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Sums and spectral norms of all almost balancing numbers

AHMET TEKCAN

ABSTRACT. In this work, we derive some algebraic relations on sums of all almost balancing numbers of first
and second type. We also deduce some formulas on sums of Pell, Pell-Lucas and balancing numbers in terms
of all almost balancing numbers of first and second type. Further, we formulate the eigenvalues and spectral
norms of circulant matrices of all almost balancing numbers of first and second type.

1. INTRODUCTION

A positive integer n is called a balancing number (see [1] and [3]) if the Diophantine
equation

1424 4+n-1D)=0+D+n+2)+ -+ n+7) (1.1)

holds for some positive integer r which is called balancer corresponding to n. If n is a
balancing number with balancer r, then from (1.1)
9 (n+r)(n+r+1)

—2n —1++8n2 +1
n® = 5 and r = 5 .

So from (1.2), n is a balancing number if and only if n? is a triangular number and 8n2+1 is
a perfect square. Though the definition of balancing numbers suggests that no balancing
number should be less than 2. Behera and Panda ([1]), while accepting 1 as a balancing
number (since it is the positive square root of the square triangular number 1), have set
By = 1,B; = 6 and so on, using the symbol B,, for the nth balancing number. To stan-
dardize the notation at par with Fibonacci numbers, we relabel the balancing numbers by
setting By = 0,B; =1,B; = 6 and B,41 = 6B, — B,,—1 forn > 2.

Later Panda and Ray ([12]) defined that a positive integer n is called a cobalancing
number if the Diophantine equation

(1.2)

1424 4n=n+1)+n+2) +-+(n+r) (1.3)

holds for some positive integer r which is called cobalancer corresponding to n. If n is a
cobalancing number with cobalancer r, then from (1.3)

(n+r)(n+r+1) —2n—14+vV8n2+8n+1
5 and r = 5 .

So from (1.4), n is a cobalancing number if and only if n(n + 1) is a triangular number and
8n?+8n+11is a perfect square. Since 8(0)2+8(0)+1 = 11is a perfect square, we accept 0 as
a cobalancing number, just like Behera and Panda ([1]) accepted 1 as a balancing number.
Cobalancing number is denoted by b,,. Then it is easily seen that by = b; = 0,b2 = 2 and
bpy1 = 6by, —bp_1 +2forn > 2.

n(n+1) = (14)
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204 A. Tekcan

It is clear from (1.1) and (1.3) that every balancing number is a cobalancer and every
cobalancing number is a balancer, that is, B,, = r,+1 and R,, = b,, for n > 1, where R,, is
the nt the balancer and r,, is the n® cobalancer. Since R,, = b,,, we get from (1.1) that

—(2B, +1 8B2 +1 2b, + 1+ /862 +8b,, +1
by = ( + )2+ nt and B, = rit 2"+ +. (1.5)

Thus from (1.5), B,, is a balancing number if and only if 8 B2 + 1 is a perfect square and b,,
is a cobalancing number if and only if 8b2 + 8b,, + 1 is a perfect square. So

Cn=+/8B2+1 and ¢, = 1/8b2 +8b, + 1

are integers which are called the n'' Lucas-balancing number and n' Lucas—cobalancing
number (Here we notice that Cy = ¢ = 1).

Let @ = 1+ v/2and 8 = 1 — /2 be the roots of the characteristic equation for Pell and
Pell-Lucas numbers (which are the numbers defined by Py = 0,2, = 1,P, = 2P, +
P, sand Qyp = Q1 = 2,Q, = 2Qn_1 + Qn—2 for n > 2). Then Binet formulas for all
balancing numbers are

2n 2n 2n—1 2n—1 2n 2n 2n—1 2n—1
a’ —f « - B 1 a’ + 3 « + 5
Bn: ;bn: —f,aniandcnz—

4v2 442 2 2 2
for n > 1 (for further details on balancing numbers see also [4, 8, 9, 11, 14]).

Balancing numbers and their generalizations have been investigated by several authors
from many aspects. In [6, Theorem 4], Liptai proved that there is no Fibonacci balancing
number except 1 and in [7, Theorem 4] he proved that there is no Lucas balancing number.
In [16], Szalay considered the same problem and obtained some nice results by a different
method. In [5], Kovécs, Liptai and Olajos extended the concept of balancing numbers to

the (a, b)—balancing numbers defined as follows: Let a > 0 and b > 0 be coprime integers.
If

(a+b)+--+(an—=1)+b) =(a(n+1)+b)+ -+ (a(n+7)+b)
for some positive integers n and r, then an+bis an (a, b) —balancing number. The sequence
of (a, b)—balancing numbers is denoted by B form > 1. In[8], the authors generalized
the notion of balancing numbers to numbers defined as follows: Let y, k,! € Z* such that
y > 4. Then a positive integer x with z < y — 2 is called a (k,!)—power numerical center
for y if
Pyt @-1, =@+ + -+ (y-1L

They studied the number of solutions of the equation above and proved several effective
and ineffective finiteness results for (k,!)—power numerical centers.
For positive integers k, z, let

My(z) =z(z+1)...(x+k—1).

Then it was proved in [5, Theorem 3 and Theorem 4] that the equation B,, = II;(z) for
fixed integer k£ > 2 has only infinitely many solutions and for k£ € {2, 3,4} all solutions
were determined. In [19, Theorem 1] Tengely, considered the case k = 5, that is, B,,, =
z(z 4+ 1)(z + 2)(x + 3)(x + 4) and proved that this Diophantine equation has no solution
form>0and z € Z.

Almost balancing numbers first defined by Panda and Panda in [13]. A natural number
n is called an almost balancing number if the Diophantine equation

[(n+1)+n+2)+--+(n+r))-[1+2+---+(n-1)]|=1 (1.6)
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holds for some positive integer  which is called the almost balancer. From (1.6), if nr 4
T(Hl) (n 21) = 1, then n is called an almost balancing number of first type and r is

called an almost balancer of first type and in this case

_ 2n—1++v8n2+9
= 5 )

(1.7)

If nr + T(TH) ("_21)" = —1, then n is called an almost balancing number of second type
and r is Called an almost balancer of second type and in this case
2 14+8n2 -7 18)
= 5 . .

Let B} denote the n™ almost balancing number of first type and let B;* denote the n'"
almost balancing number of second type. Then from (1.7), B;; is an almost balancing
number of first type if and only if 8(B})? + 9 is a perfect square and from (1.8), B}* is
an almost balancing number of second type if and only if 8(B;*)? — 7 is a perfect square.
Thus
Cr=+/8(Bz)?+9 and C;" = /8(B;*)? —
are integers which are called the n'" almost Lucas-balancing number of first type and the
th almost Lucas-balancing number of second type.

Similarly in [10], Panda defined that a positive integer n is called an almost cobalancing

number if the Diophantine equation

[(n+1)+n+2)+--+n+7r))—-1+2+---+n)[=1 (1.9)
holds for some positive integer  which is called an almost cobalancer. From (1.9), if

nr + T(TH) - % = 1, then n is called an almost cobalancing number of first type and

ris called an almost cobalancer of first type and in this case

_ 2n—1++v8n?+8n+9

1.10
5 (110)
If nr + T(TH) - w = —1, then n is called an almost cobalancing number of second
type and r is called an almost cobalancer of second type and in this case
9 — 14 /32 _
_—2n +V8n? 4 8n 7. (1.11)

2

Let b? denote the n'" almost cobalancing number of first type and let b%* denote the n'
almost cobalancing number of second type. Then from (1.10), b} is an almost cobalancing
number of first type if and only if 8(b})? + 8b} + 9 is a perfect square and from (1.11), b%* is
an almost cobalancing number of second type if and only if 8(b}*)% + 8b:* — 7 is a perfect
square. Thus

¢ =/8(bx)2 +8bx +9 and ¢ = \/8(bx*)2 4+ 8brF — 7

n

are integers which are called the n'" almost Lucas—cobalancing number of first type and
the n'" almost Lucas—cobalancing number of second type.

2. SUMS OF ALMOST BALANCING NUMBERS.

In [18], we considered the almost balancing and almost cobalancing numbers of first
and second type and proved that the general terms of all almost balancing numbers of
first type are

B, =3B,,b5, = 2bp11 — by, 05,1 = 4b, — b1 + 1,
Cr =3Ch, ¢35, = Cny2 —4Cny1,Coy1 = Cnt1 — 2¢p
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and the general terms of all almost balancing numbers of second type are

Bi, 1 = Byn1+Cpo1,B3, = —Bn + Cn, by = 3b, + 1,
Can_y =8By 1+ Cn1,C3 = 8B, — O, ¢ =3¢,

for n > 1 (Here we note that B§ = 0,05 = 0,Cy = 3,¢f = 3,B5* = 1,05" = 1,C5* = -1
and c§* = 3).

In this section, we consider the sums of all almost balancing numbers of first and sec-
ond type. We also deduce some formulas for the sums of Pell, Pell-Lucas and balancing
numbers in terms of all almost balancing numbers of first and second type. Later we give
the eigenvalues and spectral norms of circulant matrices of all almost balancing numbers
of first and second type.

Theorem 2.1. The sum of first n—terms of all almost balancing numbers of first type is given by
the formulae

- 5B — B 1 —3

b:,+2*b2+1+b:*b:;—1*”*3

5 n > 1 odd

— 3b% ., —3b% —n—3
i=1 “f n > 2 even

n
7B —-DB;_,—3
2 : —1
6¢;, 4 o—6¢c) 1 —12B7, 4 +4B7 _; —18

2 2

5 n > 1 odd

=1 3¢} 45 —3¢; 200, 41 +6¢], —12B% +4B},_5 18
5 2 n > 2 even

and sum of first n—terms of all almost balancing numbers of second type is given by the formulae

TBy*—TBr*  —B.* ,+Bi
Lm0 > 3odd

n

ok
E B =
i=1

Bi* —Bi* ,+Cit, —CrF
22+ ntl “n n > 2 even
n
bxf* 332n+1 3B§'rt —2n n>1
k3 4 ? —
i=1
n 10B;* —10B}* | —2B}* 5 +2B}* 5 — 3 n > 3 odd
> -
T - * K * ok * ok * ok * ok * ok -
P GSBn_lfGSBn_Q712B7l_§+123n_470n+1+Cn -6 n> 4 even
oo IB3, 1 —9B3; —3B3; 1 +3B5, 5 —6
Zc 1 ,n>1.

Proof. For the almost balancing numbers B;; of first type, we have B, = 6B}_, — B} _,
forn >2.Soweget B: + B} _, =6B;_, and hence

B + B = 6B} (2.12)
Bi + B} = 6B;
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B, 1+ B, 3=0B, ,

B, +B,_,=6B,_,.
If we sum of both sides of (2.12), then we obtain (B3 + B +---+ B}) + (B§ + By + B3 +
---+B} ,)=6(Bf+Bs+---+B)_,)and hence 2(B;+B3+---+B})-B;—B)_,—B} =
6(Bf +Bs+---+Bj})—6B).S0o—4(B{ + B5 +---+ B}) = =5B} + B};_; + Bj. Thus
5B — B! _ 1 —3

4
since Bf = 3. The other cases can be proved similarly. O

Bi+B;+---+ B =

In [15], Santana and Diaz-Barrero proved that the sum of first nonzero 4n + 1 terms of

Pell numbers is a perfect square, that is,
n 2
> ( o ) 2 ] : (2.13)

=0

4n+1

S
i=1

Later in [17], Tekcan and Tayat proved that the sum of first nonzero 2n + 1 terms of Pell
numbers is a perfect square if n is even or half of a perfect square if n is odd, that is, they
proved that

2
2n+1 an+1+5"+l

2
g -Pz = (an+176n+1
=1

# foroddn > 1,

forevenn > 2

where @ = 1 ++v/2 and 8 = 1 — v/2. By considering this equality, they set two integer
sequences

n+1 n+1
X, = T d Y, =
2 V2
for n > 0 and proved that the right hand side of (2.13) is [2X2 — 2X,,Y,,—1 + (—1)""1]?,
that is,

an-i—l _ Bn+1

4n+1
> Pi=[2X] - 2X, Yooy 4 (—1)" T2
=1

Similarly we can determine the right hand side of (2.13) in terms of almost balancing
and almost Lucas-balancing numbers of first and second type as follows:

Theorem 2.2. The sum of Pell numbers from 1 to 4n + 1 is

2
4B +C
dn+1 (f) forn =1
> Pi=
i=1 (43;;1—43;‘:;0;:“70;:)2 forn>1.
2n 2n 2n 2n n n
Proof. Note that B} =3 (%) ,Cr =3 (%) and P, = (’2\_/5 . Since
P,+P,1—1
P+P+---+P :%7
we get
dn+1
i: p_ Paner 4 Pingn — 1
! 2
i=1
QAntl_gint1 QA2 gint2

-1

2¢/2 + 2v/2
2
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Q2ntl 4 ﬁ2n+1 ) 2
2

| R
:<a2( +§)+52 (\/54‘2))
a2n_ 2n a?n_’_ﬁQn)Q

/2 2

(el
3
_ <4B; + c;:>2
3

as we wanted. The other case can be proved similarly.

O

We can also rewrite Theorem 2.2, in terms of almost Lucas—cobalancing numbers of
first and second type as follows:

Theorem 2.3. The sum of Pell numbers from 1 to 4n + 1 is

* * 2
Cont+1 " Con
dnt1 <7" 5 ") forn >1

S
=1

* ok

2
(C"%) forn > 1.
As in Theorem 2.2, we can give the following theorem which can be proved similarly.

Theorem 2.4. For the sums of Pell, Pell-Lucas and balancing numbers, we have

(1) The sum of Pell numbers from 1 to 4n — 1 adding 1 is a perfect square and is

w0\ 2
dn—1 (%) forn>1
TS
i=1

ok wox o\ 2
C2n+lic2n
(f forn > 1.

Also
7B —B;_ ;-3

2n N — fOT’ n > 1
> b=
— 7TBi*, _TBX*_BX* 4{BX* __9
=1 2n+1 2n 2n—1 2n—2

1 forn>1

b3 —by —1

n 2n+1 " Y2n fOV n > 1

S P - i

i— by —1
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(b§n+1—b§n)(65n+1—63n) fOT" n>1

2n 5

g Poyipq =

= i (b 1)

: 5 forn >1
2B*C

2n % fOT’ n>1

E Py g =

i=1 (B2n+1_B2n)2(czn+1_c2n) fOT’ n>1.

(2) The sum of (2i — 1) Pell-Lucas numbers from 1 to 2n is a perfect square and is

(482 forn>1

2n
Z QQi—l =
i=1

(2B§;+1 - 2352)2 fOT n>1

and the half of the sum of (2i 4+ 1) Pell-Lucas numbers from 0 to 2n is a perfect square

and is
2n * *
> Q2it1 (Beti=fn)2 forp > 1
i=0 _
2 iz N
(T) fOT’ n =~ 1.
Also

203,41 — 2b3, —2  forn>1

4b7" | —4

5 forn>1

%;' forn>1

2B3r. —2B3: forn>1

> Q= ’
i=1

2Bjhis — 2B —2 forn>1

8B;, (311 —b3,)
- forn>1

2n
D Q=
=1

2n+1 { 4Bn41=6 forn>1

4B3* | —4B3*)(2b17 1
(4B3, 41 ;n)( ny1tD) forn > 1.

(3) The sum of (2i — 1) balancing numbers from 1 to n is a perfect square and is

(22 forn>1

n
§ B2i—1 =
i=1

. e\ 2
BZvL+1_B2n
(72 forn > 1.
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Also

B;(C;THJ —C3n)
T B forn>1

2n

E B, =
= cata (B3~ B
i=1 T 26+1 3n) fOTTL >1

om BrCr (03,41 —63,) (30 41—C5,)
9

E By =
i=1

et 1 (Bar 1 —B3 ) (Cor —Car) (200" 1 +1
r1(B3nia 3n)( 128,+1 3n) (20571 +1) forn > 1.

forn >1

Now we can consider the eigenvalues and spectral norms of circulant matrices of all
almost balancing numbers of first and second type. Recall that a circulant matrix (see [2])
is a matrix M defined as

my mz M3 Mp—1 My
mpy mi M2 te Mp—2 Mp-1
mMnp—1 my My e Mp—-3 Mp—2
M = ,
ms my Ms mi ma
ma m3z My My miy

where m; are constant. In this case, the eigenvalues of M are

n—1
A(M) =" mw", (2.14)

u=0

i

where w = e’ , i = /=1 and j = 0,1, - ,n — 1. The spectral norm of M = [m;;]nxn is
defined to be

[[M]|spec = max 1{\/ Aits

0<j<n—

where ); are the eigenvalues of M M and M* denotes the conjugate transpose of M.
Let B}, b;,,C;y and ¢}, denote the circulant matrices of almost balancing numbers first

n» -’ n?

type and let B*, b, C;:* and c},* denote the circulant matrices of almost balancing num-

n *'n ?

bers of second type. Then we can give the following theorem.
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Theorem 2.5. The eigenvalues of circulant matrices of all almost balancing numbers are

_ (Bi o +3)w™ - B

M:(B* . -
i(Br) —20 — 6w + 1
6B, —C; +27\ _ i  —6Bi+Cr—
SV o s L et
I el w20 — 6w + 1 2
6B, _+C;_+9\ _;  —6Bf—C:+3
) = (e SRS
I\ w2 — 6w + 1 2
* _ —J _ *
A(CE) = (Ciy —w™ —Ci+3
AN 2 — 6w +1
(—43 1+3C”,1 39)w,j+43;;—3c;§+9
)\]'(cznfl) = 24 i 2
w4 — 6w +1
(4B,*L 30— 15)w_j+ —4B}—3C+9
Ai(ch ) = 3 - . 3
]( 2n) w_QJ — Gw—J =+ 1
ﬁ)B BB L4205k 205k .22 4
2 1 2 2 5 2 1 2 2 )w J
5Bé‘32+1—5B§$—2052+1+2C§:Z+4
Aj - 2
(Ban ) ~2j — 6w + 1
(_B**71+an 2+C3n_1— C§:72—8)w7j
2
+B§:;+1 B3n=Cont1+C5,+2
)\ 2
w2 —6wI 4+ 1
—6B3) _ | +6By* _,+3Cyr_,—3C5F_,—30 _.
( 2 1 2 2 I 2 1 2 2 )w ¥
6B3541—6B3,—3C5, 1 +3C5,+6
b** + 1 + . E
w2 —6wI +1 2
2
_|__16B2n+1+1682n+50;n+1 502n
)‘( 2n 1

w2 — 6w + 1

(835271 835272—205271-%053{72‘*‘22)wfj

—8B 2n+1+832n +C;7*L+1 C;:;_

+

w—23—6w I+1

(1213;;;_171232" ) 30;;_1+3c;;_2+42)w_j
2

+ —12B5)  ,+12B5 +3C5)  ,—3C5" —6
2

w2 — 6w +1

{ (163;;,1 163;,’;,2—50;;,1+scg;,2+62)w_j
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forj=0,1,2,--- ,n — 1and the spectral norms are
. 5B —B!_,—3
1B lepee = 2t

by o—br  +by—by_—n—3
2 V1 2 v —1 n > 1 odd

*
1167 | spec = \ \
3b* ., —3b* —n—3
e n > 2 even
* *
1O llopee = 22— Bnm1 23 sy
nllspec — 2 )
6c ,—6ch 1 —12B% , +4B%_, —18
- 2 n > 1odd
*
Il llspec =
3ch+3—3ch+2—60,’;+1+60 1232 +4B%,_,—18
5 2 n > 2 even
7TBX*—7BX* | —B* ,+B:*
n 5 2 n=8 > 3odd
* %
[|1BR" |l spec = o o
By =By 40 —C
L S R n > 2 even
k%
n SPGC 4 9 =
10B;* —10B:* | —2B}* 5 +2B}* 5 — 3 n > 3 odd
3k k
1C" llspee = 68B7% | —68B % ,—12B)* (+12B%* ,—C*%  +CO5 -
n—1 n—2 5 n—4 n+1 n Z 43037[
ko
|| **” _ 9BQn+l 932 SB2TL 1 +3B2n 2 —6 >1
Cp |lspec = 4 y = 1.

Proof. Since B} = 3 (%) , we get from (2.14) that

n—1
Ai(By) = Z Bw™7*

B2u —Jju

Z
n—1 n—1
. (zmzw—jw -y
u=0 u=0
n_ 1 BQn -1
(oﬂw‘j -1 BPwi-— 1)
(a2nﬁ2 _ ﬁ2 _ ﬁ2na2 + 042) _ a2n _|_B2n
( w2 — 6w +1 )

3

3
42

3

=15
4v2
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—Jj 2n—2 _ p2n—2
=Y |3(Z B +3
w2 — 6w=I +1 44/2

B 1 5 a2n _ 5271
w2 — 6w +1 44/2
(B, +3)w™ — B}

w2 — 6w +1

For the circulant matrix

By By By -+ By, B ]
B, Bi By - Bi, Bi,
Bi By B - Big Bhos
B;;/ — . A . . )
B; By B - B} B3
By By By - By, B |
for almost balancing numbers B;; of first type, we have

[ B By -+ Bl Bi,

By By - By, B
(B By = :
B?n:l)l szn:l)Q T B?n:l)(n—l) B;ngl)n

Bnl Bn2 e Bn(nfl) Bnn ]

where

Bi, = (B))? 4 (By)? + -+ (B3)* + (B3)?
B}, =BiB;+ BB+ ---+ BiB; + B3B3

Bln-1y = BiBh1+ BB, »+---+ B3Bl + By B,
B}, = B{B, + B.B,_,+ -+ B;B} + BB}
B, = ByB; + B{ B}, + -+ B; B} + B} B;

B3y = (B3)* + (B1)* + -+ (B)* + (B3)?

By(n—1y = BaBy_1 + BiB s + -+ BiBy + B3 B}
Bs, = ByB, + BB,y + -+ BiB; + B3B{

B, =B;B+B;_B:,+---+ B;B; + BB
B,=B;B5+B,_ B +---+B;B; + B B;

Brn1y=B,B,_1+ B, 1B, _,+--+B3B] + B{ B,
By, =(By)?+ (By_1)?+ -+ (B3)* + (B})*.
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The eigenvalues of (B}) B are Ao, A1, -+ , \,—1. Here )\ is maximum and is
Xo = (BY)* + (B3)* + -+ (B _1)* + (B)?

BY(B5s+Bs+---+DB)_,+B})

+B5(B3+---+ B;,_, + B})

+ B} _,B}
=(Bf+Bs+---+ B}
Thus the spectral norm of B is || B} ||spec = VAo = Bf + B5 + --- + B;. Since
5B, ~Bj ,—3
4

+2

Bf+B;+---+ B =
by Theorem 2.1, we conclude that

n—1 "

1B llapee = ==

The others can be proved similarly. O

5B% —B:_, —3
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