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Nonlinear elliptic anisotropic problem involving non-local
boundary conditions with variable exponent and graph data

ADAMA KABORE and STANISLAS OUARO

ABSTRACT. We study a nonlinear elliptic anisotropic problem involving non-local conditions. We also con-
sider variable exponent and general maximal monotone graph datum at the boundary. We prove the existence
and uniqueness of weak solution to the problem.

1. INTRODUCTION AND ASSUMPTIONS

Let 2 be a bounded domain in RY (N > 2) such that 952 is Lipschitz and 99 = T'p U T y.
with'p NT'ye = 0 and dist(I'p, T ne) > 0. Our aim is to study the following problem

N
B ; a%ai(x, % )+ |uf D2y = finQ
u=20 onl'p
= 9
i\by 5 =] d
p(u) + ; /FNe a;(z oz, w)n on Tye.

u = constant

where the right-hand side f € L>(Q) and n;, ¢ € {1,..., N} are the components of the
outer normal unit vector, p a maximal monotone graph on R such that

Sﬂ

fod (1.1)

D(p) =R, Im(p) =R and 0 € p(0). (1.2)
For any 2 C RY, we set
Ci () ={heC(): 11615flh(:c) > 1}, (1.3)
and we denote
ht =suph(z), h~ = inf h(z). (1.4)
zeQ zeQ

We consider the exponents, p(.) : @ — R such that 5(.) = (p1(.),...,pn(.)) with p; €
C.(Q) for every i € {1,..., N} and for all z € Q. We put py/(x) = max{p:(z),...,pn(2)}
and py, (x) = min{p: (z), ..., pn ()} .

We assume that for i = 1, ..., N, the function a; : Q x R — R is Carathéodory and satisfies
the following conditions.

o (Hq): a;(x,€) is the continuous derivative with respect to £ of the mapping A4, =
Ai(z,§), thatis, a;(z,§) = %Ai (z,€) such that the following equality holds.
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for almost every x € Q.
e (H;) : There exists a positive constant C such that

|ai(z, )] < Cr(ji(x) + [
for almost every x € Q and for every £ € R, where j; is a non-negative function in
LPi)(Q), with +

pi(z)  pi(z)
o (Hj) : There exists a positive constant C, such that

o, (1.6)

Cal¢ — i) if |6 — | > 1,
Cal§ — P if | —n| <1,

for almost every = €  and for every &, n € RY, with £ # 7.
e (Hy) : For almost every z € Q and for every £ € RY,

€7 < a(@,€).€ < pi(x)Ai(z,€). (1.8)

Non-local boundary value problems of various kinds for partial differential equations are
of great interest by now in several fields of application. In a typical non-local problem,
the partial differential equation (resp. boundary conditions) for an unknown function u
at any point in a domain €2 involves not only the local behavior of v in a neighborhood of
that point but also the non-local behavior of u elsewhere in €. For example, at any point in
(2 the partial differential equation and /or the boundary conditions may contains integrals
of the unknown u over parts of €, values of u elsewhere in D or, generally speaking, some
non-local operator on u. Beside the mathematical interest of nonlocal conditions, it seems
that this type of boundary condition appears in petroleum engineering model for well
modeling in a 3D stratified petroleum reservoir with arbitrary geometry (see [3] and [4]).

(1.7)

(a’i<x’§) - ai(x’n))'(g - 77) > {

2. PRELIMINARY AND MAIN RESULT

This part is related to anisotropic Lebesgue and Sobolev spaces with variable exponent,
some of their properties (for more details see [6] and [7]) and the main result of the paper.
Given a measurable function p(.) : @ — [1,00). We define the Lebesgue space with vari-
able exponent LP()(Q) as the set of all measurable functions u : © — R for which the
convex modular

Pp() (1) = / |u|P) da
Q
is finite.
If the exponent is bounded, i.e, if p; < oo, then the expression
U

|| p(y := inf {)\ >0: pp(_)(x) < 1}

defines a norm in LP)(Q), called the Luxembourg norm. The space (L) (), |.|,()) isa
separable Banach space. Then, L?()(Q) is uniformly convex, hence reflexive and its dual

/ 1
space is isomorphic to L? () (), where — + =1, forallz € Q.

1
p(z) ()
The anisotropic variable exponent Sobolev space W17()(() is defined as follow.
WP (Q) == {u e LPv0O(Q) g“{ e LP(Q), foralli € {1, ...,N}} :

Li
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Endowed with the norm

lulley =

)

pi(.)

X

the space (W70 (Q), ||.||5)) is a reflexive Banach space (see [7], Theorem 2.1 and Theo-
rem 2.2).

As consequence, we have the following.

Let us introduce the following notation:

P- =Py PN)-

In the sequel, we consider the following spaces.

Wé’ﬁ(')(Q) ={EeWrO(Q) : ¢=00onTp}
and ) )
WJ{/:(')(Q) ={¢e W}jp(')(Q) : &€ = constant on 'y, }.

Forany v € Wi,’f(')((l), we set Uy = Une = V|ry, -
The concept of solution for S% , is given as follows.

Definition 2.1. A solution of 5% ; is a couple (u,v) € Wi,’f(') (Q) x R satisfying

w = |uPM® =2y g.e. in Q,v € pluy),
pe W“’“(Q) nL=(Q),

/(Zaz ('91 )dx—|—/ﬂw<pdx=/9f<pdx+(d—v)gplve.

Our main result in this paper is the following theorem.

(2.9)

Theorem 2.1. Forany (f,d) € L>(Q2) x R, the problem S” o admits at least one solution (u, v)
in the sense of Definition 2.1. Moreover if (u1,v1) and (usz, ’1}2) are two solutions of Sf o then

(v1 — )t + / (w1 — we)Tdx < /(fl — fo)Tda 4 (dy — do)™, (2.10)
Q Q
where wy = ‘Ul‘pM(I)72U1 and we = ‘U2|pM(I)72U2.

3. PROOF OF THE MAIN RESULT

The proof of the main result is done in three steps.
Step 1: Approximated problem for continuous functions. We assume that p is a contin-
uous, non-decreasing and onto function on R such that

p(0) = 0. (3.11)
We define a new bounded domain 2 in R¥ as follow.

We fix 6 > 0 and we set @ = QU {z € R /dist(x,T'n.) < 6}. Then, 90 = I'p UTx. is
Lipschitz with T'p N Ty, = 0.

Let us consider a;(z, ) Carathéodory and satisfying (1.5), (1.6), (1.7) and (1.8), for all = €
Q.
We also consider a function d in L>°(T y.) such that

ddo = d. (3.12)

Ine
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r.\'{

=
Ne

Figure 1: Domains representation

We consider the problem

(9 8 P ( ) 2 rs . A
- ) 9 M = Q
; 8xia (z oz, u) + |ul uxo(z) =f in
P(p, f,d) Su=0 onl'p
. N 0 ~ .
p(u)+zal(xa 87%”)771 =d on FN@a

where the function p is defined as follow.

* f(s) = =
- |FN6| _
o f(x) = (fxa)(z) Ve c .

We obviously have f € L®(Q),d € L=(T y.).
We introduce the following space

p(s), where |f‘ ~Ne| denotes the Hausdorff measure of T Ne.

Wé’ﬁ(‘)(fl) = {¢e WLﬁ(-)(Q) :¢&=0onTp}.

(3.13)

Definition 3.2. A measurable function v : @ — R is a solution to problem P(p, f,d) if

ue WP (Q) and

N
| ate gt [l 2ugds = [ fpdet [ (@ pw)pdo, (319
o= Ox; ~Ox; Q Q Tne

for any ¢ € W};ﬁ(‘)(fl) N L>(Q).

The problem P(p, 1, ) admits at least one solution in the sense of Definition 3.2 (see

(8]).

Step 2: The regularized problem corresponding to S ;. For any ¢ > 0, we denote by p.

the Yosida regularization of p.
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Now, we set a;(z, &) = a;(z, &) xa(z) + o (I \f pi(@)= 2EXQ\Q( ) for all (z,€) € Q x RY,
pe(s) = fl| pe(s) for all s € R. We consider the following problem P, (p., f,d)
Ne

a 1 0 g d -
_Zax (e ) + g - g wena @) + ™ o = - ind
e—O on |

pe(uc) + > dila, B, e = d on ]

o (3.15)
P.(pe, f,d) ha~s at least one solution (see [8] ). So, there exists at least one measurable
function u, : Q — R such that

0 0
pi(z)—2_Y ~
2 (ot gz oo+ 2 [ (g ) o
/\uJPM(x) Zuegb:/fgpda:—&—/ (d—pe(ue))goda,
Q Q I'ne

(3.16)
where u. € W L70)(()) and for all ¢ € Wy L7L)(Q) N Lo(Q).
Moreover, we have
pe(uc)| < k3= max{”d”oo, (Pe o b_l)(~||f‘|00)~} a.e. on me (3.17)
b(ue)| < kq = max{]| flloo; (b0 p7 ") (ITwvellldll o)} a-e. in Q.

The following result gives a priori estimates on the solution u. of the problem P, (g, f ,d)
(see [1, 5]).

Proposition 3.1. Let u. be a solution of the problem P,(p., f,d). Then, the following statements
hold.

(i) There exists C a positive constant independent of € such that

N 9 pi(2) pi() .
= |ue d de < C(||d]| 111 .
3 €T RCRD AN CF 21) IRt ( RTRRT
(ii)
/ |u€|PM(z)*1dx +ﬁ |,55(u5)\d93 < (Hd”Ll(f‘Ne) + Hf”Ll(Q))
Q I'ne

The following result states useful convergences results (see [1, 5]).
Proposition 3.2. As e — 0 we have

(i) u. — uae inQandae onT . withu € Wl’(p;""’pm(fl);

Ou, ou .

g - Oue _ o7
(ii) forallaz 1,..N, 0z, or, 0in LP (Q\ Q)

due u n L1 -
9, ) axi) weakly in L™ (Q2) and a.e.in Q.
Step 3: Proof of Theorem 2.1. Thanks to Proposition 3.2,
Vi=1,..,N, Ou = Oinfl\Q, then
&ri

u = constant a.e.

—Oan\Q

(iii) a;(x

- ai(x7
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on Q \ Q so that, we conclude that u € Wi,’f(') (Q).

To show that u is a solution of P(p, f,d), we only have to prove the equality (2.9).
The sequences (pc(ue))e>o is uniformly bounded in L>°(I'y.). Hence, there exists v; €
L>°(T'n,) such that, as e — 0,

pe(ue) =* vy in L®(Tne). (3.18)
Letyp € Wé’ﬁ(‘)(ﬂ) N L (). we consider the function ¢ € W, Lol )(Q) N L>(Q), such that
Y1 =Pxa t+ PNXa\-
Then, ¢, = constant on Q \ 2. Such function ¢; in the equality (3.16) gives us

Z/( 88 99) dx+/ |UE|PM(I)—2u€<pd£C:/fgpdx—i—(d—[ ﬁé(ue)d0'> PN
Q Q I'ne

(3.19)
Passing to the limit in (3.19) as ¢ — 0 and using the convergences in Proposition 3.2, one

a 1 . ~
Z/ ( W ® )dwﬂl_fg% Qb(ue)s@ = /QfsoderdwN - (gl_r}g) /fNe pe(ue)d0'> PN

By Proposition 3.2 and Lebesgue dominated convergence theorem, we deduce that
b(ue) — b(u) in L' (). (3.20)
Thanks to (3.18) and (3.20), we deduce that

8
Z/ ( ) dr+ | bu)p = fodr +don — (/ v1d0> ON-
Q 3% Q Q Tne

We consider w = b(u) € L'(?) and v = [ . vido € R to obtain from the above equality

Z/( 38 <P>d1‘+/gw<pdx = /Qfgpda:—#(d—v)goN.

To conclude that (u, v) is a solution of S Jpc 4 it remain to show that

v € p(un).

We have j(ue) —=* vy in L®(Ty.) as € — 0. S0 pe(ue) — vy in LPm (T y,) as € — 0.

We also have u, — u in LPm (f‘ Ne) as € — 0 and p. — p in the sense of graph. Then

| Ne|

(see [2]), vy € p(u) a.e. on I'ye and vy = |fNe|v1 € p(u) a.e. on Tne.

| N e‘
We know that u = constant in Q \  so u = constant on I' y. and we get v2 € p(un).
Using the fact that D( ) = R either p(uy) = s or p(uy) = [r, s] with (r, s) € R? such that

r < s, it yields that fr vgda € pluy) and v € p(uy). O Let us prove now the
inequality (2.10) of Theorem 2.1.

Proof. We have

{w1 = b(ul), wo = b(UQ)
vr € p((ur)ne), v2 € p((uz)Ne),
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and for any ¢ € WoPY)(Q) N L*2(Q),

N
0 0
/ Z a;i(z, =—u1)=— | de + / wipde = | fiedr + (di — v1)ene (3.21)
Q — 8:102 81'1 Q Q

=1

and

8
/ (Z ai(w 6 90> dfﬂ-i-/szsOdﬂU = /wadx—l— (d2 — v2)PNe- (3.22)

Subtracting (3.21) from (3.22), one has

/zN:(a(x au) a;(z au)>a<pclav—|—/(w wa)pdz
iy m—uy) —ay(w, 3—u2) | 53— 1 — w2

+@yfmef3Aua—ﬁMMx+wlf@wN@

In (3.23) we take ¢ = H.(u; —uz + €£) where ¢ is any function in W12() (Q). After calculus
we obtain

{fg(wl W2)EX fuy —us] AT + [ (W1 — W2)STGNG X[y £ua] AT + (V1 — 02) (ENE) X[(ur) we=(us) ]

+ (01 — v2)signg (u1) Ne — (U2) Ne) X[(ur) wet(uo)ne] < Jo(f1 = f2)Tda + (dy — da) T
(3.24)
Now, we consider the function £, defined as follows.

signa'(wl —wsy) in [u; = ug]
& = { signg (v1 —v2)  on T,
0 inRN\{[u1:u2]}.

Replacing £ by & in (3.24), we get

{fg(wl — W2)E0X [us —us) 0T + [ (W1 — W2)SEGNG X[uy 2] AT + (V1 — V2) (£0) NeX[(ur) e =(uz) ]

+(v1 = v2)signg (1) ve = (u2) Ne)X[(ur)wet(ua)ne] < Jo(ft = fo)Tda + (di — d2)*.
(3.25)
Taking into account the definition of &, one gets from (3.25)

Jo (w1 — wa)signgd (w1 — wa) X(uy —us)d + fo (w1 — wa)signg (u1 — u2) X[u, 2uy] T
+(U1 - UQ)SZ.gnEJi_ (Ul - UZ)X[(UI)Ne (u2)Nel
+(v1 — va)signg (1) Ne — (U2) Ne) X{(ur) we £ (uz)ne] < Jo(f1 = f2) Tda + (dy — da)™;

which is equivalent to say

Jo (w1 = w2) T Xuy —us) 4 + [ (w1 — w2) T X(uy £us) 4% + (V1 = V2) T X [(w1) ye=(us) e
(1 = 02) T X[ e 2 (un)we] < Jo(fi = fo)Yda 4 (di — d2)™T;

and
mfwﬁﬁ@mfmﬁwsémeﬁWM+@—@ﬁ

which correspond to (2.10). |
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