}_{2,k} \subset \Omega_{1,k}\). By (5.19),(5.20), it follows from Theorem 4.1 that the operator \(T\) has a fixed point \((u_1^{[k]}, u_2^{[k]}) \in P_{\tau_k} \cap (\bar{\Omega}_{1,k} \setminus \Omega_{2,k})\) such that \(r_k \leq \|(u_1^{[k]}, u_2^{[k]})\| \leq S_k\). Since \(k \in \mathbb{N}\) was arbitrary, the proof is complete. \(\square\)

Now we deal with the case \(p = 1\).

**Theorem 5.5.** Assume that (H1) – (H4) hold, let \(\{\tau_k\}_{k=1}^\infty\) be such that \(t_{k+1} < \tau_k < t_k\), \(k = 1, 2, 3, \cdots\). Let \(\{S_k\}_{k=1}^\infty\) and \(\{r_k\}_{k=1}^\infty\) be such that
\[
S_{k+1} < \frac{\gamma r_k}{\gamma} r_k < Cr_k < S_k, \quad k \in \mathbb{N},
\]
where $C$ is defined in Theorem 5.4. Also assume that $f$ satisfies

(B1) \( f_1(u_1, u_2) \leq \frac{M_2S_k}{2} \) and \( f_2(u_1, u_2) \leq \frac{M_2S_k}{2} \) for all \( t \in J, 0 \leq u_1 + u_2 \leq S_k \), where

\[
M_2 < \min \left\{ \frac{1}{\zeta_n g_n \|G_n\| L^\infty \|\omega_1\| L^\infty}, \ C \right\},
\]

\[
M'_2 < \min \left\{ \frac{1}{\zeta_ng_n^* \|G_n\| L^\infty \|\omega_2\| L^\infty}, \ C \right\}
\]

and (A2). Then the boundary value problem (1.1)–(1.2) has countably infinitely many symmetric positive solutions \( \{(u_1^{[k]}, u_2^{[k]})\}_{k=1}^\infty \). Furthermore, for each \( k \in \mathbb{N} \), \( r_k \leq \|(u_1^{[k]}, u_2^{[k]})\| \leq S_k \).

**Proof.** For a fixed \( k \), let \( \Omega_{1,k} \) be as in the proof of Theorem 5.4 and let \( (u_1, u_2) \) be an element of \( P_{\tau_k} \cap \partial \Omega_{1,k} \). Then

\[
u_1(s) + \nu_2(s) \leq S_k = \|(u_1, u_2)\|_X,
\]

for all \( s \in J \). By (B1) and Theorem 5.4,

\[
\|F(u_1, u_2)\| = \|F_n(u_1, u_2)\| + \|F_m(u_1, u_2)\|
\leq \max_{t \in J} \int_0^T K_n(t, s)\omega_1(s) f_1(u_1(s), u_2(s)) \, ds
\]

\[
+ \max_{t \in J} \int_0^T K_m(t, s)\omega_2(s) f_2(u_1(s), u_2(s)) \, ds
\]

\[
\leq \zeta_n g_n \|G_n\| L^\infty \|\omega_1\| L^\infty \frac{M_2S_k}{2} + \zeta_n g_n^* \|G_m\| L^\infty \|\omega_2\| L^\infty \frac{M'_2S_k}{2}
\]

\[
\leq S_k.
\]

Thus,

\[
\|F(u_1, u_2)\| \leq \|(u_1, u_2)\|_X,
\]

for \( (u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{1,k} \). Now define \( \Omega_{2,k} = \{(u_1, u_2) \in X : \|(u_1, u_2)\|_X < r_k\} \). Let \( (u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{2,k} \) and let \( s \in [\tau_k, 1 - \tau_k] \). Then, the argument leading to (5.20) carries over to the present case and completes the proof. \( \square \)

Finally we consider the case of \( p = \infty \).

**Theorem 5.6.** Assume that (H1) – (H4) hold. Let \( \{S_k\}_{k=1}^\infty \) and \( \{r_k\}_{k=1}^\infty \) be such that

\[
S_{k+1} < \frac{\gamma r_k}{\gamma} < C r_k < S_k, \quad k \in \mathbb{N},
\]

where \( C \) is defined in Theorem 4.4. Also assume that \( f \) satisfies

(E1) \( f_1(u_1, u_2) \leq M_3S_k \) and \( f_1(u_1, u_2) \leq M'_3S_k \) for all \( t \in J, 0 \leq u_1 + u_2 \leq S_k \), where

\[
M_3 < \min \left\{ \frac{1}{\zeta_n g_n \|G_n\| L^\infty \|\omega_1\| L^\infty}, \ C \right\},
\]

\[
M'_3 < \min \left\{ \frac{1}{\zeta_ng_n^* \|G_n\| L^\infty \|\omega_2\| L^\infty}, \ C \right\}
\]

and (A2). Then the boundary value problem (1.1)–(1.2) has countably infinitely many symmetric positive solutions \( \{(u_1^{[k]}, u_2^{[k]})\}_{k=1}^\infty \). Furthermore, for each \( k \in \mathbb{N} \), \( r_k \leq \|(u_1^{[k]}, u_2^{[k]})\| \leq S_k \).
Proof. By (E1),
\[ \|F(u_1, u_2)\| = \|F_n(u_1, u_2)\| + \|F_m(u_1, u_2)\| \]
\[ \leq \max_{t \in J} \int_0^T K_n(t, s)\omega_1(s)f_1(u_1(s), u_2(s))\nabla s \]
\[ + \max_{t \in J} \int_0^T K_m(t, s)\omega_2(s)f_2(u_1(s), u_2(s))\nabla s \]
\[ \leq \zeta_n\gamma_n\|G_1\|_{L^\infty}\omega_1\|L^\infty\| + \zeta_m\gamma_m\|G_m\|_{L^\infty} + \zeta_m S_k \]
\[ \leq S_k. \]

This shows that if \((u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{1,k},\) where
\[ \Omega_{1,k} = \{(u_1, u_2) \in X : \|(u_1, u_2)\| < S_k\}. \]

Then,
\[ \|F(u_1, u_2)\| \leq \|(u_1, u_2)\|. \]

Define \(\Omega_{2,k} = \{(u_1, u_2) \in X : \|(u_1, u_2)\| < r_k\}\) and let \((u_1, u_2) \in P_{\tau_k} \cap \partial \Omega_{2,k} .\) Then, the argument employed in the proof of Theorem 5.4 applies directly to yield \(\|F(u_1, u_2)\| \geq \|(u_1, u_2)\|.\) By the Theorem 4.1, completes the proof. \(\square\)

6. Example

In this section, we provide an example of a family of functions \(\omega(t)\) that satisfy conditions \((H1), (H2)\) corresponding to the cases \(p = 1\) and \(p = 2.\)

Let \(\mathbb{T} = [0, \frac{1}{6}] \cup \{\frac{9}{50}, \frac{1}{5}, \frac{11}{50}, \frac{6}{25}\} \cup \{\frac{19}{25}, \frac{39}{50}, \frac{4}{9}, \frac{41}{50}\} \cup \{\frac{5}{6}, 1\}\) be bounded symmetric time scale and consider the family of functions \(\omega(t, \theta) : [0, 1]_{\mathbb{T}} \to (0, +\infty)\) given by
\[ \omega(t, \theta) = \begin{cases} \frac{1}{|t - \frac{1}{2}|^\theta} & \text{if } 0 \leq t \leq \frac{1}{4} \text{ or } \frac{3}{4} \leq t \leq 1, \\ \sum_{l=1}^\infty \frac{\chi_l \vartheta_{l-1}}{|t - \frac{1}{2}| + t_l - \frac{1}{2}|^\theta} & \text{if } \frac{1}{4} < t < \frac{3}{4}, \end{cases} \]

where
\[ t_0 = \frac{5}{16}, t_l = t_0 - \sum_{k=0}^{l-1} \frac{1}{(k + 2)^4}, l = 1, 2, 3, \ldots, \text{ and } \vartheta_0 = 1, \vartheta_l = \frac{1}{2}(t_l + t_{l+1}), l = 1, 2, 3, \ldots. \]

At first, it is easily seen that \(\omega(t, \theta) \geq \omega(1, \theta) = \frac{1}{|1 - \frac{1}{2}|^\theta} = 2^\theta, t_1 = \frac{1}{4} < \frac{1}{2}, t_l - t_{l+1} = \frac{1}{(l+2)^2}, l = 1, 2, 3, \ldots, \text{ and note that } \sum_{l=1}^\infty \frac{1}{l^\theta} = \pi^4/90.\) So,
\[ t^* = \lim_{l \to \infty} t_l = \frac{5}{16} - \sum_{k=0}^{\infty} \frac{1}{(k + 2)^4} = \frac{5}{16} - \left(\frac{\pi^4}{90} - 1\right) = \frac{21}{16} - \frac{\pi^4}{90} > \frac{1}{5}. \]
We claim that if $\theta = \frac{1}{2}$, then $\omega(t, \theta) \in L^\infty[0, 1]$. Note that $\sum_{i=1}^{\infty} \frac{1}{r_i} = \frac{2}{\theta}$, we have

$$
\int_0^1 \omega(t, \theta) \nabla t = \int_0^{\frac{1}{2}} \omega(t, \theta) \nabla t + \int_{\frac{1}{2}}^{\frac{3}{4}} \omega(t, \theta) \nabla t + \int_{\frac{3}{4}}^1 \omega(t, \theta) \nabla t + \int_{\frac{5}{8}}^1 \omega(t, \theta) \nabla t
$$

$$
= \int_0^{\frac{1}{2}} \frac{1}{|t - \frac{1}{2}|^{\theta}} \nabla t + \int_{\frac{1}{2}}^{\frac{3}{4}} \sum_{i=1}^{\infty} \frac{\chi[\theta_i, \theta_{i-1}]}{|t - \frac{1}{2}| + t_i - \frac{1}{2}|^{\theta}} \nabla t + \int_{\frac{3}{4}}^1 \frac{1}{|t - \frac{1}{2}|^{\theta}} \nabla t
$$

$$
+ \frac{1}{50} \left[ 2 \times \left( \frac{10}{3} \right)^{\theta} + 2 \times \left( \frac{25}{7} \right)^{\theta} + \left( \frac{50}{13} \right)^{\theta} + \left( \frac{25}{8} \right)^{\theta} \right] + \frac{1}{75} \left[ \left( \frac{25}{8} \right)^{\theta} + 3^{\theta} \right]
$$

$$
+ \frac{1}{100} \left[ 4^{\theta} + \left( \frac{50}{13} \right)^{\theta} \right]
$$

Let

$$
\Sigma = \frac{1}{50} \left[ 2 \times \left( \frac{10}{3} \right)^{\theta} + 2 \times \left( \frac{25}{7} \right)^{\theta} + \left( \frac{50}{13} \right)^{\theta} + \left( \frac{25}{8} \right)^{\theta} \right] + \frac{1}{75} \left[ \left( \frac{25}{8} \right)^{\theta} + 3^{\theta} \right]
$$

$$
+ \frac{1}{100} \left[ 4^{\theta} + \left( \frac{50}{13} \right)^{\theta} \right]
$$

with $\theta = \frac{1}{2}$. Then

$$
\int_0^1 \omega(t, \theta) \nabla t = \sum_{i=1}^{\infty} \int_{\theta_i}^{\theta_{i-1}} \frac{1}{|t - \frac{1}{2}| + t_i - \frac{1}{2}|^{\theta}} \nabla t + \int_0^{\frac{1}{2}} \frac{1}{(\frac{1}{2} - t)^{\theta}} \nabla t
$$

$$
+ \int_{\frac{5}{8}}^1 \frac{1}{(t - \frac{1}{2})^{\theta}} \nabla t + \Sigma
$$

$$
= \sum_{i=1}^{\infty} \left[ \int_{\theta_i}^{t_i} \frac{1}{(t_i - t)^{\theta}} \nabla t + \int_{t_i}^{t_{i-1}} \frac{1}{(t_{i-1} - t)^{\theta}} \nabla t \right]
$$

$$
+ \frac{2}{1 - \theta} \left[ \frac{1}{31^{\theta}} - \frac{1}{21^{\theta}} \right] + \Sigma
$$

$$
= \sum_{i=1}^{\infty} \left[ \int_{t_{i-1} + \frac{t_i}{2}}^{t_i} \frac{1}{(t_i - t)^{\theta}} \nabla t + \int_{t_i}^{t_{i-1} + \frac{t_i}{2}} \frac{1}{(t_{i-1} - t)^{\theta}} \nabla t \right]
$$

$$
+ \frac{2}{1 - \theta} \left[ \frac{1}{31^{\theta}} - \frac{1}{21^{\theta}} \right] + \Sigma
$$
So that
\[
\int_0^1 \omega(t, \theta) \nabla t = \frac{1}{1 - \theta} \sum_{l=1}^{\infty} \left( \left( \frac{t_l - t_{l+1}}{2} \right)^{-\theta} + \left( \frac{t_{l-1} - t_l}{2} \right)^{-\theta} \right) + \frac{2}{1 - \theta} \left[ \frac{1}{2^{1-\theta}} - \frac{1}{3^{1-\theta}} \right] + \Sigma
\]
\[
= \frac{1}{2^{1-\theta}(1 - \theta)} \sum_{l=1}^{\infty} \left[ \frac{1}{(l + 2)^{4(1-\theta)}} + \frac{1}{(l + 1)^{4(1-\theta)}} \right] + \frac{2}{1 - \theta} \left[ \frac{1}{2^{1-\theta}} - \frac{1}{3^{1-\theta}} \right] + \Sigma
\]
\[
= \sqrt{2} \sum_{l=1}^{\infty} \left[ \frac{1}{(l + 1)^2} + \frac{1}{(l + 1)^2} \right] + 2\sqrt{2} - \frac{4}{3} \sqrt{3} + \Sigma
\]
\[
= \sqrt{2} \left( \frac{\pi^2}{3} - \frac{9}{4} \right) + 2\sqrt{2} - \frac{4}{3} \sqrt{3} + \Sigma,
\]
This shows that \( \omega(t, \theta) \in L^1_\nu[0, 1] \).

Next, we claim that if \( \theta = \frac{1}{4} \), then \( \omega(t, \theta) \in L^2_\nu[0, 1] \). In this case, we need the cauchy product,
\[
\sum_{l=1}^{\infty} x_l \cdot \sum_{l=1}^{\infty} y_l = \sum_{l=1}^{\infty} z_l,
\]
where
\[
z_l = \sum_{n=1}^{l} x_n y_{l-n+1}.
\]
Note that
\[
\int_0^1 \omega^2(t, \theta) \nabla t = \int_0^{\frac{1}{4}} \omega^2(t, \theta) \nabla t + \int_{\frac{1}{4}}^{\frac{3}{4}} \left[ \sum_{l=1}^{\infty} \frac{\chi[\vartheta_l, \vartheta_{l-1}]}{|t - \vartheta_l|^{2\theta}} \right]^2 \nabla t + \int_{\frac{3}{4}}^{1} \omega^2(t, \theta) \nabla t,
\]
we use (6.21) and (6.22) and the fact that, if \( X \cap Y = \emptyset \), then \( \chi[X] \cdot \chi[Y] = 0 \) to simplify the integrand,
\[
\left[ \sum_{l=1}^{\infty} \frac{\chi[\vartheta_l, \vartheta_{l-1}]}{|t - \vartheta_l|^{2\theta}} \right]^2 = \sum_{l=1}^{\infty} \sum_{n=1}^{l} \frac{\chi[\vartheta_n, \vartheta_{l-1}]}{|t - \vartheta_l|^{2\theta}} \frac{\chi[\vartheta_{l-n+1}, \vartheta_{l-n}]}{|t - \vartheta_{l-n+1}|^{2\theta}}
\]
\[
= \sum_{l=1}^{\infty} \frac{\chi[\vartheta_l, \vartheta_{l-1}]}{|t - \vartheta_l|^{2\theta}} \text{ a.e.,}
\]
and so (6.23) may be written as
\[
\int_0^1 \omega^2(t, \theta) \nabla t = \sum_{l=1}^{\infty} \int_{\frac{1}{4}}^{\frac{3}{4}} \frac{\chi[\vartheta_l, \vartheta_{l-1}]}{|t - \frac{1}{2}| + t_l - \frac{1}{2}|^{2\theta}} \nabla t + \int_{\frac{3}{4}}^{1} \omega^2(t, \theta) \nabla t
\]
\[
+ \int_{\frac{3}{4}}^{1} \omega^2(t, \theta) \nabla t
\]
Let
\[
\Sigma = \frac{1}{75} \left[ \left( \frac{25}{8} \right)^{2\theta} + 3^{2\theta} \right] + \frac{1}{100} \left[ 4^{2\theta} + \left( \frac{50}{13} \right)^{2\theta} \right] + \frac{1}{50} \left[ 2 \times \left( \frac{10}{3} \right)^{2\theta} + 2 \times \left( \frac{25}{7} \right)^{2\theta} + \left( \frac{50}{13} \right)^{2\theta} + \left( \frac{25}{8} \right)^{2\theta} \right]
\]
with \( \theta = \frac{1}{4} \). Then
\[
\int_0^1 \omega^2(t, \theta) \nabla t = \sum_{l=1}^{\infty} \int_{\frac{l}{2}}^{\frac{l+1}{2}} \frac{1}{(t - \frac{l}{2})^{2\theta}} \nabla t + \int_0^{1 - \frac{l}{2}} \frac{1}{(l - t)^{2\theta}} \nabla t + \int_{1 - l}^{\frac{1}{2}} \frac{1}{(t - 1)^{2\theta}} \nabla t + \Sigma
\]
\[
= \sum_{l=1}^{\infty} \left[ \int_{\frac{l}{2}}^{\frac{l+1}{2}} \frac{1}{(t - \frac{l}{2})^{2\theta}} \nabla t + \int_{\frac{l+1}{2}}^{\frac{l+2}{2}} \frac{1}{(t - \frac{l+1}{2})^{2\theta}} \nabla t \right] + \frac{2}{1 - 2\theta} \left[ \frac{1}{2^{1-2\theta}} - \frac{1}{3^{1-2\theta}} \right] + \Sigma
\]
\[
= \frac{1}{1 - 2\theta} \sum_{l=1}^{\infty} \left[ \left( \frac{t - t_{l+1}}{2} \right)^{1-2\theta} + \left( \frac{t_{l-1} - t_{l}}{2} \right)^{1-2\theta} \right] + \frac{2}{1 - 2\theta} \left[ \frac{1}{2^{1-2\theta}} - \frac{1}{3^{1-2\theta}} \right] + \Sigma
\]
\[
= \frac{1}{2^{1-2\theta}(1 - 2\theta)} \sum_{l=1}^{\infty} \left[ \frac{1}{(l + 2)^{4(1-2\theta)}} + \frac{1}{(l + 1)^{4(1-2\theta)}} \right] + \frac{2}{1 - 2\theta} \left[ \frac{1}{2^{1-2\theta}} - \frac{1}{3^{1-2\theta}} \right] + \Sigma
\]
\[
= \sqrt{2} \sum_{l=1}^{\infty} \left[ \frac{1}{(l + 2)^2} + \frac{1}{(l + 1)^2} \right] + 2\sqrt{2} - \frac{4}{3} \sqrt{3} + \Sigma
\]
\[
= \sqrt{2} \left( \frac{\pi^2}{3} - \frac{9}{4} \right) + 2\sqrt{2} - \frac{4}{3} \sqrt{3} + \Sigma.
\]
Which implies \( \omega(t, \theta) \in L^2[0, 1] \).

**Acknowledgements.** The authors thank the referee for his valuable suggestions. One of the authors (Khuddush Mahammad) is thankful to UGC, Government of India, New Delhi for awarding SRF under MANF; No. F1-17.1/2016-17/MANF-2015-17-AND-54483.

**References**


Existence of countably many symmetric positive solutions for system ...

**DEPARTMENT OF APPLIED MATHEMATICS**  
**COLLEGE OF SCIENCE AND TECHNOLOGY**  
**ANDHRA UNIVERSITY**  
**VISAKHAPATNAM, INDIA-530003**  
*E-mail address: rajendra92@rediffmail.com*  
*E-mail address: khuddush89@gmail.com*