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Sums and spectral norms of all almost balancing numbers

AHMET TEKCAN

ABSTRACT. In this work, we derive some algebraic relations on sums of all almost balancing numbers of first
and second type. We also deduce some formulas on sums of Pell, Pell–Lucas and balancing numbers in terms
of all almost balancing numbers of first and second type. Further, we formulate the eigenvalues and spectral
norms of circulant matrices of all almost balancing numbers of first and second type.

1. INTRODUCTION

A positive integer n is called a balancing number (see [1] and [3]) if the Diophantine
equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)

holds for some positive integer r which is called balancer corresponding to n. If n is a
balancing number with balancer r, then from (1.1)

n2 =
(n+ r)(n+ r + 1)

2
and r =

−2n− 1 +
√

8n2 + 1

2
. (1.2)

So from (1.2), n is a balancing number if and only if n2 is a triangular number and 8n2+1 is
a perfect square. Though the definition of balancing numbers suggests that no balancing
number should be less than 2. Behera and Panda ([1]), while accepting 1 as a balancing
number (since it is the positive square root of the square triangular number 1), have set
B0 = 1, B1 = 6 and so on, using the symbol Bn for the nth balancing number. To stan-
dardize the notation at par with Fibonacci numbers, we relabel the balancing numbers by
setting B0 = 0, B1 = 1, B2 = 6 and Bn+1 = 6Bn −Bn−1 for n ≥ 2.

Later Panda and Ray ([12]) defined that a positive integer n is called a cobalancing
number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.3)

holds for some positive integer r which is called cobalancer corresponding to n. If n is a
cobalancing number with cobalancer r, then from (1.3)

n(n+ 1) =
(n+ r)(n+ r + 1)

2
and r =

−2n− 1 +
√

8n2 + 8n+ 1

2
. (1.4)

So from (1.4), n is a cobalancing number if and only if n(n+ 1) is a triangular number and
8n2+8n+1 is a perfect square. Since 8(0)2+8(0)+1 = 1 is a perfect square, we accept 0 as
a cobalancing number, just like Behera and Panda ([1]) accepted 1 as a balancing number.
Cobalancing number is denoted by bn. Then it is easily seen that b0 = b1 = 0, b2 = 2 and
bn+1 = 6bn − bn−1 + 2 for n ≥ 2.
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It is clear from (1.1) and (1.3) that every balancing number is a cobalancer and every
cobalancing number is a balancer, that is, Bn = rn+1 and Rn = bn for n ≥ 1, where Rn is
the nth the balancer and rn is the nth cobalancer. Since Rn = bn, we get from (1.1) that

bn =
−(2Bn + 1) +

√
8B2

n + 1

2
and Bn =

2bn + 1 +
√

8b2n + 8bn + 1

2
. (1.5)

Thus from (1.5), Bn is a balancing number if and only if 8B2
n + 1 is a perfect square and bn

is a cobalancing number if and only if 8b2n + 8bn + 1 is a perfect square. So

Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1

are integers which are called the nth Lucas–balancing number and nth Lucas–cobalancing
number (Here we notice that C0 = c0 = 1).

Let α = 1 +
√

2 and β = 1 −
√

2 be the roots of the characteristic equation for Pell and
Pell–Lucas numbers (which are the numbers defined by P0 = 0, P1 = 1, Pn = 2Pn−1 +
Pn−2 and Q0 = Q1 = 2, Qn = 2Qn−1 + Qn−2 for n ≥ 2). Then Binet formulas for all
balancing numbers are

Bn =
α2n − β2n

4
√

2
, bn =

α2n−1 − β2n−1

4
√

2
− 1

2
, Cn =

α2n + β2n

2
and cn =

α2n−1 + β2n−1

2

for n ≥ 1 (for further details on balancing numbers see also [4, 8, 9, 11, 14]).
Balancing numbers and their generalizations have been investigated by several authors

from many aspects. In [6, Theorem 4], Liptai proved that there is no Fibonacci balancing
number except 1 and in [7, Theorem 4] he proved that there is no Lucas balancing number.
In [16], Szalay considered the same problem and obtained some nice results by a different
method. In [5], Kovács, Liptai and Olajos extended the concept of balancing numbers to
the (a, b)−balancing numbers defined as follows: Let a > 0 and b ≥ 0 be coprime integers.
If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some positive integers n and r, then an+b is an (a, b)−balancing number. The sequence
of (a, b)−balancing numbers is denoted byB(a,b)

m form ≥ 1. In [8], the authors generalized
the notion of balancing numbers to numbers defined as follows: Let y, k, l ∈ Z+ such that
y ≥ 4. Then a positive integer x with x ≤ y − 2 is called a (k, l)−power numerical center
for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They studied the number of solutions of the equation above and proved several effective
and ineffective finiteness results for (k, l)−power numerical centers.

For positive integers k, x, let

Πk(x) = x(x+ 1) . . . (x+ k − 1).

Then it was proved in [5, Theorem 3 and Theorem 4] that the equation Bm = Πk(x) for
fixed integer k ≥ 2 has only infinitely many solutions and for k ∈ {2, 3, 4} all solutions
were determined. In [19, Theorem 1] Tengely, considered the case k = 5, that is, Bm =
x(x + 1)(x + 2)(x + 3)(x + 4) and proved that this Diophantine equation has no solution
for m ≥ 0 and x ∈ Z.

Almost balancing numbers first defined by Panda and Panda in [13]. A natural number
n is called an almost balancing number if the Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)]| = 1 (1.6)
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holds for some positive integer r which is called the almost balancer. From (1.6), if nr +
r(r+1)

2 − (n−1)n
2 = 1, then n is called an almost balancing number of first type and r is

called an almost balancer of first type and in this case

r =
−2n− 1 +

√
8n2 + 9

2
. (1.7)

If nr + r(r+1)
2 − (n−1)n

2 = −1, then n is called an almost balancing number of second type
and r is called an almost balancer of second type and in this case

r =
−2n− 1 +

√
8n2 − 7

2
. (1.8)

Let B∗n denote the nth almost balancing number of first type and let B∗∗n denote the nth

almost balancing number of second type. Then from (1.7), B∗n is an almost balancing
number of first type if and only if 8(B∗n)2 + 9 is a perfect square and from (1.8), B∗∗n is
an almost balancing number of second type if and only if 8(B∗∗n )2 − 7 is a perfect square.
Thus

C∗n =
√

8(B∗n)2 + 9 and C∗∗n =
√

8(B∗∗n )2 − 7

are integers which are called the nth almost Lucas–balancing number of first type and the
nth almost Lucas–balancing number of second type.

Similarly in [10], Panda defined that a positive integer n is called an almost cobalancing
number if the Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− (1 + 2 + · · ·+ n)| = 1 (1.9)

holds for some positive integer r which is called an almost cobalancer. From (1.9), if
nr + r(r+1)

2 − n(n+1)
2 = 1, then n is called an almost cobalancing number of first type and

r is called an almost cobalancer of first type and in this case

r =
−2n− 1 +

√
8n2 + 8n+ 9

2
. (1.10)

If nr + r(r+1)
2 − n(n+1)

2 = −1, then n is called an almost cobalancing number of second
type and r is called an almost cobalancer of second type and in this case

r =
−2n− 1 +

√
8n2 + 8n− 7

2
. (1.11)

Let b∗n denote the nth almost cobalancing number of first type and let b∗∗n denote the nth

almost cobalancing number of second type. Then from (1.10), b∗n is an almost cobalancing
number of first type if and only if 8(b∗n)2 +8b∗n+9 is a perfect square and from (1.11), b∗∗n is
an almost cobalancing number of second type if and only if 8(b∗∗n )2 + 8b∗∗n − 7 is a perfect
square. Thus

c∗n =
√

8(b∗n)2 + 8b∗n + 9 and c∗∗n =
√

8(b∗∗n )2 + 8b∗∗n − 7

are integers which are called the nth almost Lucas–cobalancing number of first type and
the nth almost Lucas–cobalancing number of second type.

2. SUMS OF ALMOST BALANCING NUMBERS.

In [18], we considered the almost balancing and almost cobalancing numbers of first
and second type and proved that the general terms of all almost balancing numbers of
first type are

B∗n = 3Bn, b
∗
2n = 2bn+1 − bn, b∗2n−1 = 4bn − bn−1 + 1,

C∗n = 3Cn, c
∗
2n = cn+2 − 4cn+1, c

∗
2n−1 = cn+1 − 2cn
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and the general terms of all almost balancing numbers of second type are

B∗∗2n−1 = Bn−1 + Cn−1, B
∗∗
2n = −Bn + Cn, b

∗∗
n = 3bn + 1,

C∗∗2n−1 = 8Bn−1 + Cn−1, C
∗∗
2n = 8Bn − Cn, c∗∗n = 3cn

for n ≥ 1 (Here we note that B∗0 = 0, b∗0 = 0, C∗0 = 3, c∗0 = 3, B∗∗0 = 1, b∗∗0 = 1, C∗∗0 = −1
and c∗∗0 = 3).

In this section, we consider the sums of all almost balancing numbers of first and sec-
ond type. We also deduce some formulas for the sums of Pell, Pell–Lucas and balancing
numbers in terms of all almost balancing numbers of first and second type. Later we give
the eigenvalues and spectral norms of circulant matrices of all almost balancing numbers
of first and second type.

Theorem 2.1. The sum of first n−terms of all almost balancing numbers of first type is given by
the formulae

n∑
i=1

B∗i =
5B∗n −B∗n−1 − 3

4
, n ≥ 1

n∑
i=1

b∗i =


b∗n+2−b

∗
n+1+b

∗
n−b

∗
n−1−n−3

2 n ≥ 1 odd

3b∗n+1−3b
∗
n−n−3

2 n ≥ 2 even
n∑
i=1

C∗i =
7B∗n −B∗n−1 − 3

2
, n ≥ 1

n∑
i=1

c∗i =


6c∗n+2−6c

∗
n+1−12B

∗
n+1
2

+4B∗n−1
2

−18

6 n ≥ 1 odd

3c∗n+3−3c
∗
n+2−6c

∗
n+1+6c∗n−12B

∗
n
2
+4B∗n−2

2

−18

6 n ≥ 2 even

and sum of first n−terms of all almost balancing numbers of second type is given by the formulae

n∑
i=1

B∗∗i =


7B∗∗n −7B

∗∗
n−1−B

∗∗
n−2+B

∗∗
n−3

2 n ≥ 3 odd

B∗∗n−1−B
∗∗
n−2+C

∗∗
n+1−C

∗∗
n

2 n ≥ 2 even
n∑
i=1

b∗∗i =
3B∗∗2n+1 − 3B∗∗2n − 2n

4
, n ≥ 1

n∑
i=1

C∗∗i =


10B∗∗n − 10B∗∗n−1 − 2B∗∗n−2 + 2B∗∗n−3 − 3 n ≥ 3 odd

68B∗∗n−1−68B
∗∗
n−2−12B

∗∗
n−3+12B∗∗n−4−C

∗∗
n+1+C

∗∗
n −6

2 n ≥ 4 even
n∑
i=1

c∗∗i =
9B∗∗2n+1 − 9B∗∗2n − 3B∗∗2n−1 + 3B∗∗2n−2 − 6

4
, n ≥ 1.

Proof. For the almost balancing numbers B∗n of first type, we have B∗n = 6B∗n−1 − B∗n−2
for n ≥ 2. So we get B∗n +B∗n−2 = 6B∗n−1 and hence

B∗2 +B∗0 = 6B∗1 (2.12)

B∗3 +B∗1 = 6B∗2

· · ·
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B∗n−1 +B∗n−3 = 6B∗n−2

B∗n +B∗n−2 = 6B∗n−1.

If we sum of both sides of (2.12), then we obtain (B∗2 +B∗3 + · · ·+B∗n) + (B∗0 +B∗1 +B∗2 +
· · ·+B∗n−2) = 6(B∗1 +B∗2 + · · ·+B∗n−1) and hence 2(B∗1 +B∗2 + · · ·+B∗n)−B∗1−B∗n−1−B∗n =
6(B∗1 +B∗2 + · · ·+B∗n)− 6B∗n. So −4(B∗1 +B∗2 + · · ·+B∗n) = −5B∗n +B∗n−1 +B∗1 . Thus

B∗1 +B∗2 + · · ·+B∗n =
5B∗n −B∗n−1 − 3

4
since B∗1 = 3. The other cases can be proved similarly. �

In [15], Santana and Diaz–Barrero proved that the sum of first nonzero 4n+ 1 terms of
Pell numbers is a perfect square, that is,

4n+1∑
i=1

Pi =

[
n∑
i=0

(
2n+ 1

2i

)
2i

]2
. (2.13)

Later in [17], Tekcan and Tayat proved that the sum of first nonzero 2n + 1 terms of Pell
numbers is a perfect square if n is even or half of a perfect square if n is odd, that is, they
proved that

2n+1∑
i=1

Pi =


(
αn+1+βn+1

2

)2
for even n ≥ 2(

αn+1−βn+1
√

2

)2

2 for odd n ≥ 1,

where α = 1 +
√

2 and β = 1 −
√

2. By considering this equality, they set two integer
sequences

Xn =
αn+1 + βn+1

2
and Yn =

αn+1 − βn+1

√
2

for n ≥ 0 and proved that the right hand side of (2.13) is [2X2
n − 2XnYn−1 + (−1)n+1]2,

that is,
4n+1∑
i=1

Pi = [2X2
n − 2XnYn−1 + (−1)n+1]2.

Similarly we can determine the right hand side of (2.13) in terms of almost balancing
and almost Lucas–balancing numbers of first and second type as follows:

Theorem 2.2. The sum of Pell numbers from 1 to 4n+ 1 is

4n+1∑
i=1

Pi =


(

4B∗n+C
∗
n

3

)2
for n ≥ 1

(
4B∗∗2n+1−4B

∗∗
2n+C

∗∗
2n+1−C

∗∗
2n

2

)2
for n ≥ 1.

Proof. Note that B∗n = 3
(
α2n−β2n

4
√
2

)
, C∗n = 3

(
α2n+β2n

2

)
and Pn = αn−βn

2
√
2

. Since

P1 + P2 + · · ·+ Pn =
Pn + Pn+1 − 1

2
,

we get
4n+1∑
i=1

Pi =
P4n+1 + P4n+2 − 1

2

=

α4n+1−β4n+1

2
√
2

+ α4n+2−β4n+2

2
√
2

− 1

2
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=

(
α2n+1 + β2n+1

2

)2

=

(
α2n(

1√
2

+
1

2
) + β2n(

−1√
2

+
1

2
)

)2

=

(
α2n − β2n

√
2

+
α2n + β2n

2

)2

=

12
(
α2n−β2n

4
√
2

)
+ 3

(
α2n+β2n

2

)
3

2

=

(
4B∗n + C∗n

3

)2

as we wanted. The other case can be proved similarly. �

We can also rewrite Theorem 2.2, in terms of almost Lucas–cobalancing numbers of
first and second type as follows:

Theorem 2.3. The sum of Pell numbers from 1 to 4n+ 1 is

4n+1∑
i=1

Pi =


(
c∗2n+1−c

∗
2n

2

)2
for n ≥ 1

(
c∗∗n+1

3

)2
for n ≥ 1.

As in Theorem 2.2, we can give the following theorem which can be proved similarly.

Theorem 2.4. For the sums of Pell, Pell–Lucas and balancing numbers, we have

(1) The sum of Pell numbers from 1 to 4n− 1 adding 1 is a perfect square and is

1 +

4n−1∑
i=1

Pi =


(
C∗n
3

)2
for n ≥ 1

(
C∗∗2n+1−C

∗∗
2n

2

)2
for n ≥ 1.

Also

2n∑
i=1

Pi =


7B∗n−B

∗
n−1−3

6 for n ≥ 1

7B∗∗2n+1−7B
∗∗
2n−B

∗∗
2n−1+B

∗∗
2n−2−2

4 for n ≥ 1

n∑
i=1

P2i =


b∗2n+1−b

∗
2n−1

2 for n ≥ 1

b∗∗n+1−1
3 for n ≥ 1
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2n∑
i=0

P2i+1 =


(b∗2n+1−b

∗
2n)(c

∗
2n+1−c

∗
2n)

2 for n ≥ 1

c∗∗n+1(2b
∗∗
n+1+1)

9 for n ≥ 1

2n∑
i=1

P2i−1 =


2B∗nC

∗
n

9 for n ≥ 1

(B∗∗2n+1−B
∗∗
2n)(C

∗∗
2n+1−C

∗∗
2n)

2 for n ≥ 1.

(2) The sum of (2i− 1)st Pell–Lucas numbers from 1 to 2n is a perfect square and is

2n∑
i=1

Q2i−1 =

 (
4B∗n
3 )2 for n ≥ 1

(2B∗∗2n+1 − 2B∗∗2n)2 for n ≥ 1

and the half of the sum of (2i + 1)st Pell–Lucas numbers from 0 to 2n is a perfect square
and is

2n∑
i=0

Q2i+1

2
=


(
c∗2n+1−c

∗
2n

2 )2 for n ≥ 1

(
c∗∗n+1

3 )2 for n ≥ 1.

Also

2n∑
i=1

Qi =


2b∗2n+1 − 2b∗2n − 2 for n ≥ 1

4b∗∗n+1−4
3 for n ≥ 1

2n−1∑
i=0

Qi =


4B∗n
3 for n ≥ 1

2B∗∗2n+1 − 2B∗∗2n for n ≥ 1

2n+1∑
i=1

Qi =


4B∗n+1−6

3 for n ≥ 1

2B∗∗2n+3 − 2B∗∗2n+2 − 2 for n ≥ 1

2n∑
i=1

Q2i =


8B∗n(b

∗
2n+1−b

∗
2n)

3 for n ≥ 1

(4B∗∗2n+1−4B
∗∗
2n)(2b

∗∗
n+1+1)

3 for n ≥ 1.

(3) The sum of (2i− 1)st balancing numbers from 1 to n is a perfect square and is

n∑
i=1

B2i−1 =


(
B∗n
3 )2 for n ≥ 1(

B∗∗2n+1−B
∗∗
2n

2

)2
for n ≥ 1.
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Also

2n∑
i=1

Bi =


B∗n(c

∗
2n+1−c

∗
2n)

6 for n ≥ 1

c∗∗n+1(B
∗∗
2n+1−B

∗∗
2n)

6 for n ≥ 1

2n∑
i=1

B2i =


B∗nC

∗
n(b
∗
2n+1−b

∗
2n)(c

∗
2n+1−c

∗
2n)

9 for n ≥ 1

c∗∗n+1(B
∗∗
2n+1−B

∗∗
2n)(C

∗∗
2n+1−C

∗∗
2n)(2b

∗∗
n+1+1)

18 for n ≥ 1.

Now we can consider the eigenvalues and spectral norms of circulant matrices of all
almost balancing numbers of first and second type. Recall that a circulant matrix (see [2])
is a matrix M defined as

M =



m1 m2 m3 · · · mn−1 mn

mn m1 m2 · · · mn−2 mn−1
mn−1 mn m1 · · · mn−3 mn−2
.
.
.

.

.

.

.

.

.

· · ·
· · ·
· · ·

.

.

.

.

.

.
m3 m4 m5 · · · m1 m2

m2 m3 m4 · · · mn m1


,

where mi are constant. In this case, the eigenvalues of M are

λj(M) =

n−1∑
u=0

muw
−ju, (2.14)

where w = e
2πi
n , i =

√
−1 and j = 0, 1, · · · , n − 1. The spectral norm of M = [mij ]n×n is

defined to be

||M ||spec = max
0≤j≤n−1

{
√
λj},

where λj are the eigenvalues of MHM and MH denotes the conjugate transpose of M .
Let B∗n, b∗n, C∗n and c∗n denote the circulant matrices of almost balancing numbers first

type and let B∗∗n , b∗∗n , C∗∗n and c∗∗n denote the circulant matrices of almost balancing num-
bers of second type. Then we can give the following theorem.
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Theorem 2.5. The eigenvalues of circulant matrices of all almost balancing numbers are

λj(B
∗
n) =

(B∗n−1 + 3)w−j −B∗n
w−2j − 6w−j + 1

λj(b
∗
2n−1) =

(
6B∗n−1−C

∗
n−1+27

6 )w−j +
−6B∗n+C

∗
n−3

6

w−2j − 6w−j + 1
− n

2

λj(b
∗
2n) =

(
6B∗n−1+C

∗
n−1+9

6 )w−j +
−6B∗n−C

∗
n+3

6

w−2j − 6w−j + 1
− n

2

λj(C
∗
n) =

(C∗n−1 − 9)w−j − C∗n + 3

w−2j − 6w−j + 1

λj(c
∗
2n−1) =

(
−4B∗n−1+3C∗n−1−39

3 )w−j +
4B∗n−3C

∗
n+9

3

w−2j − 6w−j + 1

λj(c
∗
2n) =

(
4B∗n−1+3C∗n−1−15

3 )w−j +
−4B∗n−3C

∗
n+9

3

w−2j − 6w−j + 1

λj(B
∗∗
2n−1) =

 (
−5B∗∗2n−1+5B∗∗2n−2+2C∗∗2n−1−2C

∗∗
2n−2−22

2 )w−j

+
5B∗∗2n+1−5B

∗∗
2n−2C

∗∗
2n+1+2C∗∗2n+4

2


w−2j − 6w−j + 1

λj(B
∗∗
2n) =

 (
−B∗∗2n−1+B

∗∗
2n−2+C

∗∗
2n−1−C

∗∗
2n−2−8

2 )w−j

+
B∗∗2n+1−B

∗∗
2n−C

∗∗
2n+1+C

∗∗
2n+2

2


w−2j − 6w−j + 1

λj(b
∗∗
n ) =

 (
−6B∗∗2n−1+6B∗∗2n−2+3C∗∗2n−1−3C

∗∗
2n−2−30

4 )w−j

+
6B∗∗2n+1−6B

∗∗
2n−3C

∗∗
2n+1+3C∗∗2n+6

4


w−2j − 6w−j + 1

− n

2

λj(C
∗∗
2n−1) =

 (
16B∗∗2n−1−16B

∗∗
2n−2−5C

∗∗
2n−1+5C∗∗2n−2+62

2 )w−j

+
−16B∗∗2n+1+16B∗∗2n+5C∗∗2n+1−5C

∗∗
2n−10

2


w−2j − 6w−j + 1

λj(C
∗∗
2n) =

 (
8B∗∗2n−1−8B

∗∗
2n−2−C

∗∗
2n−1+C

∗∗
2n−2+22

2 )w−j

+
−8B∗∗2n+1+8B∗∗2n+C

∗∗
2n+1−C

∗∗
2n−2

2


w−2j − 6w−j + 1

λj(c
∗∗
n ) =

 (
12B∗∗2n−1−12B

∗∗
2n−2−3C

∗∗
2n−1+3C∗∗2n−2+42

2 )w−j

+
−12B∗∗2n+1+12B∗∗2n+3C∗∗2n+1−3C

∗∗
2n−6

2


w−2j − 6w−j + 1
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for j = 0, 1, 2, · · · , n− 1 and the spectral norms are

||B∗n||spec =
5B∗n −B∗n−1 − 3

4

||b∗n||spec =


b∗n+2−b

∗
n+1+b

∗
n−b

∗
n−1−n−3

2 n ≥ 1 odd

3b∗n+1−3b
∗
n−n−3

2 n ≥ 2 even

||C∗n||spec =
7B∗n −B∗n−1 − 3

2
, n ≥ 1

||c∗n||spec =


6c∗n+2−6c

∗
n+1−12B

∗
n+1
2

+4B∗n−1
2

−18

6 n ≥ 1 odd

3c∗n+3−3c
∗
n+2−6c

∗
n+1+6c∗n−12B

∗
n
2
+4B∗n−2

2

−18

6 n ≥ 2 even

||B∗∗n ||spec =


7B∗∗n −7B

∗∗
n−1−B

∗∗
n−2+B

∗∗
n−3

2 n ≥ 3 odd

B∗∗n−1−B
∗∗
n−2+C

∗∗
n+1−C

∗∗
n

2 n ≥ 2 even

||b∗∗n ||spec =
3B∗∗2n+1 − 3B∗∗2n − 2n

4
, n ≥ 1

||C∗∗n ||spec =


10B∗∗n − 10B∗∗n−1 − 2B∗∗n−2 + 2B∗∗n−3 − 3 n ≥ 3 odd

68B∗∗n−1−68B
∗∗
n−2−12B

∗∗
n−3+12B∗∗n−4−C

∗∗
n+1+C

∗∗
n −6

2 n ≥ 4 even

||c∗∗n ||spec =
9B∗∗2n+1 − 9B∗∗2n − 3B∗∗2n−1 + 3B∗∗2n−2 − 6

4
, n ≥ 1.

Proof. Since B∗n = 3
(
α2n−β2n

4
√
2

)
, we get from (2.14) that

λj(B
∗
n) =

n−1∑
u=0

B∗uw
−ju

=
3

4
√

2

n−1∑
u=0

(
α2u − β2u

)
w−ju

=
3

4
√

2

(
n−1∑
u=0

(α2w−j)u −
n−1∑
u=0

(β2w−j)u

)

=
3

4
√

2

(
α2n − 1

α2w−j − 1
− β2n − 1

β2w−j − 1

)
=

3

4
√

2

(
w−j(α2nβ2 − β2 − β2nα2 + α2)− α2n + β2n

w−2j − 6w−j + 1

)
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=
w−j

w−2j − 6w−j + 1

[
3

(
α2n−2 − β2n−2

4
√

2

)
+ 3

]
− 1

w−2j − 6w−j + 1

[
3

(
α2n − β2n

4
√

2

)]
=

(B∗n−1 + 3)w−j −B∗n
w−2j − 6w−j + 1

.

For the circulant matrix

B∗n =



B∗1 B∗2 B∗3 · · · B∗n−1 B∗n
B∗n B∗1 B∗2 · · · B∗n−2 B∗n−1
B∗n−1 B∗n B∗1 · · · B∗n−3 B∗n−2
.
.
.

.

.

.

.

.

.

· · ·
· · ·
· · ·

.

.

.

.

.

.
B∗3 B∗4 B∗5 · · · B∗1 B∗2
B∗2 B∗3 B∗4 · · · B∗n B∗1


,

for almost balancing numbers B∗n of first type, we have

(B∗n)HBn =



B∗11 B∗12 · · · B∗1(n−1) B∗1n
B∗21 B∗22 · · · B∗2(n−1) B∗2n
.
.
.

.

.

.
· · ·

.

.

.

.

.

.
B∗(n−1)1 B∗(n−1)2 · · · B∗(n−1)(n−1) B∗(n−1)n
B∗n1 B∗n2 · · · B∗n(n−1) B∗nn


,

where

B∗11 = (B∗1)2 + (B∗n)2 + · · ·+ (B∗3)2 + (B∗2)2

B∗12 = B∗1B
∗
2 +B∗nB

∗
1 + · · ·+B∗3B

∗
4 +B∗2B

∗
3

· · ·
B∗1(n−1) = B∗1B

∗
n−1 +B∗nB

∗
n−2 + · · ·+B∗3B

∗
1 +B∗2B

∗
n

B∗1n = B∗1B
∗
n +B∗nB

∗
n−2 + · · ·+B∗3B

∗
1 +B∗2B

∗
n

B∗21 = B∗2B
∗
1 +B∗1B

∗
n + · · ·+B∗4B

∗
3 +B∗3B

∗
2

B∗22 = (B∗2)2 + (B∗1)2 + · · ·+ (B∗4)2 + (B∗3)2

· · ·
B∗2(n−1) = B∗2B

∗
n−1 +B∗1B

∗
n−2 + · · ·+B∗4B

∗
1 +B∗3B

∗
4

B∗2n = B∗2B
∗
n +B∗1B

∗
n−1 + · · ·+B∗4B

∗
2 +B∗3B

∗
1

· · ·
B∗n1 = B∗nB

∗
1 +B∗n−1B

∗
n + · · ·+B∗2B

∗
3 +B∗1B

∗
2

B∗n2 = B∗nB
∗
2 +B∗n−1B

∗
1 + · · ·+B∗2B

∗
4 +B∗1B

∗
3

· · ·
B∗n(n−1) = B∗nB

∗
n−1 +B∗n−1B

∗
n−2 + · · ·+B∗2B

∗
1 +B∗1B

∗
n

B∗nn = (B∗n)2 + (B∗n−1)2 + · · ·+ (B∗2)2 + (B∗1)2.
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The eigenvalues of (B∗n)HB∗n are λ0, λ1, · · · , λn−1. Here λ0 is maximum and is

λ0 = (B∗1)2 + (B∗2)2 + · · ·+ (B∗n−1)2 + (B∗n)2

+ 2


B∗1(B∗2 +B∗3 + · · ·+B∗n−1 +B∗n)

+B∗2(B∗3 + · · ·+B∗n−1 +B∗n)
+ · · ·

+B∗n−1B
∗
n


= (B∗1 +B∗2 + · · ·+B∗n)2.

Thus the spectral norm of B∗n is ||B∗n||spec =
√
λ0 = B∗1 +B∗2 + · · ·+B∗n. Since

B∗1 +B∗2 + · · ·+B∗n =
5B∗n −B∗n−1 − 3

4
by Theorem 2.1, we conclude that

||B∗n||spec =
5B∗n −B∗n−1 − 3

4
.

The others can be proved similarly. �
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