Existence of countably many symmetric positive solutions for system of even order time scale boundary value problems in Banach spaces

K. R. Prasad and Md. Khuddush

ABSTRACT

This paper establishes the existence and uniqueness of the solutions to the system of even order differential equations on time scales,

\[(-1)^{n}u_{1}(\Delta^{n})^{i} (t) = \omega_{1}(t)f_{1}(u_{1}(t), u_{2}(t)), \quad t \in [0, T]_{\mathbb{T}}, \quad n \in \mathbb{Z}^{+}, \]

\[(-1)^{m}u_{2}(\Delta^{m})^{j} (t) = \omega_{2}(t)f_{2}(u_{1}(t), u_{2}(t)), \quad t \in [0, T]_{\mathbb{T}}, \quad m \in \mathbb{Z}^{+}, \]

satisfying two-point Sturm-Liouville integral boundary conditions

\[a_{i+1}u_{1}(\Delta^{i})^{j}(0) - \beta_{i+1}u_{1}(\Delta^{i})^{j}(T) = \int_{0}^{T} a_{i+1}(s)\Delta^{j}(u_{1}(s))\Delta s, \quad 0 \leq i \leq n - 1, \]

\[a_{i+1}u_{2}(\Delta^{i})^{j}(0) - \beta_{i+1}u_{2}(\Delta^{i})^{j}(T) = \int_{0}^{T} a_{i+1}(s)\Delta^{j}(u_{2}(s))\Delta s, \quad 0 \leq i \leq n - 1, \]

by utilizing Schauder fixed point theorem. We also establish the existence of countably many symmetric positive solutions for the above problem by applying Hölder’s inequality and Krasnoselskii’s fixed point theorem.

Acknowledgements. The authors thank the referee for his valuable suggestions. One of the authors (Khuddush Muhammad) is thankful to UGC, Government of India, New Delhi for awarding SRF under MANF; No. F1-17.1/2016-17/MANF-2015-17-AND-54483.

REFERENCES

Received: 30.05.2018; In revised form: 06.01.2019; Accepted: 13.01.2019
2010 Mathematics Subject Classification: 47B34, 34N05, 46G12.
Key words and phrases. Banach space, time scale boundary value problem, concavity, symmetric positive solution, Hölder’s inequality.

DEPARTMENT OF APPLIED MATHEMATICS
COLLEGE OF SCIENCE AND TECHNOLOGY
ANDHRA UNIVERSITY
VISAKHAPATNAM, INDIA-530003
E-mail address: rajendra92@rediffmail.com
E-mail address: khuddush89@gmail.com