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On L3-affine surfaces

IBRAHIMA MOULAYE BADJI, ABDOUL SALAM DIALLO, BAKARY MANGA and
ALASSANE SY

ABSTRACT. A Riemannian manifold (M, g) is said to be an L3-space if its Ricci tensor is cyclic parallel. This
definition extends easily to the affine case. Here we investigate the torsion free affine surfaces (M,∇) to be
L3-spaces and we study locally homogeneous L3-affine surfaces.

1. INTRODUCTION

One of the most extensively studied objects in mathematics and physics are Einstein
manifolds (see for example [3]), i.e. manifolds whose Ricci tensor is a constant multiple
of the metric tensor. In his work [10] A. Gray defined a condition which generalize the
concept of an Einstein manifold. Riemannian manifold (M, g) admitting a cyclic parallel
Ricci tensor, that is

(∇XRic)(Y,Z) + (∇YRic)(Z,X) + (∇ZRic)(X,Y ) = 0

where ∇ denotes the Levi-Civita connection of the metric g and X,Y, Z are arbitrary vec-
tor fields on M is called Einstein-like of class A. It is noted that the above condition is
equivalent to

(∇XRic)(X,X) = 0,

for any vector field X ∈ X(M). If the Ricci tensor is a Codazzi tensor, i.e.,

(∇XRic)(Y,Z) = (∇YRic)(X,Z),

then (M, g) is called Einstein-like of class B. Manifolds having a parallel Ricci tensor, i.e.,

(∇XRic)(Y,Z) = 0

are called Einstein-like of class P . It is obvious that if the Ricci tensor of is parallel, then
it is cyclic parallel. But, the converse statement is not true. Einstein-like manifolds admit-
ting different curvature conditions are investigated by G. Calvaruso in [5]. Einstein-like
manifolds of dimension 3 are studied in [2, 4] where as of dimension 4 are considered in
[22]. An interesting study in [12] showed that Einstein-like Generalized Robertson-Walker
space-times are perfect fluid space-times except one class of Gray’s decomposition.

The purpose of this paper is to investigate affine manifolds under cyclic parallel Ricci
tensor condition. The paper is organized as follows. In Section 2, we recall some basic
definitions and geometric concepts, namely, torsion, curvature and Ricci tensor on an
affine manifold. In Section 3, we study the cyclic parallelism of the Ricci tensor for an
affine connection on a two dimensional affine manifold also called L3-affine surfaces. We
establish geometric configurations of affine manifolds admitting a cyclic parallel Ricci
tensor. In Section 4, characterization of locally homogeneous L3-affine surfaces are given.
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2. PRELIMINARIES

Let M be a n-dimensional smooth manifold and ∇ be an affine connection on M . Let us
consider a system of coordinates (x1, x2, . . . , xn) in a neighborhood U of a point p in M .
In U , the affine connection is given by

∇∂i∂j = Γk
ij∂k, (2.1)

where {∂i = ∂
∂xi
}1≤i≤n is a basis of the tangent space TpM and the functions Γk

ij(i, j, k =

1, 2, 3, . . . , n) are called the coefficients of the affine connection. The pair (M,∇) shall be
called affine manifold. We define a few tensors fields associated to a given affine connec-
tion∇. The torsion tensor field T is defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ], (2.2)

for any vector fields X and Y on M . The components of the torsion tensor T in local
coordinates are

T k
ij = Γk

ij − Γk
ji. (2.3)

If the torsion tensor of a given affine connection∇ vanishes, we say that∇ is torsion-free.
The curvature tensor fieldR is defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (2.4)

for any vector fields X , Y and Z onM . The components of the curvature tensorR in local
coordinates are

R(∂k, ∂l)∂j =
∑
i

Ri
jkl∂i. (2.5)

We shall assume that ∇ is torsion-free. IfR = 0 on M , we say that ∇ is flat affine connec-
tion. It is know that∇ is flat if and only if around each point there exist a local coordinates
system such that Γk

ij = 0, for all i, j and k. We define the Ricci tensor Ric by

Ric(X,Y ) = trace{Z 7→ R(Z,X)Y }. (2.6)

The components of the Ricci tensor in local coordinates are given by

Ric(∂j , ∂k) =
∑
i

Ri
kij . (2.7)

It is known in Riemannian geometry that the Levi-Civita connection of a Riemannian
metric has symmetric Ricci tensor, that is, Ric(Y, Z) = Ric(Z, Y ). But this property is not
true for an arbitrary affine connection with torsion-free. In fact, the property is closely
related to the concept of parallel volume element (see [13] for more details).
In 2-dimensional manifold M , the curvature tensorR and the Ricci tensor Ric are related
by

R(X,Y )Z = Ric(Y,Z)X −Ric(X,Z)Y. (2.8)

The covariant derivative of the curvature tensorR is given by

(∇XR)(Y, Z)W = (∇XRic)(Z,W )Y − (∇XRic)(Y,W )Z, (2.9)

where the covariant derivative of the Ricci tensor Ric is defined as

(∇XRic)(Z,W ) = X(Ric(Z,W ))−Ric(∇XZ,W )

−Ric(Z,∇XW ). (2.10)
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3. L3-SPACES

Definition 3.1. [11] An affine manifold (M,∇) is said to be an L3-space if its Ricci tensor
Ric is cyclic parallel, that is

(∇XRic)(X,X) = 0, (3.11)

for any vector field X tangent to M or, equivalently, if

GX,Y,Z(∇XRic)(Y, Z) = 0,

for any vector fields X , Y , Z tangent to M , where GX,Y,Z denotes the cyclic sum with
respect to X , Y and Z.

For X =
∑

i αi∂i, it is easy to show that

(∇XRic)(X,X) =
∑
i,j,k

αiαjαk(∇iRic)jk. (3.12)

Lemma 3.1. In particular for n = 2, the equations expressing the L3-condition are:

(∇∂1Ric)(∂1, ∂1) = 0; (∇∂2Ric)(∂2, ∂2) = 0

(∇∂1Ric)(∂1, ∂2) + (∇∂1Ric)(∂2, ∂1) + (∇∂2Ric)(∂1, ∂1) = 0

(∇∂1Ric)(∂2, ∂2) + (∇∂2Ric)(∂2, ∂1) + (∇∂2Ric)(∂1, ∂2) = 0.

Let Σ be a smooth surface and ∇ be a torsion-free affine connection. By (2.1), we have

∇∂i
∂j = Γk

ij∂k, for i, j, k = 1, 2, (3.13)

where Γk
ij = Γk

ij(x1, x2). The components of the curvature tensorR are given by

R(∂1, ∂2)∂1 = a∂1 + b∂2 and R(∂1, ∂2)∂2 = c∂1 + d∂2,

where a, b, c and d are given by

a = ∂1Γ1
12 − ∂2Γ1

11 + Γ1
12f

2
12 − Γ2

11Γ1
22,

b = ∂1Γ2
12 − ∂2Γ2

11 + Γ2
11Γ1

12 + Γ2
12Γ2

12 − Γ1
11Γ2

12 − Γ2
11Γ2

22,

c = ∂1Γ1
22 − ∂2Γ1

12 + Γ1
11Γ1

22 + Γ1
12Γ2

22 − Γ1
12Γ1

12 − Γ2
12Γ1

22,

d = ∂1Γ2
22 − ∂2Γ2

12 + Γ2
11Γ1

22 − Γ1
12Γ2

12.

From (2.8), the components of the Ricci tensor are given by

Ric(∂1, ∂1) = −b, Ric(∂1, ∂2) = −d,
Ric(∂2, ∂1) = a, Ric(∂2, ∂2) = c. (3.14)

Proposition 3.1. An affine surface (Σ,∇) is L3-space if and only if the coefficients of the torsion-
free affine connection∇ are the solutions of the following system of partial differential equations:

∂1b− 2bΓ1
11 + (d− a)Γ2

11 = 0, ∂2c− 2cΓ2
22 + (d− a)Γ1

22 = 0,

∂2a− ∂1c− ∂2d+ 2bΓ1
22 − 4cΓ2

12 + (d− a)(2Γ1
12 + Γ2

12) = 0,

∂1a− ∂2b− ∂1d+ 4bΓ1
12 − 2cΓ2

11 + (d− a)(Γ1
11 + 2Γ2

12) = 0. (3.15)
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Proof. From a straightforward calculation using (2.10), the components of the covariant
derivative of the Ricci tensor are given by

(∇∂1
Ric)(∂1, ∂1) = −∂1b+ 2bΓ1

11 + (d− a)Γ2
11;

(∇∂1
Ric)(∂1, ∂2) = −∂1d+ d(Γ1

11 + Γ2
12) + bΓ1

12 − cΓ2
11;

(∇∂1
Ric)(∂2, ∂1) = ∂1a− a(Γ1

11 + Γ2
12) + bΓ1

12 − cΓ2
11;

(∇∂1
Ric)(∂2, ∂2) = ∂1c+ (d− a)Γ1

12 − 2cΓ2
12;

(∇∂2
Ric)(∂1, ∂1) = −∂2b+ 2bΓ1

12 + (d− a)Γ2
12;

(∇∂2
Ric)(∂1, ∂2) = −∂2d+ d(Γ1

12 + Γ2
22) + bΓ1

22 − cΓ2
12;

(∇∂2
Ric)(∂2, ∂1) = ∂2a− a(Γ1

12 + Γ1
22) + bΓ1

22 − cΓ2
12;

(∇∂2
Ric)(∂2, ∂2) = ∂2c+ (d− a)Γ1

22 − 2cΓ2
22.

From Lemma 3.1 the proof is complete. �

Corollary 3.1. Let∇ be the torsion-free affine connection on R2 defined by∇∂1∂1 = Γ1
11(x1, x2)∂1,

∇∂1∂2 = Γ1
12(x1, x2)∂1 and ∇∂2∂2 = Γ2

22(x1, x2)∂2. Then (R2,∇) is a L3-space if and only if
the functions Γ1

11,Γ
1
12 and Γ2

22 satisfy the following partial differential equations: ∂2c−2cΓ2
22 = 0,

∂1a− ∂1d+ (d− a)Γ1
11 = 0 and ∂2a+ ∂1c− ∂2d+ (d− a)Γ2

22 = 0.

To support this, we have the following example. Let us consider the torsion-free connec-
tion∇ on R2 with the only non-zero coefficient functions given by :

∇∂1
∂1 = α(x1 + x2)∂1, ∇∂1

∂2 = βx1(x1 + x2 + 1)∂1, ∇∂2
∂2 = α(x1 + x2)∂2

where α, β ∈ R. It is easy to check that (R2,∇) is an L3-space.

Corollary 3.2. Let ∇ be the torsion-free affine connection on R2 defined by ∇∂1∂1 = Γ2
11∂2 and

∇∂2∂2 = Γ1
22∂1. Then (R2,∇) is a L3-space if and only if the functions Γ2

11 = Γ2
11(x1, x2)

and Γ1
22 = Γ1

22(x1, x2) satisfy the following partial differential equations: ∂1b − (d − a)Γ2
11 =

0, ∂2c+ (d− a)Γ1
22 = 0, ∂1a− ∂2b− ∂1d− 2cΓ2

11 = 0, ∂2a+ ∂1c− ∂2d+ 2bΓ1
22 = 0.

For example, let us consider now on R2 the torsion-free affine connection with only the
non-zero coefficient functions givent by: ∇∂1∂1 = x2∂2 and ∇∂2∂2 = x1(1 + x2)∂1. It is
easy to check that (R2,∇) is an L3-space.

The cyclic parallelism of the Ricci tensor is sometimes called the “First Ledger condition”
[17]. In [19], for instance, the author proved that a smooth Riemannian manifold satis-
fying the first Ledger condition is real analytic. Tod in [20] used the same condition to
characterize the four-dimensional Kähler manifolds which are not Einstein. Also, Peder-
sen and Tod [17] showed if a smooth Riemannian three-manifold (M, g) is an L3-space,
then it is a locally homogeneous D’Atri space. The manifolds with cyclic parallel Ricci
tensor, known as A-manifolds, are well-developed in Riemannian geometry (see [23] and
references therein). In affine setting, Diallo and Massamba proved that affine connec-
tions ∇ with cyclic parallel Ricci tensor are equivalently characterized both by being the
so-called affine Szabó connections [6, 7, 8]

4. LOCALLY HOMOGENEOUS L3-SPACES IN DIMENSION TWO

Homogeneity is one of the fundamental notions in differential geometry. In this section
we consider the homogeneity of manifolds with affine connections in dimension two. This
homogeneity means that for each two points of a manifold there is an affine transforma-
tion which sends one point into another. In particular, we consider a local version of the
homogeneity, that is, the affine transformations are given only locally, i.e., from a neigh-
borhood onto a neighborhood. Note that the concept of homogeneity were first studied
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by Singer [18] on a Riemannian manifold (M, g). The first kind of homogeneity means
that, for every smooth Riemannian manifold (M, g), its group of isometries I(M) is acting
transitively onM . Many years later, Opozda worked out an affine version of Singer’s the-
ory in [14] and [15]. A smooth connection ∇ on M is locally homogeneous if and only if
it admits, in neighborhoods of each point p ∈ M ; at least two linearly independant affine
Killing vectors fields. An affine Killing vector field X is characterized by the equation:

[X,∇Y Z]−∇Y [X,Z]−∇[X,Y ]Z = 0 (4.16)

which has to be satisfied for arbitrary vectors fields Y,Z (see [16]). It is sufficient to satisfy
(4.16) for the choices (Y,Z) ∈ {(∂1, ∂1), (∂1, ∂2), (∂2, ∂1), (∂2, ∂2)}. Moreover, we easily
check from the basic identities for the torsion and the Lie brackets, that the choice (Y,Z) =
(∂1, ∂2) gives the same conditions as the choice (Y, Z) = (∂2, ∂1).
In the sequel, let us express the vector field X in the form

X = F (x1, x2)∂1 +G(x1, x2)∂2.

Writing the formula (4.16) in local coordinates, we find that any affine Killing vector field
X must satisfy six basic equations. We shall write these equations in the simplifed nota-
tion:

∂11F + Γ1
11∂1F + ∂1Γ1

11F − Γ2
11∂2F + ∂2Γ1

11G+ 2Γ1
12∂1G = 0,

∂11G+ 2Γ2
11∂1F + (2Γ2

12 − Γ1
11)∂1G− Γ2

11∂2G+ ∂1Γ2
11F + ∂2Γ2

11G = 0,

∂12F + (Γ1
11 − Γ2

12)∂2F + Γ1
22∂1G+ Γ1

12∂2G+ ∂1Γ1
12F + ∂2Γ1

12G = 0,

∂12G+ Γ2
12∂1F + Γ2

11∂2F + (Γ2
22 − Γ2

11)∂1G+ ∂1Γ2
12F + ∂2Γ2

12G = 0,

∂22F − Γ1
22∂1F + (2Γ1

12 − Γ2
22)∂2F + 2Γ1

22∂2G+ ∂1Γ1
22F + ∂2Γ1

22G = 0,

∂22G+ 2Γ2
12∂2F − Γ1

22∂1G+ Γ2
22)∂2G∂1Γ2

22F + ∂2Γ2
22G = 0.

The following result is the first classification of torsion free homogeneous connections on
two dimensional manifolds.

Theorem 4.1. [16] Let ∇ be a locally homogeneous torsion free affine connection on a two-
dimensional manifold M . Then, in a neighborhood U(p) of each point p ∈ M , either ∇ is the
Levi-Civita connection of the standard metric of the unit sphere or, there is a system (x1, x2) of lo-
cal coordinates and constants a, b, c, d, e, f such that∇ is expressed in U(p) by one of the following
formulas:

(1) Type A:

∇∂1
∂1 = a∂1 + b∂2, ∇∂1

∂2 = c∂1 + d∂2, ∇∂2
∂2 = e∂1 + f∂2.

(2) Type B:

∇∂1
∂1 =

1

x1
(a∂1 + b∂2), ∇∂1∂2 =

1

x1
(c∂1 + d∂2), ∇∂2∂2 =

1

x1
(e∂1 + f∂2).

This result has been applied by many authors. Kowalski and Sekizawa [11] used it to
examine Riemannian extensions of affine surfaces, Vanzurova [21] used it to study the
metrizability of locally homogeneous affine surfaces, and Dusek [9] used it to study ho-
mogeneous geodesics. It plays a central role in the study of locally homogeneous connec-
tions with torsion of Arias-Marco and Kowalski [1].
Next, we characterize locally homogeneous torsion free affine connections which satisfy
L3-spaces condition on a two dimensional smooth manifold.
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Theorem 4.2. The affine locally homogeneous manifolds of Type A are L3-spaces if and only the
coefficients a, b, c, d, e and f satisfy the following:

bc2 + bde− acd− bcf = 0

bce− ade− cdf + d2e = 0

abc+ ad2 − a2d− abf + b2e− bcd = 0

be2 + c2f − cf2 − aef − cde+ def = 0.

Proof. The components of the Ricci tensor are given by Ric(∂1, ∂1) = (ad − d2 + bf −
bc), Ric(∂1, ∂2) = (cd− be), Ric(∂2, ∂1) = (cd− be), Ric(∂2, ∂2) = (ae− de+ cf − c2). The
Ricci tensor is symmetric. Then, the covariant derivatives of the Ricci tensor are given by

(∇∂1
Ric)(∂1, ∂1) = 2(abc+ ad2 − a2d− abf + b2e− bcd)

(∇∂1Ric)(∂1, ∂2) = 2(bc2 + bde− acd− bcf)

(∇∂1
Ric)(∂2, ∂2) = 2(bce− ade− cdf + d2e)

(∇∂2Ric)(∂1, ∂1) = 2(bc2 + bde− acd− bcf)

(∇∂2
Ric)(∂1, ∂2) = 2(bce− ade− cdf + d2e)

(∇∂2
Ric)(∂2, ∂2) = 2(be2 + c2f − cf2 − aef − cde+ def).

By direct calculation from Lemma 3.1, we get the following:

bc2 + bde− acd− bcf = 0; bce− ade− cdf + d2e = 0;

abc+ ad2 − a2d− abf + b2e− bcd = 0;

be2 + c2f − cf2 − aef − cde+ def = 0.

The proof is complete. �

Theorem 4.3. The affine locally homogeneous manifolds of Type B with symmetric Ricci tensor
are L3-spaces if and only if the coefficients a, b, c, d, e and f satisfy

2abc+ 3bc− d− 2ad− a2d− bcd+ d2 + ad2 + b2e = 0

−2c3 + ace− 2cde+ be2 = 0

2c+ ac+ 4bc2 − 2cd− 3acd+ 3be+ 3bde+ 2bce = 0

3c2 + 3c2d+ e− ae+ 3bce+ 2de− 3ade+ 3d2e = 0.

Proof. The components of the Ricci tensor are given by

Ric(∂1, ∂1) =
1

x21
[d+ d(a− d) + b(f − c)], Ric(∂1, ∂2) =

1

x21
(f + cd− be),

Ric(∂2, ∂1) =
1

x21
(−c+ cd− be), Ric(∂2, ∂2) =

1

x21
[−e+ e(a− d) + c(f − c)]
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and it is symmetric if and only if f = −c holds. So we set f = −c. Then, the covariant
derivatives of the Ricci tensor are given by

(∇∂1
Ric)(∂1, ∂1) =

2

x31
(2abc+ 3bc− d− 2ad− a2d− bcd+ d2 + ad2 + b2e)

(∇∂1
Ric)(∂1, ∂2) =

1

x31
(2c+ ac+ 4bc2 − 2cd− 2acd+ 3be+ 2bde)

(∇∂1
Ric)(∂2, ∂2) =

2

x31
(3c2 + c2d+ e− ae+ bce+ 2de− ade+ d2e)

(∇∂2Ric)(∂1, ∂1) =
2

x31
(2bc2 − acd+ bde)

(∇∂2
Ric)(∂1, ∂2) =

2

x31
(c2d+ bce− ade+ d2e)

(∇∂2
Ric)(∂2, ∂2) =

2

x31
(−2c3 + ace− 2cde+ be2).

By straightforward calculation from Lemma 3.1, we get the following:

2abc+ 3bc− d− 2ad− a2d− bcd+ d2 + ad2 + b2e = 0

−2c3 + ace− 2cde+ be2 = 0

2c+ ac+ 6bc2 − 2cd− 3acd+ 3be+ 3bde+ 2bce = 0

3c2 + 3c2d+ e− ae+ 3bce+ 2de− 3ade+ 3d2e = 0.

The proof is complete. �

Next we generalize the Theorem 4.3 when the Ricci tensor is not symmetric.

Theorem 4.4. The affine locally homogeneous manifolds of Type B with not symmetric Ricci
tensor are L3-spaces if and only if the coefficients a, b, c, d, e and f satisfy

2d− 3bc− 2d2 + 4ad+ 3bf − 2abc− 2ad2 + 2a2d+ 2abf + 2bcd− 2b2c = 0

ce+ ef + 2be2 − 2cde− 2aef − 2cf2 + 2c2f + 2def = 0

−2f + 6be− 5cd− af − 6acd− 2bcf + 10bc2 + 6bde− fd+ 2c+ ac = 0

6bce− 6ade+ 6d2e− f2 − 6cdf + 4c2 + 2e− 2ae− 3cf + 4de = 0

Proof. The components of the Ricci tensor are given by

Ric(∂1, ∂1) =
1

x21
[d+ d(a− d) + b(f − c)], Ric(∂1, ∂2) =

1

x21
(f + cd− be),

Ric(∂2, ∂1) =
1

x21
(−c+ cd− be), Ric(∂2, ∂2) =

1

x21
[−e+ e(a− d) + c(f − c)].
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Here, the Ricci tensor is not symmetric. Then, the covariant derivatives of the Ricci tensor
are given by

(∇∂1
Ric)(∂1, ∂1) =

1

x31

(
− 2d+ 3bc+ 2d2 − 4ad− 3bf + 2abc

+2ad2 − 2a2d− 2abf − 2bcd+ 2b2e
)

(∇∂1
Ric)(∂1, ∂2) =

1

x31

(
− 2f + 3be− 3cd− af − 2acd− 2bcf + 2bc2 + 2bde− fd

)
(∇∂1

Ric)(∂2, ∂1) =
1

x31

(
2c− 2cd+ 3be+ 2bc2 − 2acd− 2bcf + 2bde+ ac

)
(∇∂2Ric)(∂1, ∂1) =

1

x31

(
4bc2 − 2acd+ 2bde

)
(∇∂2

Ric)(∂1, ∂2) =
1

x31

(
− cf + 2bce− 2ade+ 2d2e− f2 − 2cdf

)
(∇∂1

Ric)(∂2, ∂2) =
1

x31

(
2e− 2ae− 3cf + 3c2 + 4de− 2ade− 2cdf + 2d2e+ bce

)
(∇∂2

Ric)(∂2, ∂1) =
1

x31

(
2bce+ 2d2e− 2ade+ cf − 2cdf + c2

)
(∇∂2Ric)(∂2, ∂2) =

1

x31

(
ef + 2be2 − 2cde− 2aef − 2cf2 + 2c2f + 2def + ce

)
By straightforward calculation from Lemma 3.1, we get the following:

2d− 3bc− 2d2 + 4ad+ 3bf − 2abc− 2ad2 + 2a2d+ 2abf + 2bcd− 2b2c = 0

ce+ ef + 2be2 − 2cde− 2aef − 2cf2 + 2c2f + 2def = 0

−2f + 6be− 5cd− af − 6acd− 2bcf + 10bc2 + 6bde− fd+ 2c+ ac = 0

6bce− 6ade+ 6d2e− f2 − 6cdf + 4c2 + 2e− 2ae− 3cf + 4de = 0

�

The locally homogeneous surfaces of Type A and Type B have quite different geometric
properties. For instance, the Ricci tensor of any Type A surface is symmetric while this
property can fail for a Type B surface. Thus the geometry of a Type B surface is not as
rigid as that of a Type A surface. This difference in terms of geometric properties is also
remarkable when those surfaces satisfy the L3 condition (Theorems 4.2, 4.3 and 4.4).

Acknowledgments. The authors would like to thank the referee for his/her valuable sug-
gestions and comments that helped them improve the paper.
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FST, DÉPARTEMENT DE MATHÉMATIQUES ET INFORMATIQUE
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