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New ant colony optimization algorithm in medical images
edge detection

CRISTINA ŢICALĂ and IOANA ZELINA

ABSTRACT. In this paper we aim to use a demicontractive operator in terms of admissible perturbations in an
ant colony optimization (ACO) algorithm for edge detection of medical images. Two admissible perturbations
are used. Practical results are presented. Comparison with results using different operators are made.

1. INTRODUCTION

Ant colony optimization algorithms are inspired by nature, based on the behavior of
real ant colonies, in which ants deposit pheromone on the ground, in order to mark fa-
vorable paths in their search for food. These paths will be followed by the members of
the colony. The first Ant Colony algorithm, called Ant Colony System was proposed by
Dorigo et all [3]. From that point on a large number of algorithms based on ACO were
developed.

In this paper ACO is introduced to approach medical images edge detection problem,
where the aim is to extract the edge of the image, since the edge is decisive to understand
the image content. The new feature of this algorithm is the admissible perturbations ap-
plied to a demicontractive operator.

Definition 1.1. [5] We say that T : C → C, where C is subset of R, is demicontractive if
there exists a constant k < 1 such that, for each fixed point p of T and each x ∈ C,

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2. (1.1)

We call k the contraction coefficient.

Example 1.1. [4] An example of demicontractive mapping is T : R→ R, defined by

Tx =

{
2
3x sin 1

x , if x 6= 0

0, if x = 0
(1.2)

The theory of admissible perturbations of an operator introduced by Rus in [8], opened
a new direction of research and unified the most important aspects of the iterative approx-
imation of fixed point for single valued self operators.

Definition 1.2. [8] Let X be a nonempty set. A mapping G : X × X → X is called
admissible if it satisfies the following two conditions:
(A1) G(x, x) = x, for all x ∈ X;
(A2) G(x, y) = x implies y = x.

Let f : X → X be an operator. Then we consider the operator fG : X → X defined by

fG(x) := G (x, f(x)) .

Received: 03.10.2019. In revised form: 13.12.2019. Accepted: 10.01.2020
2010 Mathematics Subject Classification. 47H10, 47H09, 97R40.
Key words and phrases. Fixed point, Krasnoselskij iteration, Admissible perturbation, Ant Colony Optimization.
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Definition 1.3. [8] Let f : X → X a nonlinear operator and G : X × X → X be an
admissible mapping. The iterative algorithm {xn} given by x0 ∈ X and

xn+1 = G (xn, f (xn)) , n ≥ 0. (1.3)
is called the Krasnoselskij algorithm corresponding to G, or the GK-algorithm.

Example 1.2. Let (V,+,R) be a real vector space, X ⊂ V a convex subset, λ ∈ (0, 1),
f : X → X and G : X ×X → X defined by

G (x, f (x)) := (1− λ)x+ λf (x) , x ∈ X. (1.4)

Then fG is admissible perturbation of f , perturbation called the Krasnoselskij perturba-
tion of f .

Example 1.3. Let (V,+,R) be a vectorial space,X ⊂ V a convex subset, χ : X×X → (0, 1),
f : X → X şi G : X ×X → X defined by

G (x, y) := (1− χ (x, y))x+ χ (x, y) y. (1.5)
Then fG is an admissible perturbation of f .

The admissible perturbation operator was studied in various papers such as [1], [2],
[9], [11], [10].

In this paper we aim to use a demicontractive operator in terms of admissible per-
turbations in an ant colony optimization (ACO) algorithm for edge detection of medical
images. Two admissible perturbations are used in computing the heuristic value required
in ACO algorithm. Practical results are obtained using various medical images shown in
figure 3. Execution times for each image and each edge extracting method are presented.
Comparison with results using different operators are made.

2. ANT COLONY OPTIMIZATION

The ACO algorithm builds the optimal solution of the target problem using artificial
ants that search the best path, iteratively and controlled, in the search space, depositing
pheromones while searching. In other words, assuming that there are K ants engaged in
the search, in a space X , which consists of M1 ×M2 nodes, ACO may be summarized as
described by Tian et all in [6]:

• Initiate all K ants and the pheromone matrix, τ (0);
• For every solution construction step index n = 1 : N

for every ant k = 1 : K
? Consecutively move the k-th for L steps according with a transition

probability matrix;
update the pheromone matrix τ (n);

• Make the solution decision according to the final pheromone matrix τ (N).
There are two fundamental problems ACO has to solve which are: to build the transi-

tion probability matrix p(n), and to update the pheromone matrix τ (n). Each problem will
be presented in this paper.

At the n-th construction step, the k-th ant is moving from the node I to the node J
according to a transition probability given by:

pnIJ =

(
τ

(n−1)
IJ

)α
(ηIJ)

β

∑
J∈ΩI

(
τ

(n−1)
IJ

)α
(ηIJ)

β
, if J ∈ ΩI , (2.6)
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where τ (n−1)
IJ is the existing pheromone value on the arc which connects the nodes I and

J , at construction step n−1; ηIJ is the heuristic value on the arc which connects the nodes
I and J , value that is the same for all the N construction steps; α, β are weighting factors
for the pheromone and the heuristic respectively; ΩI is the 8-connectivity neighborhood
of node I , for each node of the space.

The information in the pheromone matrix is updated twice during ACO: first after each
ant moves within each construction step, and second update is performed after the move
of all K ants within each construction step. The first update is performed after the move
of the k-th ant in the n-th construction step according to [6].

τ
(n)
IJ =

 τn−1
IJ · (1− ρ) + ρ ·∆(k)

IJ , if (I, J) is on the best path

τ
(n−1)
IJj , otherwise .

(2.7)

where ρ is the pheromone evaporation rate, ∆
(k)
IJ is the quantity of pheromone laid on

edge (I, J) by ant k. Furthermore, the best path is an user defined criterion; it can be the
best path found in the current construction step, or from the start of ACO algorithm, or a
combination of these two.

The second update is performed using a procedure suggested in [3], as

τ (n) = (1− ψ) · τ (n−1) + ψ · τ (0); (2.8)

where ψ the pheomone decay rate.

3. ACO ALGORITHM - FOR EDGE DETECTION IN MEDICAL IMAGES

The proposed edge detection algorithm uses artificial ants which move in a bi-dimen-
sional image in order to build the pheromone matrix, each element represents the edge
information for every pixel in the image.

The proposed approach starts with the initialization process, runs for N steps to create
and update the pheromone matrix, and last, performs the decision process to determine
the edge of the image.

3.1. Initialization process. In the initialization process all the K ants are placed ran-
domly in the image. Each pixel of the image is viewed as a node. Each value of the
initial pheromone matrix τ(0) is set to a constant τinit.

3.2. Construction process. At the n-th construction step, n = 1, N , one ant is randomly
chosen from all K ants and this ant will be consecutively moving for L steps. The ant will
move from node I to J according to the transition probability in (2.6).

There are two crucial aspects in the construction process. First, it is the issue of es-
tablishing the heuristic ηij from (2.6). In this paper, we propose to compute the heuristic
value according to the local statistic of the pixel Ii,j .

ηi,j =
1

Z
Vc(Ii,j), (3.9)

where Z =
∑
i=1,M1

∑
1,M2

VcI(i, j), is a normalization factor, Ii,j is the intensity value of
the pixel at the position (i, j) from the image, Vc(Ii,j) is a function which processes the
”clique” cIi,j defined in [6], figure 2. The value of Vc(Ii,j) depends on the variation of
image’s intensity values on cIi,j . More specifically, the value of Vc(Ii,j) at the pixel Ii,j
according to [6] is
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FIGURE 1. Local configuration at Ii,j pixel, for computing the variation
value Vc(Ii,j) defined by (3.10). The pixel Ii,j is the gray square.

Vc(Ii,j) = f (|Ii−2,j−1 − Ii+2,j+1|+ |Ii−2,j+1 − Ii+2,j−1|
+ |Ii−1,j−2 − Ii+1,j+2|+ |Ii−1,j−1 − Ii+1,j+1|
+ |Ii−1,j − Ii+1,j+1|+ |Ii−1,j+1 − Ii+1,j−1|
+ |Ii−1,j+2 − Ii+1,j−2|+ |Ii,j−1 − Ii,j+1|) .

(3.10)

In this paper, the considered operators for f(·) from (3.10) are listed below.

f(x) = λx2, for x ≥ 0, (3.11)

f(x) =

 sin

(
πx

2λ

)
, 0 ≤ x ≤ λ;

0, otherwise.
(3.12)

f(x) =

{
(1− λ) · x+ λ · 2

3x sin 1
x if x 6= 0;

0, if x = 0.
(3.13)

f(x) =

{ (
1− χ

(
x, 2

3x sin 1
x

))
x+ χ

(
x, 2

3x sin 1
x

)
· 2

3x sin 1
x if x 6= 0

0 if x = 0.
(3.14)

where χ : R× R −→ [0, 1),

χ(x, y) =
x2 · y2

(1 + x2) · (1 + y2)
. (3.15)

The parameter λ from the equations (3.11) and (3.12) adjusts the shape of the operators.
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During the conducted research about admissible perturbations of demicontractive op-
erators, using Krasnoselskij perturbation on the demicontractive operator (1.2), the opera-
tor given by (3.13) was obtained. It was established that (3.13) can be used as test function
to construct the heuristic value in this algorithm. This operator has not been used before
in this form, or in edge detection algorithms.

Also, continuing the research, we considered the operator admissible perturbation de-
fined in [8] by (1.4).

The operator listed in (3.14) is an admissible perturbation operator obtained by apply-
ing the function χ defined by (3.15) to demicontractive operator stated in (1.2).

The first two operators (3.11), (3.12), are test functions used in [6]. We used these oper-
ators in order to evaluate the results obtained with the proposed admissible perturbation
operators defined in (3.13) and (3.14).

The second aspect is establishing the domain in which one ant found in node (l,m) can
make moves, i.e. Ωl,m from (2.6). In this paper an 8-connectivity domain is considered,
figure 2.

FIGURE 2. 8-connectivity neighborhood for the pixel Ii,j (marked as gray regions)

3.3. Update process. The algorithm uses two update operations for the pheromone ma-
trix. First update is made after each ant moves within each construction step. Each ele-
ment of the matrix is updated according to (3.16)

τ
(n)
i,j =

 τn−1
ij · (1− ρ) + ρ ·∆(k)

ij , if Ii,j is visited by the current ant;

τ
(n−1)
ij , otherwise.

(3.16)

The second update is made after the movement of all ants within each construction
step according to

τ (n) = (1− ψ) · τ (n−1) + ψ · τ (0); (3.17)

where ψ is the pheromone decay rate.

3.4. Decision process. At this point of the algorithm a binary decision is made for each
pixel in order to establish if it is edge or not, by applying a threshold T on the final
pheromone matrix τ (N). The threshold is computed as stated by Doringo et all in [7].
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4. RESULTS

We tested the algorithm on four medical images which are shown in figure 3. Also we
used all the parameters values used in [6].

Experimental results are presented next. We provided the images with the determined
edge using each operator from (3.11) - (3.14)

FIGURE 3. Test images: a) Brain CT (126× 128); b) Cervical CT (225× 225),
c) Hand X-ray (225 × 225), d) Head CT (128 × 128)

FIGURE 4. Various edges of Brain CT obtained using: a) operator (3.11),
b) operator (3.12), c) operator (3.13), d) operator (3.14).

FIGURE 5. Various edges of Cervical CT obtained using: a) operator
(3.11), b) operator (3.12), c) operator (3.13), d) operator (3.14).

The execution time for each of the four images using operators (3.11), (3.12), (3.13),
(3.14) are shown in the next table.
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FIGURE 6. Various edges of Hand X-ray obtained using: a) operator
(3.11), b) operator (3.12), c) operator (3.13), d) operator (3.14).

FIGURE 7. Various edges of Head CT obtained using: a) operator (3.11),
b) operator (3.12), c) operator (3.13), d) operator (3.14).

Operator (3.3) Operator (3.4) Operator (3.5) Operator (3.6)
Brain CT 47.2442 47.0982 48.2437 47.0464
Cervical CT 138.9476 139.8230 140.2909 126.6480
Hand X − ray 189.3574 204.5009 202.6446 185.6683
Head CT 38.8062 29.5953 38.6136 41.5907

5. CONCLUSIONS AND FURTHER WORK

The ACO-based edge detection approach is implemented using the Matlab program-
ming language and run on a PC - AMD Rysen 5 2500U, 2GHz. As one can see, the execu-
tion time for various methods are close. The dimension of the image is very important for
the execution time. The results obtained with various methods were comparable.

It was necessary to establish how close were the results obtained with various opera-
tors, since we wanted to know if demicontractive operators can be used in edge detection
algorithms. Consequently counting were made.

We found that in the Krasnoselskij perturbation operator (3.13) edge image there are:
740 pixels not in the edge image obtained with (3.11); 593 pixels not in the edge image
obtained with (3.12); 677 pixels not in the edge image obtained with (3.14).

On the other hand we can see that the edge information obtained with operator (3.12)
seems to have more pixels on the edge; thus we made the counting the other way around.
There were a number of pixels which were not on the edge for operator (3.13) but found
by operators (3.11), (3.12), (3.14) as it follows: 400, 696, 657 respectively.

The same counting was made for operator (3.14) regarding operators (3.11) and (3.12).
We found more 637 respectively 556 pixels on the edge determined by ”χ”-perturbation,
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(3.14), than the mentioned operators. And we found a number of 317 pixels and 679 pixels
found by (3.11) and (3.12) respectively but not found by ”χ”-perturbation.

This counting was performed on the rest of the images. Each time there were pixels
”seen” with one operator and disregarded by the others. This fact leads to the idea of
building a new edge which includes all the edge information obtained with each of four
methods, for every image. We applied this idea and the result is presented in figure 8.

FIGURE 8. New edges: a) Brain CT b) Cervical CT c) Hand X-ray d) Head CT

Further work shall include modification of the update process for the pheromone ma-
trix, and improvements of the communication between ants.
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