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Explicit algorithms for J-fixed points of some non linear
mappings in certain Banach spaces

M. M. GUEYE, M. SENE, M. NDIAYE and N. DJITTE

ABSTRACT. Let E be a real normed linear space and E∗ its dual. In a recent work, Chidume et al. [ Chidume,
C. E. and Idu, K. O., Approximation of zeros of bounded maximal monotone mappings, solutions of hammerstein integral
equations and convex minimizations problems, Fixed Point Theory and Applications, 97 (2016)] introduced the new
concepts of J-fixed points and J-pseudocontractive mappings and they shown that a mapping A : E → 2E

∗
is

monotone if and only if the map T := (J − A) : E → 2E
∗

is J-pseudocontractive, where J is the normalized
duality mapping of E. It is our purpose in this work to introduce an algorithm for approximating J-fixed points
of J-pseudocontractive mappings. Our results are applied to approximate zeros of monotone mappings in certain
Banach spaces. The results obtained here, extend and unify some recent results in this direction for the class
of maximal monotone mappings in uniformly smooth and strictly convex real Banach spaces. Our proof is of
independent interest.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H . An operator
A : H → H with domain D(A) is called monotone if for every x, y ∈ D(A), the following
inequality holds:

〈x− y,Ax−Ay〉H ≥ 0, (1.1)

and it is called strongly monotone if there exists k ∈ (0, 1) such that every x, y ∈ D(A),

〈x− y,Ax−Ay〉H ≥ k‖x− y‖2H . (1.2)

Such operators have been studied extensively (see, e.g., Bruck Jr [7], Chidume [11], Mar-
tinet [17], Reich [19], Rockafellar [20]) because of their role in convex analysis, in certain
partial differential equations, in nonlinear analysis and optimization theory.

The extension of the monotonicity definition to operators defined from a Banach space
has been the starting point for the development of nonlinear functional analysis. The
monotone maps constitute the most manageable class because of the very simple structure
of the monotonicity condition. The monotone mappings appear in a rather wide variety
of contexts since they can be found in many functional equations. Many of them appear
also in calculus of variations as subdifferential of convex functions. (see, e.g., Pascali and
Sburian [18], p. 101, Rockafellar [20] ).

The first extension involves mappings A from E to E∗. Here and in the sequel, 〈·, ·〉
stands for the duality pairing between (a possible normed linear space) E and it dual
E∗. Let E be a real normed space. A mapping A : E → E∗ with domain D(A) is called
monotone if for each x, y ∈ D(A), the following inequality holds:〈

x− y,Ax−Ay
〉
≥ 0, (1.3)
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and it is called strongly monotone if there exists k ∈ (0, 1) such that for each x, y ∈ D(A),
the following inequality holds:

〈x− y,Ax−Ay〉 ≥ k‖x− y‖2. (1.4)

The second extension of the notion of monotonicity to real normed spaces involves map-
pings A from E into itelf . Let E be a real normed space. The map J : E → 2E

∗
defined

by:
Jx :=

{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖.‖x∗‖, ‖x∗‖ = ‖x‖

}
is called the normalized duality map on E.

A mapping A : E → E with domain D(A) is called accretive if for all x, y ∈ D(A), the
following inequality is satisfied:

‖x− y‖ ≤ ‖x− y + s(Ax−Ay)‖ ∀ s > 0. (1.5)

As a consequence of a result of Kato [15], it follows that A is accretive if and only if for
each x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0. (1.6)

Finally, A is called strongly accretive if there exists k ∈ (0, 1) such that for each x, y ∈ D(A),
there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ k‖x− y‖2. (1.7)

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert
spaces, monotonicity and accretivity coincide.

In several cases, solutions of Au = 0, coincide with the equilibrium points of some dy-
namical systems whenever the operatorA is accretive (see e.g., [11], p.116). This, therefore
has motivated many attempt construct algorithms for approximating zeros such opera-
tors.

Supposing that A : E → E is of accretive-type, Browder [6] defined an operator T :
E → E by T := I − A, where I is the identity map on E. He called such an operator
pseudocontractive. One can observe that zeros ofA correspond to fixed points set of T ; This
observation has motivated the consideration of fixed point pseudocontractive mappings.
For instance in [9], Chidume has proved in Lp, 2 ≤ p <∞ that the sequence {xn} defined
iteratively by xn+1 = (1−λn)xn+λnTxn converges strongly to a fixed point of a Lipschitz
and bounded strongly pseudocontractive mapping. As a corollary he proved that the
algorithm xn+1 = xn − λnAxn converges strongly to a zero of bounded and strongly
accretive mapping. This result has been generalized and extended in various directions
by numerous authors (see e.g., Censor and Reich [8], Chidume et. al. [12], Chidume and
Djitte [13, 14] and references therein.

Unfortunately, the success achieved in using geometric properties developed from the
mid 1980s to early 1990s in approximating zeros of accretive-type mappings has not carried
over to approximating zeros of monotone-type operators in general Banach spaces. Part of
the difficulties is due to the fact that in the case of a montone mapping A : E → E∗, the
mapping I −A used in the accretive case not defined. This, has motivated some research
efforts to introduce some analogeous concepts to pseudocontractive type mappings. In
this direction, Shashad and Zegeye [22] introduced the notion of mono-pseudocontractive
mappings. Then, they proved that for a closed, convex and nonempty subset C of a
smooth, reflexive and strictly convex real Banach space E, a mapping A : C → E∗ is
monotone if and only if T = J−1(J − A) : E → E is mono-pseudocontractive. Then they
used this result to approximate fixed points of mono-pseudocontractive mappings.

Recently Chidume et al. [10] introduced the class of J-pseudocontractive mappings.
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Let E be real normed linear space with dual space E∗. A mapping T : E → 2E
∗

is
called J-pseudocontractive if for every x, y ∈ E, the following inequality holds :

〈τ − ζ, x− y〉 ≤ 〈η − µ, x− y〉 for all τ ∈ Tx, ζ ∈ Ty, η ∈ Jx, ν ∈ Jy.
In the same way as accretive mappings and pseudocontractive mappings, a connection
is made between monotone mappings and J-pseudocontractive mappings. In fact, as a
result of Chidume et al. [10], a multivalued mapping A : E → 2E

∗
is monotone if and

only if T := (J −A) : E → 2E
∗

is J-pseudocontractive, where J is the normalized duality
mapping of E. A point x ∈ E is called a J-fixed point of T if there exists η ∈ Jx such that
η ∈ Tx. We denote by F J(T ) the set of J-fixed points of T . In particular, if J is single
valued, then F J(T ) = {x ∈ E : Jx ∈ Tx}. Finally, for u ∈ E, 0 ∈ Au if and only if u is a
J-fixed point of T .

It is our purpose in this work to introduce an algorithm for approximating J-fixed
points of J-pseudocontractive mappings. Our results are applied to approximate zeros for
monotone mappings in certain Banach spaces. The results obtained in this work extend
some recent results in this direction for the class of maximal monotone mappins defined
in uniformly smooth and strictly convex real Banach spaces.

2. PRELIMINARIES

Let E be a normed linear space. E is said to be smooth if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.8)

exist for each x, y ∈ SE (Here SE := {x ∈ E : ||x|| = 1} is the unit sphere of E). E is
said to be uniformly smooth if it is smooth and the limit is attained uniformly for each
x, y ∈ SE , and E is Fréchet differentiable if it is smooth and the limit is attained uniformly
for y ∈ SE .

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E ,
ρE , is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exist a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q , then E is
said to be q-uniformly smooth.

A normed linear space E is said to be strictly convex if:

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥x+ y

2

∥∥∥ < 1.

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by:

δE(ε) := inf
{

1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. For p > 1, E is said to be
p-uniformly convex if there exists a constant c > 0 such that δE(ε) ≥ cεp for all ε ∈ (0, 2].
Observe that every p-uniformly convex space is uniformly convex.

Typical examples of such spaces are the Lp, `p and Wm
p spaces for 1 < p <∞where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p <∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.
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It is well known that E is smooth if and only if J is single valued. Moreover, if E is a
reflexive smooth and strictly convex Banach space, then J−1 is single valued, one-to-one,
surjective and it is the duality mapping from E∗ into E.

Let E be a smooth real Banach space with dual E∗. The Lyapunov functional φ : E ×
E → R, was introduced by Alber (see e.g [2]) as follows:

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for x, y ∈ E, (2.9)

where J is the normalized duality mapping from E into 2E
∗
.

The Lyapunov functional has been studied by Alber [2], Alber and Guerre-Delabriere [4],
Kamimura and Takahashi [3], Reich [19] and a host of other authors. It follows from (2.9)
that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for x, y ∈ E. (2.10)

Definition 2.1. Let C be a nonempty, closed and convex subset of a smooth real Banach
E. The generalized projection operator is a mapping ΠC : E → C that assigns to each
x ∈ E the corresponding unique element x̂ ∈ E such that φ(x̂, x) = inf{φ(y, x) : y ∈ C}.
That is

ΠCx = x̂; x̂ : φ(x̂, x) = inf{φ(y, x) : y ∈ C}.

If E = H is a real Hilbert space, then φ(x, y) = ‖x − y‖2 for x, y ∈ H. Therefore ΠC

coincides with the metric projection operator in Hilbert spaces.
The functional φ and the generalized projection operator enjoy the following proper-

ties.

Lemma 2.1. [1] Let C be a nonempty closed and convex subset of a real reflexive, strictly convex,
and smooth Banach space E and let x ∈ E. Then for all y ∈ C,

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x).

Lemma 2.2. [1] Let C be a convex subset of a real smooth Banach space E. Let x ∈ C, then
x0 = ΠCx if and only if

〈y − x0, Jx− Jx0〉 ≤ 0, ∀ y ∈ C.

Lemma 2.3 (Kamimura and Takahashi, [3]). Let E be a smooth and uniformly convex real
Banach space, and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded
and φ(xn, yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.

Define the functional V : E × E∗ → R by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2.
Then, it is easy to see that

V (x, x∗) = φ(x, J−1x∗) ∀ x ∈ E, x∗ ∈ E∗.

Lemma 2.4 (Alber, [2]). Let E be a reflexive strictly convex and smooth Banach space with E∗

as it dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (2.11)

for all x ∈ E and x∗, y∗ ∈ E∗.

In the sequel we shall use the next results.



Hammerstein Equation 31

Lemma 2.5 (Xu [23]). Let {an} be a sequence of non-negative real numbers satisfying the follow-
ing inequality

an+1 ≤ (1− αn)an + αnδn, n ≥ n0, (2.12)

where {αn} ⊂ (0, 1) and {δn} ⊂ R are real sequences satisfying:
∑
αn =∞ and lim sup

n→∞
δn ≤

0. Then, the sequence (an) converges to zero as n→∞.

Lemma 2.6. [16] Let {an} be a sequence of real numbers such that there exists a subsequence {ni}
of {n} such that ani < ani+1 for all i ∈ N. There exists a nondecreasing sequence {mk} ⊂ N such
that mk →∞ and the following properties are satisfied by all sufficiently large numbers k ∈ N:

amk
≤ amk+1

and ak ≤ amk+1
.

Precisely, mk = max{j ≤ k : aj ≤ aj+1}.

Lemma 2.7. [5] Let C be a nonempty, closed, and convex subset of a smooth, strictly convex, and
reflexive real Banach space E. Let A : C → E∗ be a continuous monotone mapping. Then, for
r > 0 and x ∈ E, there exists z ∈ C such that

〈y − z,Az〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0 ∀ y ∈ C.

Lemma 2.8. [22] Let C be a nonempty, closed, and convex subset of a smooth, strictly convex,
and reflexive real Banach space E. Let A : C → E∗ be a continuous monotone mapping. For
r > 0 define the mapping Fr : E → C as follows:

Frx := {z ∈ C : 〈y − z,Az〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0 ∀ y ∈ C}

for all x ∈ E. Then the following hold:
(1 ) Fr is single-valued;
(2 ) F (Fr) is closed and convex;
(3 ) φ(p, Frx) + φ(Frx, x) ≤ φ(p, x) for all p ∈ F (Fr).

3. MAIN RESULTS

We begin with the following results:

Lemma 3.9. Let E be a smooth, strictly convex, and reflexive real Banach space. Let T : E → E∗

be a continuous J-pseudocontractive mapping. Then, for r > 0 and x ∈ E, there exists z ∈ E
such that

〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)Jz − Jx〉 ≤ 0 ∀ y ∈ E.

Proof. Since T is J-pseudocontractive and continuous then A := (J − T ) : E → E∗ is a
continuous and monotone mapping. Moreover, for z ∈ E

〈y − z,Az〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0 ∀ y ∈ E

is equivalent to

〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)Jz − Jx〉 ≤ 0 ∀ y ∈ E.

Therefore the result follows from Lemma 2.7. �
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Lemma 3.10. LetE be a smooth, strictly convex, and reflexive real Banach space. Let T : E → E∗

be a continuous J-pseudocontractive mapping. For r > 0 define the mapping Tr : E → E as
follows:

Trx := {z ∈ E : 〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)Jz − Jx〉 ≤ 0 ∀ y ∈ E}

for all x ∈ E. Then the following hold :
(1 ) Tr is single-valued;
(2 ) F (Tr) is closed and convex;
(3 ) φ(p, Trx) + φ(Trx, x) ≤ φ(p, x) for all p ∈ F (Tr);
(4 ) F (Tr) = F J(T ).

Proof. Since T is J-pseudocontractive and continuous, then A := (J − T ) : E → E∗ is a
continuous and monotone. Moreover

〈y − z,Az〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0 ∀ y ∈ C

is equivalent to

〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)Jz − Jx〉 ≤ 0 ∀ y ∈ E.

Therefore (1)-(3) follow by taking A := J − T in Lemma 2.8.
Now let x ∈ E such that x = Trx. We have

〈y − x, Tx− Jx〉 ≤ 0 ∀ y ∈ E.

This implies that Jx = Tx. Therefore F (Tr) ⊂ F J(T ).
On the other hand suppose that Tx = Jx. Let y ∈ E, we have

〈y − x, Tx〉 − 1

r
〈y − x, (1 + r)Jx− Jx〉 = 〈y − x, Tx− Jx〉 − 1

r
〈y − x, Jx− Jx〉 = 0.

This implies that x ∈ Trx. Since Tr is single-valued then Trx = x.
Therefore, F J(T ) ⊂ F (Tr). So F (Tr) = F J(T ).

�

Algorithm. Let us now present our algorithm : for E a smooth, stricly convex reflexive
real Banach space and u, x1 ∈ E arbitrarily chosen in E, let {xn} be the sequence gener-
ated as follows : {

un = Trnxn

xn+1 = J−1
(
αnJu+ (1− αn)Jun

)
, n ≥ 1

(3.13)

where {αn} is real seqience in (0, 1) satisfying : limn→∞ αn = 0 and
∑
αn =∞; and {rn}

is a real sequence in [c,∞) for some constant c > 0.

We now prove the following theorem.

Theorem 3.1. Let E be a uniformly smooth and strictly convex real Banach space and let E∗ be
it dual. Let T : E → E∗ be a J-pseudocontractive and continuous mapping. Suppose that F =
F J(T ) 6= ∅. Then the sequence {xn} defined by (3.13) converges strongly to some x∗ = ΠFu.

Proof. step 1: we show that {xn} is bounded.

We proceed by induction. Let x∗ = ΠFu. There exists r > 0 sufficiently large such that

max{φ(x∗, u), φ(x∗, x1)} ≤ r.
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Suppose that φ(x∗, xn) ≤ r. From (3.13), Using Lemma 3.10, we have

φ(x∗, xn+1) = φ(x∗, J−1(αnJu+ (1− αn)Jun))

= ‖x∗‖2 − 2〈x∗, αnJu+ (1− αn)Jun〉+ ‖αnJu+ (1− αn)Jun‖2

≤ ‖x∗‖2 − 2αn〈x∗, Ju〉 − 2(1− αn)〈x∗, Jun〉+ αn‖Ju‖2 + (1− αn)‖Jun‖2

= αnφ(x∗, u) + (1− αn)φ(x∗, un)

≤ αnφ(x∗, u) + (1− αn)φ(x∗, xn).

Using the induction assumption , it follows that φ(x∗, xn+1) ≤ r. Therefore, {xn} is
bounded. Since φ(x∗, un) ≤ φ(x∗, xn) ≤ r,, then the sequence {un}, also bounded.

Step 2: we prove that xn → x∗ as n→∞.
Using Lemma 2.4 and Lemma 3.10, we have

φ(x∗, xn+1) = V (x∗, Jxn+1) ≤ V (x∗, Jxn+1−αn(Ju−Jx∗)) + 2〈xn+1−x∗, αn(Ju−Jx∗)〉

= φ(x∗, αnJx
∗+(1−αn)Jun)+2αn〈xn+1−x∗, Ju−Jx∗〉 ≤ (1−αn)φ(x∗, un)+2αn〈xn+1−x∗, Ju−Jx∗〉

≤ (1−αn)
(
φ(x∗, xn)−φ(un, xn)

)
+2αn〈xn−x∗, Ju−Jx∗〉+2αn‖xn+1−xn‖·‖Ju−Jx∗‖.

(3.14)
Therefore,

φ(x∗, xn+1) ≤ (1−αn)φ(x∗, xn) + 2αn〈xn−x∗, Ju− Jx∗〉+ 2αn‖xn+1−xn‖ · ‖Ju− Jx∗‖.
(3.15)

We observe that

φ(un, xn+1) = φ(un, J
−1(αnJu+ (1− αn)Jun) ≤ αnφ(un, u).

and since {un} is bounded and αn → 0, it follows that φ(un, xn+1)→ 0 as n→∞.
This fact and Lemma 2.3 imply that

un − xn+1 → 0 as n→∞. (3.16)

For the remaining of the proof, we split it into two cases:

Case 1: suppose that φ(x∗, xn+1) ≤ φ(x∗, xn) ∀n ≥ n0 for some n0 ∈ N.

Since {φ(x∗, xn)} is bounded from below, then the sequence {φ(x∗, xn)} converges.
Using (3.14) we have φ(un, xn)→ 0. Therefore,

un − xn → 0 as n→∞. (3.17)

From (3.16) and (3.17), it follows that

xn − xn+1 → 0 as n→∞. (3.18)

Let us now prove that
lim sup〈xn − x∗, Ju− Jx∗〉 ≤ 0.

Since {xn} is bounded and E is reflexive, there exists a subsequence {xnk
} of {xn} such

that
xnk

⇀ z ∈ E (3.19)
and

lim sup〈xn − x∗, Ju− Jx∗〉 = lim
k
〈xnk

− x∗, Ju− Jx∗〉.

It follows from (3.17) and (3.19) that

unk
⇀ z.
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On the other hand, from (3.13), we have

〈y − unk
, Junk

− Tunk
〉+ 〈y − unk

,
Junk

− Jxnk

rnk

〉 ≥ 0, (3.20)

for all y ∈ E.

Now for y ∈ E, let vt := ty + (1 − t)z for t ∈ (0, 1]. From (3.20) and the fact T is J-
pseudocontractive, it follows that

〈vt − unk
, Jvt − Tvt〉 ≥ 〈vt − unk

, Jvt − Tvt〉 − 〈vt − unk
, Junk

− Tunk
〉

− 〈vt − unk
,
Junk

− Jxnk

rnk

〉 = 〈vt − unk
, Jvt − Junk

〉 − 〈vt − unk
, T vt − Tunk

〉

+ 〈unk
− vt,

Junk
− Jxnk

rnk

〉 ≥ 〈unk
− vt,

Junk
− Jxnk

rnk

〉.

Since J is uniformly continuous on bounded sets and unk
− xnk

→ 0 as k →∞, it follows

lim
k→∞

〈unk
− vt,

Junk
− Jxnk

rnk

〉 = 0.

Therefore, by taking limit as k →∞ in both sides in (3) we obtain

〈vt − z, Jvt − Tvt〉 ≥ 0, ∀ t ∈ (0, 1].

This implies that for all y ∈ E we have

〈y − z, Jvt − Tvt〉 ≥ 0, ∀ t ∈ (0, 1].

By letting t→ 0 we have
〈y − z, Jz − Tz〉 ≥ 0, ∀ y ∈ E.

So, Jz − Tz = 0; that is z ∈ F J(T ).

From Lemma 2.2, it follows that

lim
k
〈xnk

− x∗, Ju− Jx∗〉 = 〈z − x∗, Ju− Jx∗〉 ≤ 0.

That is

lim sup〈xn − x∗, Ju− Jx∗〉 ≤ 0.

Therefore, by Lemma 2.5 and (3.15) we have φ(x∗, xn) → 0. Hence, Lemma 2.3 implies
that xn → x∗.

Case 2: suppose that there exists a subsequence {ni} of {n} such that

φ(x∗, xni
) ≤ φ(x∗, xni+1

) ∀ i ∈ N.

Then by Lemma 2.6, there exists a nondecreasing sequence {mk} such that mk →∞ and

φ(x∗, xmk
) ≤ φ(x∗, xmk+1

) and φ(x∗, xk) ≤ φ(x∗, xmk+1
).

Since {φ(x∗, xmk
)}k is increasing and bounded from above, then it converges as k →

∞. Therefore, using the same arguments as in case 1, we have φ(x∗, xmk
) → 0. Since
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φ(x∗, xk) ≤ φ(x∗, xmk+1
), it follows that φ(x∗, xk)→ 0. Therefore, by Lemma 2.3, we have

xk → x∗. This completes the proof. �

4. APPLICATION TO ZEROS OF MONOTONE MAPS

Let E be a uniformly smooth and strictly convex real Banach space and let E∗ be it
dual. Let A : E → E∗ be a monotone and continuous mapping. Let r > 0, define the
mapping Ar : E → 2E as follows:

Arx := {z ∈ C : 〈y − z,Az〉+
1

r
〈y − z, Jz − Jx〉 ≤ 0 ∀ y ∈ E} for all x ∈ E.

Let T = J − A. Since A is monotone and continuous then T is J-pseudocontractive and
continuous. Moreover, we have

F J(T ) = A−1(0) and, for x ∈ E, Trx = Arx.

It follows from this analysis that Ar is well defined and is single valued. Let us consider
the following algorithm. Let u, x1 ∈ E chosen arbitrarily. Given xn, the next iterate is
obtained as follows:

xn+1 = J−1
(
αnJu+ (1− αn)JArnxn

)
, n ≥ 1, (4.21)

where αn ∈ (0, 1) satisfying limn→∞ αn = 0 and
∑
αn = ∞ and {rn} ∈ [c,∞) for some

constant c > 0.

Theorem 4.2. Let E be a uniformly smooth and strictly convex real Banach space and let E∗ be it
dual. Let A : E → E∗ be a monotone and continuous mapping. Suppose that A−1(0) 6= ∅. Then
the sequence {xn} defined by (4.21) converges strongly to some x∗ = ΠA−1(0)u.

Proof. By Theorem 3.1 and the above analysis we have xn converges strongly to some
x∗ = ΠFJ (T )u. That is xn → x∗ = ΠA−1(0)u. �

5. APPLICATION TO CONVEX MINIMIZATION PROBLEMS

Let f : E → R ∪ {+∞} be a proper convex and lower semi-continuous function. It
is well known from a result that it sub differential ∂f is maximal monotone. Further if
f is bounded then ∂f is bounded on bounded subset. Henceforth the above result is
applicable in minimization problems in the following sense.

Theorem 5.3. Let E be a uniformly smooth and strictly convex real Banach space. Let f : E →
R ∪ {+∞} be a convex, proper and lower semi-continuous function. Assume that A := ∂f is
continuous and that f has a minimum in E. Let u, x1 be arbitrarily in E. The sequence {xn}
defined iteratively from x1 by

xn+1 = J−1
(
αnJu+ (1− αn)JArnxn

)
, n ≥ 1

converges strongly to a minimum point of f .

Proof. Let A := ∂f we have A is bounded, monotone and continuous. Moreover, 0 ∈ Ax∗
if and only if f(x∗) = min

x∈E
f(x), hence the result follows from Theorem 4.2. �

Corollary 5.1. Let E be a uniformly smooth and strictly convex real Banach space. Let f : E →
R ∪ {+∞} be a convex, proper and C1-function. Suppose that f has a minimum in E. Let
u, x1 ∈ E then the sequence {xn} defined iteratively from x1 by

xn+1 = J−1
(
αnJu+ (1− αn)J∇frn(xn)

)
, n ≥ 1,

converges strongly to a minimum point of f .
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