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A resistant digital signature based on elliptic curves

M. IHIA and O. KHADIR

ABSTRACT. The paper presents a new digital signature in elliptic curves. Its efficiency and security are
established. The added value of this method is that it uses only a single variable as private key and the user
can sign all his messages without changing it. We prove that there exists no risk for falsifying the signature or
finding the secret key.

1. INTRODUCTION

In this new era of technology, security is the main focus of all branch of sciences. To
secure documents or achieve any sort of identification, using the conventional method by
signing on a formal paper is not suitable anymore. Hence the need to use an improved
form of signature. A digital signature in computer science is equivalent to a manual signa-
ture done by a person. The party performing the signature either a person or a company,
is engaged in the same manner as if he signed by hand. The concept was realisable due
to asymmetric cryptography. This technique makes it possible to encrypt with a secret
key and to decrypt with another key called public, both being generated beforehand. The
principle of asymmetric cryptography is due to Diffie and Hellman [2]. In 1976, they
suggested a method to construct a common key between two entities that will secure
the communication over a public channel. Their idea was based on the difficulty of the
famous discrete logarithm problem [18, p.234] [10, p.113]. The digital signature guaran-
tees the integrity, authentication and non-repudiation of a document. There are several
signatures as RSA [14] in 1978 and Rabin [13] in 1979 based on the problem of integer
factorization. ElGamal [3] in 1985, Schnorr signature [15] in 1989 and DSA [4, p.4] in 1991
based on the difficulty of the resolution of the discrete logarithm problem. ElGamal sig-
nature is more expensive compared to other digital protocols. The method works modulo
a prime p with an exponent witch has the same size as the prime number. This contrasts
with DSA and Schnorr, which both work traditionally in a 160-subgroup or a 1024-bit
modulus [10, p.453]. Schnorr and DSA are better if we desire a faster signature protocol
but smaller compared by size. The recent requirement for industries are directed toward
speed and low memory space. We can say safely that DSA and Schnorr signatures are
the most commonly used. These signatures have known a new version after the work of
Koblitz and Miller [9, 12] in 1986. The creators showed independently that elliptic curves
over fields detain a suitable finite groups for pub-lic key cryptography. An elliptic curve
cryptosystem offers the best security per bit among all current public-key schemes [11].
There is no sub exponential algorithm known to solve the elliptic curve discrete logarithm
problem on a properly chosen curve. To create public key cryptosystems, elliptical curve
cryptography remains a very effective technology. A cryptographical ECC scheme secu-
rity is based on the difficulty of solving the discrete logarithms over finite group, such
that a 192-bit key in ECDSA is similar to a 1024-bit key in RSA. Comparing the size of the
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cipher will go in favor of RSA cryptosysem. ECC is known of large output crypted mes-
sages compared to other cryptosystems. This can be seen as a disvantage when we opt
for ECC as a suitable choice for small devices or fast data transmission. Since the intro-
duction of ECC many cryptosystems have proven their efficiency trough the years. Both
RSA and ECDSA are accepted as a strong signatures and used in practice. The advantages
of ECDSA over RSA is that it is used more often over wireless systems for portability of
limited resources electronic systems. One of the pointed disadvantages of using an ECC
cryptosystems is that the crypted message size is much bigger than a conventional cryp-
tosystem.
In this work, we describe an electronic signature scheme based on the discrete logarithm
problem in elliptic curve groups. The efficiency of the method is discussed and its secu-
rity analyzed. Our goal is to build a signature that resists against known attacks while
reducing the number of variables in the signature function.
The paper is organized as follows: the second section is a reminder of the groups defined
by the mean of elliptic curves. The third section contains our contribution. We conclude
in the fourth section.
Throughout the sequel we use classical notations: Z is the set of integer. For every prime
integer, we denote by Fp = Z/pZ the field of modular integers with p elements. Let a, b, c
be three integers we write a ≡ b [c] if c divides the difference a− b. H is used for the hash
function.
Let us start by recalling the construction of elliptic curve groups.

2. ELLIPTIC CURVES [5, 19]

An elliptic curve over the finite field Fq , where q is a power of a prime number and the
characteristic is not 2 or 3, is the set of solutions (x, y) ∈ F2

q to the equation y2 = x3+ax+b,
where the discriminant−(4a3+27b2) 6= 0. We add to this curve a point at infinity denoted
O.

Schoof’s algorithm [16] is the best method that counts the points of elliptic curves over a
finite field. It works in a polynomial time.

We recall the additive operation of points over an elliptic curve.

(1) Identity: P +O = O + P = P for all P ∈ E
(
Fq

)
.

(2) Opposite: If P = (x, y) ∈ E
(
Fq

)
then the point −P = (x,−y) is the opposite of P .

(3) Points addition: Let P = (x1, y1) and Q = (x2, y2) ∈ E
(
Fq

)
, where P 6= ±Q. Then

P +Q = (x3, y3), where

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1

with m =
y2 − y1
x2 − x1

.

Otherwise P + Q = O.
(4) Point doubling: Let P = (x1, y1) ∈ E

(
Fq

)
, where P 6= −P . Then 2P =

(
x3, y3),

where
x3 = m2 − 2x1 and y3 = m(x1 − x3)− y1

with m =
3x21 + a

2y1
.

Otherwise 2P = O.
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For more details, we refer the reader to references [1, 8, 19]. The addition is used for
constructing an abelian group.

Theorem 2.1 ([6, p.287]). The elliptic curveE(Fq), with the binary operation + forms an abelian
group whose identity element is the point at infinity O.

There are many efficient algorithms to calculate a multiple of points in elliptic curves. see
for instance [10, p.615].

Definition 2.1 ([7, p.180]). Let p be a prime and let P , Q ∈ E(Fp). Suppose we know that
there exists an integer x such that

Q = xP

The elliptic curve discrete logarithm problem is how to find x.

Definition 2.2 ([19, p.177]). A cryptographic hash function H , is a function such that the
image of any element of long length gives a result having a smaller fixed length, and
should have the following properties:

(1) Given a message m, the calculation of H(m) can be done very quickly.
(2) H is preimage resistant: Given y, it is computationally infeasible to find m with

H(m) = y.
(3) H is strongly collision-free: It is computationally infeasible to findm1 andm2 with

m1 6= m2 and H(m1) = H(m2).

2.1. ElGamal digital signatures [19, p.175]. Alice wants to sign a document. She first
must establish a public key. She chooses an elliptic curve E(Fq) over a finite field Fq and
a point A ∈ E(Fq), the order of A is a large prime n. Alice also chooses a secret integer a
and computes B = aA. The equation of the signature is

f(R)B + sR = H(m)A (2.1)

where f is a function such that f : E(Fq)→ Z and its image must be large and have a few
number of output. s and R are the unknown variables.
Alice’s public key is E, Fq , f , A, and B. The only private key is a.
To sign a document, Alice does the following:

(1) Calculates H(m).
(2) Chooses a random integer k co-prime with n and computes R = k A.
(3) Determines s ≡ k−1(H(m)− a f(R)) [n].

The signed message is (m,R, s).
Bob verifies the signature as follows:

(1) Downloads Alice’s public key.
(2) Computes V1 = f(R)B + sR and V2 = H(m)A.
(3) If V1 = V2, he declares the signature valid.

3. OUR CONTRIBUTION

Let’s assume that Alice wants to sign a document sent by Bob. She chooses an elliptic
curve E(Fq) over a finite field Fq . She needs two elements to calculate her signature: a
point A ∈ E(Fq) such that its order is a prime number n and a secret integer k. Then she
computes B = k A. The equation of the signature is

sA = H(m) f(R)B +R (3.2)

where f is defined as the same way as in ElGamal signature. s and R are the unknown
variables. Alice’s public key is E(Fq), Fq , f , A, and B. The only private key is k. To sign a
document, Alice does the following:
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(1) Calculates H(m) and H(m+ k).
(2) Computes R = H(m+ k)B.
(3) Determines s ≡ k[H(m) f(R) +H(m+ k)] [n].

The message signature is (m,R, s). Bob verifies the signature as follows:
(1) Downloads Alice’s public key.
(2) Computes V = sA−H(m) f(R)B.
(3) If V = R, he declares the signature valid.

We illustrate our method by giving the next example.

Example 3.1. To simplify the calculation, we take f(R) = f(x, y) = x and H(m) = m.
Let E(F5783) be given by the equation y2 ≡ x3 + 2x+ 7 [5783].
(∆ ≡ −(4a3 + 27b2) ≡ 4428 [5783]).
The cardinality of the elliptic curve is

#E(F5783) = 5815 = 5× 1163.

Alice chooses randomly the point A = (3576, 1242) whose order is n = 1163 and the
integer k = 911. She computes B = k A = (1683, 4630).
The public and private key of Alice are (A,B,E(F5783)) and k respectively.
To sign the message m = 725, Alice calculates:

(1) R = (m+ k)B = (1437, 4977).
(2) s ≡ k (mx+m+ k) ≡ 965 [1163].

The message signature is (m,R, s) = (725, (1437, 4977), 965).
Bob verifies the signature as follows:
He computes V = sA −mxB = (1437, 4977). He finds V = R. Hence the signature is
valid.

3.1. Security Analysis. To falsify the signature of Alice, Eve has to find R and s such that
the equation V = R is satisfied. Suppose that Eve tries to forge Alice signature by fixing
arbitrary one parameter and looking for the second:

(1) If she fixes the point R and aims to compute s, she will be faced by the discrete
logarithm problem H(m) f(R)B +R = sA for the integer s.

(2) If she chooses s, then the problem becomes an equation for R. The equation ap-
pears to be at least as complex as a discrete logarithm problem.

Moreover, we don’t know any algorithm or procedure that can be used for finding R and
s simultaneously.

3.2. Attacks.
(1) If Alice wants to sign a message m, she must use a hash function.

Suppose that Alice signs two messages m1 and m2 without using the hash func-
tion for calculating the point R.
The signed messages are (m1, R1, s1) and (m2, R2, s2), where

R1 = (m1 + k)B

R2 = (m2 + k)B

s1 ≡ k [H(m1) f(R1) +m1 + k] [n]

s2 ≡ k [H(m2) f(R2) +m2 + k] [n]

s1 − s2 ≡ k [H(m1) f(R1)−H(m2) f(R2) +m1 −m2] [n] (3.3)
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The equation (3.3) becomes

k ≡ s1 − s2
H(m1) f(R1)−H(m2) f(R2) +m1 −m2

[n]

Hence the importance of using a hash function to calculate the point R.
(2) If Alice Signs several messages with the same k, then

(S)



s1 ≡ k [H(m1) f(R1) +H(m1 + k)] [n]

s2 ≡ k [H(m2) f(R2) +H(m2 + k)] [n]

...

sr ≡ k [H(mr) f(Rr) +H(mr + k)] [n]

Since the system (S) contains r+ 1 unknown variables k and H(mi, k) for i ∈ {1,2,
..., r}, Eve can find many valid solutions. It is difficult to know the real solution of
(S).

3.3. Advantage. Suppose that Alice sings two messagesm1 andm2 with the same integer
k. The signed messages are (m1, R1, s1) and (m2, R2, s2).
The equations for s1 and s2 give the following:

s1 = k [H(m1) f(R1) +H(m1 + k)] [n] (3.4)

s2 = k [H(m2) f(R2) +H(m2 + k)] [n] (3.5)

(1) (3.4) − (3.5) implies that:

s1 − s2 = k [H(m1) f(R1)−H(m2) f(R2) +H(m1 + k)−H(m2 + k)] [n] (3.6)

Put

s = s1 − s2
α = H(m1) f(R1)−H(m2) f(R2)

x = H(m1 + k)

y = H(m2 + k)

So, the equation (3.6) becomes s ≡ k (α+x−y) [n], which contains three unknown
variables k, x and y.

(2)
(3.4)

(3.5)
implies that:

s1
s2
≡ H(m1) f(R1) +H(m1 + k)

H(m2) f(R2) +H(m2 + k)
[n] (3.7)

Put

s = s1H(m2) f(R2)− s2H(m1) f(R1)

x = H(m1 + k)

y = H(m2 + k)

So, the equation (3.7) becomes s ≡ −s1 y + s2 x [n], which contains two unknown
variables x and y.

Hence, Alice can sign two messages with the same parameter k without needing to change
it.
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3.4. Particular case.
(1) Suppose that a user signs a messagem1 with the parameter k1 and wants to choose

an another private key k2 to sign a message m2.
Even he takes k2 = −k1, the attacker cannot extract any information from the two
messages m1 and m2. Indeed:
The two signatures are (m1, R1, s1) and (m2, R2, s2), where

s1 ≡ k1 [H(m1) f(R1) +H(m1 + k1)] [n]

s2 ≡ −k1 [H(m2) f(R2) +H(m2 − k1)] [n]

Eve divides the two equations, and she gets

s1
s2
≡ −H(m1) f(R1) +H(m1 + k1)

H(m2) f(R2) +H(m2 − k1)
(3.8)

Put

s = −s2H(m1) f(R1)− s1H(m2) f(R2)

x = H(m1 + k1)

y = H(m2 − k1)

The equation (3.8) becomes s2 x + s1 y ≡ s [n], which contains two unknown
variables x and y.

(2) Suppose now that the user does the same thing with the ElGamal signature.
The two signatures are (m1, R1, s1) and (m2, R2, s2), where

s1 ≡ k−1
1 [H(m1)− a f(R1) [n]

s2 ≡ −k−1
1 [H(m2)− a f(R2) [n]

Dividing the two equations. Eve gets

s1
s2
≡ −H(m1)− a f(R1)

H(m2)− a f(R2)
(3.9)

After developing, the equation (3.9) becomes a ≡ s1H(m2) + s2H(m1)

s1 f(R2) + s2 f(R1)
[n].

Hence Eve can find the private key a of the user.

3.5. Hash functions. In this contribution we review four hash functions of the SHA fam-
ily. We leave the choice open depending on the user. A hash function is defined mainly
by three aspects: Message size, Message digest size and security [17].

TABLE 1. Secure Hash Functions
hhhhhhhhhhhhhhhTerms (bits)

Hash Functions SHA-1 SHA-2 (256) SHA-2 (384) SHA-2 (512)

Message Size < 264 < 264 < 2128 < 2128

Message Digest 160 256 384 512
Security 80 128 192 256

In our method the key size is fixed and pseudo-random unlike ElGamal who takes
randomly a number k. If we suppose that the running time of digital signature of ElGamal
is T , finding an appropriate key will take T + Time(Hash(message+k)). Proposing this
new way for generating the private key requires more running time, but will enable us to
keep a unique private key k for each signature.
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TABLE 2. The comparison of the complexities

Complexity ElGamal signature Our method
Generation of keys Both methods uses the same key generation techniques
To sign One multiple of point in EC One multiple of point in EC

One calculation of HF Two calculations of HF
Two multiplications Two multiplications
One addition Two additions
One inverse modular

To verify Three multiples of points in EC Two multiples of points in EC
Addition of two points in EC Addition of two points in EC

One multiplication

3.6. Complexity. The two signatures above have the same complexity. Our method offers
more advantages.

4. CONCLUSION

In this paper we proposed a new digital signature which is based on the discrete loga-
rithm problem in elliptic curves. Our signature is more resistant and secure against known
attacks. The only unknown variable needed to perform the signature is the message it-
self. We believe that our method can be used as an alternative if any previous signature is
compromised. Finally, we compare our proposed solution with two of the most popular
signatures, RSA and ECDSA:

• With key sizes smaller, our method provides the same level of security.
• ECDSA and our method provide faster computations and less storage space.
• In our method we can sign several messages with the same key without needing

to change it, while ECDSA it must change every time. RSA is a algorithm based on
factorization, so that every time RSA initialization takes two large prime number
p and q.

• The length of the private and public keys is shorter in our method and ECDSA.
This is explained by faster processing times, and lower demands on bandwidth
and memory.

• For the three signatures, the message length must be less than the bit length oth-
erwise algorithm will fail.

• ECDSA provides effective and compact implementations for cryptographic oper-
ations requiring smaller chips.

• ECDSA and our method are mostly suitable for machines having less memory,
low bandwidth and low computing power..

• The execution time between RSA and our method was significant. This result is
explained by the RSA keys which are larger than our signature keys.
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