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Nonlinear elliptic anisotropic problem involving non-local
boundary conditions with variable exponent and graph data

ADAMA KABORE and STANISLAS OUARO

ABSTRACT. We study a nonlinear elliptic anisotropic problem involving non-local conditions. We also con-
sider variable exponent and general maximal monotone graph datum at the boundary. We prove the existence
and uniqueness of weak solution to the problem.

1. INTRODUCTION AND ASSUMPTIONS

Let Ω be a bounded domain in RN (N ≥ 2) such that ∂Ω is Lipschitz and ∂Ω = ΓD ∪ ΓNe
with ΓD ∩ ΓNe = ∅ and dist(ΓD,ΓNe) > 0. Our aim is to study the following problem

Sρf,d



−
N∑
i=1

∂

∂xi
ai(x,

∂

∂xi
u) + |u|PM (x)−2u = f in Ω

u = 0 on ΓD

ρ(u) +

N∑
i=1

∫
ΓNe

ai(x,
∂

∂xi
u)ηi 3 d

u ≡ constant

 on ΓNe,

(1.1)

where the right-hand side f ∈ L∞(Ω) and ηi, i ∈ {1, ..., N} are the components of the
outer normal unit vector, ρ a maximal monotone graph on R such that

D(ρ) = R, Im(ρ) = R and 0 ∈ ρ(0). (1.2)

For any Ω ⊂ RN , we set

C+(Ω̄) = {h ∈ C(Ω̄) : inf
x∈Ω

h(x) > 1}, (1.3)

and we denote
h+ = sup

x∈Ω
h(x), h− = inf

x∈Ω
h(x). (1.4)

We consider the exponents, ~p(.) : Ω̄ → RN such that ~p(.) = (p1(.), ..., pN (.)) with pi ∈
C+(Ω̄) for every i ∈ {1, ..., N} and for all x ∈ Ω̄. We put pM (x) = max{p1(x), ..., pN (x)}
and pm(x) = min{p1(x), ..., pN (x)} .
We assume that for i = 1, ..., N, the function ai : Ω× R→ R is Carathéodory and satisfies
the following conditions.

• (H1): ai(x, ξ) is the continuous derivative with respect to ξ of the mapping Ai =

Ai(x, ξ), that is, ai(x, ξ) =
∂

∂ξ
Ai(x, ξ) such that the following equality holds.

Ai(x, 0) = 0, (1.5)
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for almost every x ∈ Ω.
• (H2) : There exists a positive constant C1 such that

|ai(x, ξ)| ≤ C1(ji(x) + |ξ|pi(x)−1), (1.6)

for almost every x ∈ Ω and for every ξ ∈ R, where ji is a non-negative function in

Lp
′
i(.)(Ω), with

1

pi(x)
+

1

p′i(x)
= 1.

• (H3) : There exists a positive constant C2 such that

(ai(x, ξ)− ai(x, η)).(ξ − η) ≥

{
C2|ξ − η|pi(x) if |ξ − η| ≥ 1,

C2|ξ − η|p
−
i if |ξ − η| < 1,

(1.7)

for almost every x ∈ Ω and for every ξ, η ∈ RN , with ξ 6= η.
• (H4) : For almost every x ∈ Ω and for every ξ ∈ RN ,

|ξ|pi(x) ≤ ai(x, ξ).ξ ≤ pi(x)Ai(x, ξ). (1.8)

Non-local boundary value problems of various kinds for partial differential equations are
of great interest by now in several fields of application. In a typical non-local problem,
the partial differential equation (resp. boundary conditions) for an unknown function u
at any point in a domain Ω involves not only the local behavior of u in a neighborhood of
that point but also the non-local behavior of u elsewhere in Ω. For example, at any point in
Ω the partial differential equation and/or the boundary conditions may contains integrals
of the unknown u over parts of Ω, values of u elsewhere inD or, generally speaking, some
non-local operator on u. Beside the mathematical interest of nonlocal conditions, it seems
that this type of boundary condition appears in petroleum engineering model for well
modeling in a 3D stratified petroleum reservoir with arbitrary geometry (see [3] and [4]).

2. PRELIMINARY AND MAIN RESULT

This part is related to anisotropic Lebesgue and Sobolev spaces with variable exponent,
some of their properties (for more details see [6] and [7]) and the main result of the paper.
Given a measurable function p(.) : Ω → [1,∞). We define the Lebesgue space with vari-
able exponent Lp(.)(Ω) as the set of all measurable functions u : Ω → R for which the
convex modular

ρp(.)(u) :=

∫
Ω

|u|p(x)dx

is finite.
If the exponent is bounded, i.e, if p+ <∞, then the expression

|u|p(.) := inf
{
λ > 0 : ρp(.)(

u

λ
) ≤ 1

}
defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is a
separable Banach space. Then, Lp(.)(Ω) is uniformly convex, hence reflexive and its dual

space is isomorphic to Lp
′(.)(Ω), where

1

p(x)
+

1

p′(x)
= 1, for all x ∈ Ω.

The anisotropic variable exponent Sobolev space W 1,~p(.)(Ω) is defined as follow.

W 1,~p(.)(Ω) :=

{
u ∈ LpM (.)(Ω) :

∂u

∂xi
∈ Lpi(.)(Ω), for all i ∈ {1, ..., N}

}
.
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Endowed with the norm

‖u‖~p(.) := |u|pM (.) +

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi(.)

,

the space
(
W 1,~p(.)(Ω), ‖.‖~p(.)

)
is a reflexive Banach space (see [7], Theorem 2.1 and Theo-

rem 2.2).
As consequence, we have the following.
Let us introduce the following notation:

~p− = (p−1 , ..., p
−
N ).

In the sequel, we consider the following spaces.

W
1,~p(.)
D (Ω) = {ξ ∈W 1,~p(.)(Ω) : ξ = 0 on ΓD}

and
W

1,~p(.)
Ne (Ω) = {ξ ∈W 1,~p(.)

D (Ω) : ξ ≡ constant on ΓNe}.
For any v ∈W 1,~p(.)

Ne (Ω), we set vN = vNe := v|ΓNe
.

The concept of solution for Sρf,d is given as follows.

Definition 2.1. A solution of Sρf,d is a couple (u, v) ∈W 1,~p(.)
Ne (Ω)× R satisfying

w = |u|pM (x)−2u a.e. in Ω, v ∈ ρ(uN ),

ϕ ∈W 1,~p(.)
Ne (Ω) ∩ L∞(Ω),∫

Ω

(
N∑
i=1

ai(x,
∂

∂xi
u)

∂

∂xi
ϕ

)
dx+

∫
Ω

wϕdx =

∫
Ω

fϕdx+ (d− v)ϕNe.

(2.9)

Our main result in this paper is the following theorem.

Theorem 2.1. For any (f, d) ∈ L∞(Ω)× R, the problem Sρf,d admits at least one solution (u, v)

in the sense of Definition 2.1. Moreover if (u1, v1) and (u2, v2) are two solutions of Sρf,d, then

(v1 − v2)+ +

∫
Ω

(w1 − w2)+dx ≤
∫

Ω

(f1 − f2)+dx+ (d1 − d2)+, (2.10)

where w1 = |u1|pM (x)−2u1 and w2 = |u2|pM (x)−2u2.

3. PROOF OF THE MAIN RESULT

The proof of the main result is done in three steps.
Step 1: Approximated problem for continuous functions. We assume that ρ is a contin-
uous, non-decreasing and onto function on R such that

ρ(0) = 0. (3.11)

We define a new bounded domain Ω̃ in RN as follow.
We fix θ > 0 and we set Ω̃ = Ω ∪ {x ∈ RN/dist(x,ΓNe) < θ}. Then, ∂Ω̃ = ΓD ∪ Γ̃Ne is
Lipschitz with ΓD ∩ Γ̃Ne = ∅.

Let us consider ãi(x, ξ) Carathéodory and satisfying (1.5), (1.6), (1.7) and (1.8), for all x ∈
Ω̃.
We also consider a function d̃ in L∞(Γ̃Ne) such that∫

Γ̃Ne

d̃dσ = d. (3.12)
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We consider the problem

P (ρ̃, f̃ , d̃)



−
N∑
i=1

∂

∂xi
ãi(x,

∂

∂xi
u) + |u|PM (x)−2uχΩ(x) = f̃ in Ω̃

u = 0 on ΓD

ρ̃(u) +

N∑
i=1

ãi(x,
∂

∂xi
u)ηi = d̃ on Γ̃Ne,

(3.13)

where the function ρ̃ is defined as follow.

• ρ̃(s) =
1

|Γ̃Ne|
ρ(s), where |Γ̃Ne| denotes the Hausdorff measure of Γ̃Ne.

• f̃(x) = (fχΩ)(x) ∀x ∈ Ω̃.

We obviously have f̃ ∈ L∞(Ω̃), d̃ ∈ L∞(Γ̃Ne).
We introduce the following space

W
1,~p(.)
D (Ω̃) = {ξ ∈W 1,~p(.)(Ω̃) : ξ = 0 on ΓD}.

Definition 3.2. A measurable function u : Ω̃ → R is a solution to problem P (ρ̃, f̃ , d̃) if
u ∈W 1,~p(.)

D (Ω̃) and

∫
Ω̃

N∑
i=1

ãi(x,
∂

∂xi
u)

∂

∂xi
ϕ̃dx+

∫
Ω

|u|PM (x)−2uϕ̃dx =

∫
Ω

fϕ̃dx+

∫
Γ̃Ne

(d̃− ρ̃(u))ϕ̃dσ, (3.14)

for any ϕ̃ ∈W 1,~p(.)
D (Ω̃) ∩ L∞(Ω).

The problem P (ρ̃, f̃ , d̃) admits at least one solution in the sense of Definition 3.2 (see
[8]).
Step 2: The regularized problem corresponding to Sρf,d. For any ε > 0, we denote by ρε
the Yosida regularization of ρ.
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Now, we set ãi(x, ξ) = ai(x, ξ)χΩ(x) +
1

εpi(x)
|ξ|pi(x)−2ξχΩ̃\Ω(x) for all (x, ξ) ∈ Ω̃× RN ,

ρ̃ε(s) =
1

|Γ̃Ne|
ρε(s) for all s ∈ R. We consider the following problem Pε(ρ̃ε, f̃ , d̃)



−
N∑
i=1

∂

∂xi

(
ai(x,

∂

∂xi
uε)χΩ(x) +

1

εpi(x)
| ∂
∂xi

uε|pi(x)−2 ∂

∂xi
uεχΩ̃\Ω(x)

)
+ |uε|PM (x)−2uεχΩ = f̃ in Ω̃

uε = 0 on ΓD

ρ̃ε(uε) +

N∑
i=1

ãi(x,
∂

∂xi
uε)ηi = d̃ on Γ̃Ne.

(3.15)
Pε(ρ̃ε, f̃ , d̃) has at least one solution (see [8] ). So, there exists at least one measurable
function uε : Ω̃→ R such that

N∑
i=1

∫
Ω

(
ai(x,

∂

∂xi
uε)

∂

∂xi
ϕ̃

)
dx+

N∑
i=1

∫
Ω̃\Ω

(
1

εpi(x)
| ∂
∂xi

uε|pi(x)−2 ∂

∂xi
uε

∂

∂xi
ϕ̃

)
dx∫

Ω

|uε|PM (x)−2uεϕ̃ =

∫
Ω

fϕ̃dx+

∫
Γ̃Ne

(d̃− ρ̃ε(uε))ϕ̃dσ,

(3.16)
where uε ∈W 1,~p(.)

D (Ω̃) and for all ϕ̃ ∈W 1,~p(.)
D (Ω̃) ∩ L∞(Ω).

Moreover, we have{
ρ̃ε(uε)| ≤ k3 := max{‖d̃‖∞, (ρ̃ε ◦ b−1)(‖f‖∞)} a.e. on Γ̃Ne,

|b(uε)| ≤ k4 := max{‖f‖∞; (b ◦ ρ−1
ε )(|Γ̃Ne|‖d̃‖∞)} a.e. in Ω.

(3.17)

The following result gives a priori estimates on the solution uε of the problem Pε(ρ̃ε, f̃ , d̃)
(see [1, 5]).

Proposition 3.1. Let uε be a solution of the problem Pε(ρ̃ε, f̃ , d̃). Then, the following statements
hold.

(i) There exists C a positive constant independent of ε such that
N∑
i=1

∫
Ω

(
∂

∂xi
|uε|
)pi(x)

dx+

N∑
i=1

∫
Ω̃\Ω

(
1

ε
| ∂
∂xi

uε|
)pi(x)

dx ≤ C
(
‖d̃‖L1(Γ̃Ne) + ‖f‖L1(Ω)

)
.

(ii) ∫
Ω

|uε|PM (x)−1dx+

∫
Γ̃Ne

|ρ̃ε(uε)|dx ≤ (‖d̃‖L1(Γ̃Ne) + ‖f‖L1(Ω)).

The following result states useful convergences results (see [1, 5]).

Proposition 3.2. As ε→ 0 we have

(i) uε → u a.e. in Ω and a.e. on Γ̃Ne with u ∈W 1,(p−1 ,...,p
−
N )

D (Ω̃);

(ii) for all i = 1, ...N ,
∂uε
∂xi

⇀
∂u

∂xi
= 0 in Lp

−
i (Ω̃ \ Ω) with

∂u

∂xi
= 0 in Ω̃ \ Ω;

(iii) ai(x,
∂uε
∂xi

) ⇀ ai(x,
∂u

∂xi
) weakly in L1(Ω) and a.e.in Ω.

Step 3: Proof of Theorem 2.1. Thanks to Proposition 3.2,

∀i = 1, ..., N ,
∂u

∂xi
= 0 in Ω̃ \ Ω, then

u = constant a.e.
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on Ω̃ \ Ω so that, we conclude that u ∈W 1,~p(.)
Ne (Ω).

To show that u is a solution of P (ρ, f, d), we only have to prove the equality (2.9).
The sequences (ρ̃ε(uε))ε>0 is uniformly bounded in L∞(Γ̃Ne). Hence, there exists v1 ∈
L∞(Γ̃Ne) such that, as ε→ 0,

ρ̃ε(uε) ⇀
∗ v1 in L

∞(Γ̃Ne). (3.18)

Let ϕ ∈W 1,~p(.)
D (Ω)∩L∞(Ω). we consider the function ϕ1 ∈W 1,~p(.)

D (Ω̃)∩L∞(Ω), such that

ϕ1 = ϕχΩ + ϕNχΩ̃\Ω.

Then, ϕ1 = constant on Ω̃ \ Ω. Such function ϕ1 in the equality (3.16) gives us
N∑
i=1

∫
Ω

(
ai(x,

∂

∂xi
uε).

∂

∂xi
ϕ

)
dx+

∫
Ω

|uε|PM (x)−2uεϕdx =

∫
Ω

fϕdx+

(
d−

∫
Γ̃Ne

ρ̃ε(uε)dσ

)
ϕN .

(3.19)
Passing to the limit in (3.19) as ε → 0 and using the convergences in Proposition 3.2, one
has
N∑
i=1

∫
Ω

(
ai(x,

∂

∂xi
u)

∂

∂xi
ϕ

)
dx+ lim

ε→0

∫
Ω

b(uε)ϕ =

∫
Ω

fϕdx+ dϕN −
(

lim
ε→0

∫
Γ̃Ne

ρ̃ε(uε)dσ

)
ϕN

By Proposition 3.2 and Lebesgue dominated convergence theorem, we deduce that

b(uε)→ b(u) in L1(Ω). (3.20)

Thanks to (3.18) and (3.20), we deduce that
N∑
i=1

∫
Ω

(
ai(x,

∂

∂xi
u)

∂

∂xi
ϕ

)
dx+

∫
Ω

b(u)ϕ =

∫
Ω

fϕdx+ dϕN −
(∫

Γ̃Ne

v1dσ

)
ϕN .

We consider w = b(u) ∈ L1(Ω) and v =
∫

Γ̃Ne
v1dσ ∈ R to obtain from the above equality

N∑
i=1

∫
Ω

(
ai(x,

∂

∂xi
u).

∂

∂xi
ϕ

)
dx+

∫
Ω

wϕdx =

∫
Ω

fϕdx+ (d− v)ϕN .

To conclude that (u, v) is a solution of Sρf,d, it remain to show that

v ∈ ρ(uN ).

We have ρ̃ε(uε) ⇀∗ v1 in L∞(Γ̃Ne) as ε→ 0. So ρ̃ε(uε) ⇀ v1 in Lp
−
m(Γ̃Ne) as ε→ 0.

We also have uε → u in Lp
−
m(Γ̃Ne) as ε → 0 and ρ̃ε →

1

|Γ̃Ne|
ρ in the sense of graph. Then

(see [2]), v1 ∈
1

|Γ̃Ne|
ρ(u) a.e. on Γ̃Ne and v2 = |Γ̃Ne|v1 ∈ ρ(u) a.e. on Γ̃Ne.

We know that u ≡ constant in Ω̃ \ Ω so u ≡ constant on Γ̃Ne and we get v2 ∈ ρ(uN ).
Using the fact that D(ρ) = R either ρ(uN ) = s or ρ(uN ) = [r, s] with (r, s) ∈ R2 such that

r < s, it yields that
1

Γ̃Ne

∫
Γ̃Ne

v2dσ ∈ ρ(uN ) and v ∈ ρ(uN ). � Let us prove now the

inequality (2.10) of Theorem 2.1.

Proof. We have {
w1 = b(u1), w2 = b(u2)

v1 ∈ ρ((u1)Ne), v2 ∈ ρ((u2)Ne),
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and for any ϕ ∈W 1,~p(.)
Ne (Ω) ∩ L∞(Ω),∫

Ω

(
N∑
i=1

ai(x,
∂

∂xi
u1)

∂

∂xi
ϕ

)
dx+

∫
Ω

w1ϕdx =

∫
Ω

f1ϕdx+ (d1 − v1)ϕNe (3.21)

and ∫
Ω

(
N∑
i=1

ai(x,
∂

∂xi
u2)

∂

∂xi
ϕ

)
dx+

∫
Ω

w2ϕdx =

∫
Ω

f2ϕdx+ (d2 − v2)ϕNe. (3.22)

Subtracting (3.21) from (3.22), one has
∫

Ω

N∑
i=1

(
ai(x,

∂

∂xi
u1)− ai(x,

∂

∂xi
u2)

)
∂

∂xi
ϕdx+

∫
Ω

(w1 − w2)ϕdx

+(v1 − v2)ϕNe =

∫
Ω

(f1 − f2)ϕdx+ (d1 − d2)ϕNe.

(3.23)

In (3.23) we take ϕ = Hε(u1−u2 +εξ) where ξ is any function inW 1,~p(.)(Ω). After calculus
we obtain

{∫
Ω

(w1 − w2)ξχ[u1=u2]dx+
∫

Ω
(w1 − w2)sign+

0 χ[u1 6=u2]dx+ (v1 − v2)(ξNe)χ[(u1)Ne=(u2)Ne]

+(v1 − v2)sign+
0 ((u1)Ne − (u2)Ne)χ[(u1)Ne 6=(u2)Ne] ≤

∫
Ω

(f1 − f2)+dx+ (d1 − d2)+.

(3.24)
Now, we consider the function ξ0 defined as follows.

ξ0 =


sign+

0 (w1 − w2) in [u1 = u2]

sign+
0 (v1 − v2) on ΓNe

0 in RN \ {[u1 = u2]} .

Replacing ξ by ξ0 in (3.24), we get{∫
Ω

(w1 − w2)ξ0χ[u1=u2]dx+
∫

Ω
(w1 − w2)sign+

0 χ[u1 6=u2]dx+ (v1 − v2)(ξ0)Neχ[(u1)Ne=(u2)Ne]

+(v1 − v2)sign+
0 ((u1)Ne − (u2)Ne)χ[(u1)Ne 6=(u2)Ne] ≤

∫
Ω

(f1 − f2)+dx+ (d1 − d2)+.

(3.25)
Taking into account the definition of ξ0, one gets from (3.25)
∫

Ω
(w1 − w2)sign+

0 (w1 − w2)χ[u1=u2]dx+
∫

Ω
(w1 − w2)sign+

0 (u1 − u2)χ[u1 6=u2]dx

+(v1 − v2)sign+
0 (v1 − v2)χ[(u1)Ne=(u2)Ne]

+(v1 − v2)sign+
0 ((u1)Ne − (u2)Ne)χ[(u1)Ne 6=(u2)Ne] ≤

∫
Ω

(f1 − f2)+dx+ (d1 − d2)+;

which is equivalent to say{∫
Ω

(w1 − w2)+χ[u1=u2]dx+
∫

Ω
(w1 − w2)+χ[u1 6=u2]dx+ (v1 − v2)+χ[(u1)Ne=(u2)Ne]

+(v1 − v2)+χ[(u1)Ne 6=(u2)Ne] ≤
∫

Ω
(f1 − f2)+dx+ (d1 − d2)+;

and

(v1 − v2)+ +

∫
Ω

(w1 − w2)+dx ≤
∫

Ω

(f1 − f2)+dx+ (d1 − d2)+;

which correspond to (2.10). �
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