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A comparative study of the PL homotopy and BFGS
methods for some nonsmooth optimization problems

ANDREI BOZÂNTAN1 and VASILE BERINDE1,2

ABSTRACT. We consider some non-smooth functions and investigate the numerical behavior of the Piecewise
Linear Hompotopy (PLH) method ([Bozântan, A., An implementation of the piecewise-linear homotopy algorithm for
the computation of fixed points, Creat. Math. Inform., 19 (2010), No. 2, 140–148] and [Bozântan, A. and Berinde,
V., Applications of the PL homotopy algorithm for the computation of fixed points to unconstrained optimization problems,
Creat. Math. Inform., 22 (2013), No. 1, 41–46]). We compare the PLH method with the BFGS with inexact line
search, a quasi-Newton method, having some results reported in [Lewis, A. S. and Overton, M. L., Nonsmooth
optimization via BFGS, submitted to SIAM J. Optimiz, (2009)]. For most of the considered cases, the characteristics
of the PLH method are quite similar to the BFGS method, that is, the PLH method converges to local minimum
values and the convergence rate seems to be linear with respect to the number of function evaluations, but we
also identify some issues with the PLH method.

1. INTRODUCTION

In a previous paper ([8]), we tested numerically the efficiency and robustness of the
PL homotopy algorithm (which has been designed and implemented for fixed point ap-
proximation, see [5], [6] and [7]), for some typical unconstrained optimization problems
and compared it with some of the well known and widely used methods in optimiza-
tion: Newton’s method, Broyden-Fletcher-Goldfarb-Shanno (BFGS), conjugate gradient
method, and nonlinear conjugate gradient method.

Efficiency is an important feature of any iterative procedure, since in concrete prob-
lems for more than three or four variables trial and error becomes impractical because, in
some regions, the optimization algorithm may progress very slowly toward the optimum,
requiring excessive computer time.

Robustness, i.e., the ability to achieve a solution, is equally or even more important
because a general nonlinear function is unpredictable in its behavior: there may be local
maxima or minima, saddle points, regions of convexity, concavity, and so on. Therefore,
it is of great theoretical and practical importance to draw an extensive experience in test-
ing optimization algorithms for unconstrained functions to evaluate their efficiency and
robustness.

The numerical results from [8], clearly illustrated the fact that, for almost all test func-
tions we have considered, but especially for the non differentiable ones, the piecewise-
linear homotopy method is more robust (even though not always more efficient) than the
methods enumerated above. The main generic advantages of the PL homotopy methods
is that they don’t require smoothness of the underlying map and this fact is also clearly
illustrated by the numerical results from [8]. Also another important feature of these
methods is that they can be applied when no a priori knowledge regarding the solutions
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of the system to be solved is available, and thus to choose a suitable starting point for the
iterative method.

In [18] and [19] the authors investigate the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
variable metric (quasi-Newton) method with an inexact line search, when applied to non-
smooth functions. The numerical behavior of this method is tested on various classes of
examples. The method routinely converges to local minimizers on all but the most diffi-
cult class of examples, and the convergence rate is observed to be linear with respect to
the number of function evaluations, with a rate of convergence that varies consistently
the problem parameters.

Since we previously obtained some encouraging results, the objective of this paper is to
continue the study and investigate the numerical behavior the PLH for some nonsmooth
optimization problems. We will consider several of the problems described in [18] and
solve them using the PLH method. The numerical results of the PLH method are then
compared with the results obtained by means of the BFGS method.

2. THE PIECEWISE-LINEAR HOMOTOPY METHOD

This new approach to unconstrained optimization problems is based on the fact that
Newton methods can be regarded as a particular case of a classic fixed point iterative
method, that is, of the Picard iteration or successive approximations method associated to
a certain nonlinear fixed point equation

x = Tx, (2.1)

where T is a given self operator of a spaceX . SupposeX and T are such that the equation
(2.1) has at least one solution (usually called a fixed point of T ). A typical situation of this
kind is illustrated by the well known Brouwer’s fixed point theorem, see [12].

Theorem 2.1. Every continuous mapping f from a convex compact subsetK of a Euclidean space
to K itself has a fixed point.

Under the assumptions of Theorem 2.1, the Picard iteration associated to (2.1), defined
by x0 ∈ X and

xn+1 = Txn, n = 0, 1, 2, . . . , (2.2)

does not converge, in general, even though in many cases (e.g., for contractive type map-
pings, see [4]) it is a useful method to solve nonlinear fixed point equations.

In this context, remind that, if X is a nonempty set and T : X → X is a self mapping
and we denote the set of fixed points of T by Fix (T ), i.e., Fix (T ) = {a ∈ X : T (a) = a},
then T is said to be a Picard operator, see for example Rus [22], if

(i) Fix (T ) = {p};
(ii) Tn(x0)→ p as n→∞, for any x0 in X .
The most useful class of Picard operators, that play a crucial role in nonlinear analysis

and was mentioned above, is the class of mappings known in literature as Picard-Banach
contractions, first introduced by Banach in [3], in the case of what we call now a Banach
space, and then extended to complete metric spaces by Caccioppoli [9].

Banach contraction mapping principle, see [4] for a complete form, essentially states
that, in a complete metric space (X, d), any Picard-Banach contraction T : X → X , that is,
any mapping for which there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ c · d(x, y),∀x, y ∈ X, (2.3)

is a Picard operator.
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It is obvious that any contraction mapping is continuous but the reverse is not true.
This is the reason why several authors tried to find specific algorithms that could be suc-
cessfully used to compute fixed points of continuous but not necessarily contractive map-
pings.

In this context, in 1967 Herbert Scarf proposed a method for approximating fixed points
of continuous mappings [23]. The algorithm proposed by Scarf, which is also a numeri-
cally implementable constructive proof of the Brouwer fixed point theorem, has its origins
in the Lemke-Howson complementary pivoting algorithm for solving linear complemen-
tarity problems [17]. Beside the generalization and applications in fixed point theory, the
Lemke-Howson algorithm is also famous for its applications in finding Nash equilibrium
points for bimatrix games.

Several improvements to the algorithm developed by Scarf were made by Terje Hansen
in 1967, see [24] and by Harold W. Kuhn in 1968 [15]. But the decisive advancements came
in 1972, when Eaves [10] and then Eaves and Saigal [11] described a piecewise-linear
(PL) homotopy deformation algorithm as an improvement for the algorithm proposed by
Scarf.

Another PL algorithm, related to the one proposed by Eaves and Saigal, was presented
by Orin H. Merrill in 1972 [21]. The main practical advantage of the PL homotopy meth-
ods is that they don’t require smoothness of the underlying map, and in fact they can be
used to calculate fixed points of set-valued maps. Although PL methods can be viewed
in the more general context of complementary pivoting algorithms, they are usually con-
sidered in the special class of homotopy or continuation methods [2].

The homotopy methods are useful alternatives and aides for the Newton methods in
solving systems of n nonlinear equations in n variables:

F (x) = 0, F : Rn → Rn. (2.4)

mainly when very little a priori knowledge regarding the zero points of F is available and
so, a poor starting value could cause a divergent Newton iteration sequence.

The idea of the homotopy method is to consider a new function G : Rn → Rn, related
to F , with a known solution, and then to gradually deform this new function into the
original function F . Typically one can define the convex homotopy:

H(x, t) = t ·G(x) + (1− t) · F (x) (2.5)

and can try to trace the implicitly defined curve

H−1(0) = {x ∈ Rn | ∃ t ∈ [0, 1] such that H(x, t) = 0} (2.6)

from a starting point (x0, 1) to a solution point (x∗, 0). The implicit function theorem
ensures that the set H−1(0) is at least locally a curve under the assumption that (x0, 1) is
a regular value of H , i.e. the Jacobian H ′(x0, 1) has full rank n. However, because there
is no smoothness condition on F , a more complex approach involving piecewise-linear
approximations is needed.

A detailed description of the implementation and use of the PLH method for solving
some unconstrained optimization problems is given in [5], [6] and [7] and here we will
present just some important details of the PLH method.

We define the “refining” triangulation J3 of Rn × (0, 1] such that the vertices of this
triangulation are given by the set of points:

J0
3 = {(v1, . . . , vn+1) | vn+1 = 2−k, k ∈ N and

vi
vn+1

∈ Z}.

So, every (n+ 1)-simplex of this triangulation is contained in some slab Rn× [2−k, 2−k−1],
k ∈ N.
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Let σ = [v1, v2, . . . , vn+1, vn+2] ∈ J3 be an (n+1)-simplex and let π : Rn×R→ R be the
following canonical projection: π(x, t) = t. We define the level of σ as maxi=1,n+2 π(vi),
which is the maximum of the last co-ordinates of all vertices of σ. We call J3 a refining
triangulation of Rn × R because the diameter of σ tends to zero as the level of σ tends to
zero.

We define the piecewise linear homotopy mapHJ3
which interpolatesH on the vertices

of the given refining triangulation J3:

• HJ3
(x, 1) = G(x), HJ3

(x, 0) = F (x);

• HJ3
(x, t) =

n+2∑
i=1

λiH(vi, t), where: (vi, t) are vertices of σ ∈ J3 and

(x, t) =
n+2∑
i=1

λi(vi, t),
n+2∑
i=1

λi = 1, λi ≥ 0.

The algorithm will trace the unique component of the polygonal path H−1J3
(0) which

contains (x0, 1), with nodes on the n-faces of the triangulation J3.
The algorithm starts with the unique simplex σ0 which contains the initial point (x0, 1).

Then, for each i = 0, 1, . . . it will perform the following steps in a loop:

• It will trace the restriction of H−1J3
(0) to the current simplex σi, from the point

(xi, ti) and finds the intersection point (xi+1, ti+1) with some other facet of σi.
This step is called “door-in-door-out step”, see [2]. Sometimes this step is also
called linear programming step because it involves the solving of linear equations
in a manner typical for linear programming methods.

• It performs a pivoting step, which means to find the new simplex σi+1 which is
adjacent to the current simplex and which contains the point (xi+1, ti+1). This step
is usually performed using only a few operations which define the pivoting rules
of the triangulation.

The generated sequence (x0, 1), (x1, t1), . . . will converge to a solution (x∗, 0) of the
homotopy map H , that is, to a solution x∗ of the equation F (x) = 0.

3. EXPERIMENTAL COMPARATIVE STUDY

In this section we investigate the numerical behavior the PLH method for some non-
smooth optimization problems described in [18] and compare the numerical results thus
obtained with the corresponding results obtained by means of the BFGS method.

3.1. The tilted norm function.
We consider the Euclidean norm function on Rn tilted by a linear term

f(x) = w||x||+ (w − 1)eT1 x

where e1 is the first coordinate vector and w ≥ 1. The only minimizer is the origin.
In Figure 1 we compare the results of the BFGS and PLH methods. For the tilted norm

function, the characteristics of the PLH method are quite similar to the BFGS method,
for all the cases considered. We observe that the number of iterations required for the
PLH method grows quicker with the dimension of the problem n, when compared to
the iterations required by the BFGS method. This is actually a known weakness of the
method, reported from the earliest descriptions. Another issue identified in the results,
is that the PLH method breaks when the precision is smaller than around 10−11, an issue
which is visible in the visual data from figure 1.
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FIGURE 1. Tilted Norm Function - BFGS (top) and PLH (bottom)

3.2. A nonsmooth Rosenbrock function.
We consider the following nonsmooth variant of the well known Rosenbrock function in
two variables:

f(x1, x2) = w|x2 − x21|2 + (1− x2)2, (x1, x2) ∈ R2.

The function is unimodal, and the global minimum value, f(1, 1) = 0, lies in a narrow,
parabolic valley.

In Figure 2, we see linear convergence with respect to the number of function trials for
typical runs with w = 1, 2, 4, 8, for both PLH and BFGS methods. The value of w and the
required result precision do not influence too much the number of iterations for the PLH
algorithm. The initial value seems to play a more important role in the number of itera-
tions of the PLH method for this problem. The PLH algorithm requires a bigger number
of minimal steps for lower precision of the result, but the number of steps for higher pre-
cisions is smaller than the steps of the BFGS method, especially for bigger values of the w
parameter.
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FIGURE 2. Nonsmooth Rosenbrock Function - BFGS (left) and PLH
(right)

3.3. Nesterov’s Chebyshev-Rosenbrock Functions.
We consider the following smooth function introduced by Nesterov:

f̃(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

(xi+1 − 2x2i + 1)

and a non smooth variant:

f(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

|xi+1 − 2x2i + 1|

In both cases the minimizer is x̄ = [1, 1, ..., 1]T .
Trying to solve the smooth problem for n = 8 using x0 = [−1, 1, ..., 1]T as starting point,

the PLH method requires:
• > 17000 steps for a precision of 10−3

• > 27000 steps for a precision of 10−4

• > 67000 steps for a precision of 10−5

• > 178000 steps for a precision of 10−6

This suggests that the convergence rate of the PLH method is not linear. The BFGS
method, for n = 8 and using the same initial value x0 achieves a precision of 10−15 in
just 6700 iterations, but it requires over 50000 iterations for n = 10.

We are able to solve the nonsmooth problem for n = 2 using the PLH method, but
our tests for n = 3 and n = 4 are breaking due to numerical instability. We are still
investigating if this is a problem in the particular implementation of the PLH algorithm.
The above nonsmooth problem is challenging for the BFGS method also, which breaks
down for n >= 4.

4. CONCLUSIONS

We applied the PLH method to several nonsmooth problems and compared the results
with the BFGS method. For two of the examples, the tilted norm function and the Rosen-
brock function, the results obtained with the PLH method are quite similar to the BFGS



A comparative study of the PL homotopy and BFGS methods 103

method, that is, the PLH method converges to local minimum values and the convergence
rate seems to be linear with respect to the number of function evaluations.

When applied to more challenging problems, i.e., the Nesterov’s Chebyshev-Rosenbrock
functions presented in section 3.3, some issues of the PLH method become apparent.
Firstly, it seems that the convergence rate when considering problems with higher di-
mensions (e.g. n = 8), is not linear.

Another issue identified in example 3.3, is that the PLH method breaks for the non-
smooth function when n > 2, due to numerical instability, an issue which has to be ana-
lyzed more carefully.

A third problem is that the method breaks when the precision is smaller than 10−11,
which is visible also in the visual data form Figure 1.

For other recent related research on that area we refer to [1], [13], [16], [20], [26], [25],
[27].
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