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On equitable chromatic topological indices of some
Mycielski graphs

SMITHA ROSE and SUDEV NADUVATH

ABSTRACT. In recent years, the notion of chromatic Zagreb indices has been introduced and studied for
certain basic graph classes, as a coloring parallel of different Zagreb indices. A proper coloring C of a graph G,
which assigns colors to the vertices of G such that the numbers of vertices in any two color classes differ by at
most one, is called an equitable coloring ofG. In this paper, we introduce the equitable chromatic Zagreb indices
and equitable chromatic irregularity indices of some special classes of graphs called Mycielski graphs of paths
and cycles.

1. INTRODUCTION

In chemical graph theory, the topological indices of a graph may be considered as cer-
tain connectivity indices which are invariant under graph isomorphism. They are widely
used in many areas. In particular, topological graph indices are long-established in math-
ematical chemistry as molecular descriptors calculated based on molecular structures of
chemical objects.

The studies on topological indices of graphs commenced three decades ago, when the
study on the dependence of total π- electron energy on molecular structures has been
done in [5]. Zagreb indices of graphs are the first two topological indices calculated using
vertex degrees. Over years, the research work formed around these concepts are massive.
Recently a chromatic analogue of these indices, especially of Zagreb indices have been
introduced in literature (see [8]).

For terms and definitions which are not introduced in this paper, we refer the reader
to [6, 2, 3, 13]. Throughout our study, we consider G = (V,E) as a finite, non-trivial,
undirected, simple and connected graph.

A graph coloring is an assignment of colors or labels or weights to the vertices, edges
and faces of a graph under consideration. Unless stated otherwise, in this paper, the graph
coloring is meant to be an assignment of colors to the vertices of a graph subject to certain
conditions. A proper vertex coloring of a graph G is an assignment ϕ : V (G) → C, where
C = {c1, c2, c3, . . . , c`} is a set of colors, such that adjacent vertices of G have different
colors. This coloring is called an `-coloring of the graph G. The chromatic number of a
graphG, denoted by χ(G), is the minimum number of colors required in a proper coloring
of the given graph.

The set of all vertices of G which have the color ci is called the color class of that color ci
in G, denoted by Ci. The cardinality of the color class of a color ci is said to be the strength
of that color in G and is denoted by θ(ci). We can also define a function ζe : V (G) →
{1, 2, 3, . . . , `} such that ζe(vi) = s ⇐⇒ ϕe(vi) = cs, cs ∈ C. Also, we denote the number
of edges with end points having colors ct and cs by ηts, where t < s, 1 ≤ t, s ≤ χe(G).
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An equitable coloring of a graph G is a proper coloring C of G which is an assignment of
colors to the vertices of G such that the numbers of vertices in any two color classes differ
by at most one (see [10]). We denote this assignment by the function ϕe : V (G) → C of
the vertices of G with colors in C. The equitable chromatic number, χe of a graph G, is the
smallest number k such that G has an equitable coloring with k colors.

Some studies on equitable coloring parameters of certain graph classes have been con-
ducted in [4, 12]. Motivated by the studies on different types of graph colorings, equitable
coloring parameters and chromatic Zagreb indices [8], we define and discuss the concepts
of equitable chromatic Zagreb indices and equitable chromatic irregularity indices of My-
cielski of certain graph classes in this paper. Analogous to the definitions of Zagreb and
irregularity indices of graphs (see [1, 5, 14, 15]), the notions of equitable chromatic Zagreb
indices and equitable chromatic irregularity indices are defined as follows:

2. EQUITABLE CHROMATIC ZAGREB AND IRREGULARITY INDICES OF GRAPHS

Definition 2.1. Let G be a graph and let C = {c1, c2, c3, . . . , c`} be an equitable coloring of
G such that ϕe(vi) = cs; 1 ≤ i ≤ n, 1 ≤ s ≤ `. Then for 1 ≤ t ≤ ` !,

(i) The first equitable chromatic Zagreb index of G, denoted by Mϕet
1 (G), is defined as

Mϕet
1 (G) =

n∑
i=1

(ζ(vi))
2.

(ii) The second equitable chromatic Zagreb index of G, denoted by Mϕet
2 (G), is defined as

Mϕet
2 (G) =

n−1∑
i=1

n∑
j=2

(ζ(vi) · ζ(vj)), vivj ∈ E(G).

(iii) The equitable chromatic irregularity index of G, denoted by Mϕet
3 (G), is defined as

Mϕet
3 (G) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)|, vivj ∈ E(G).

(iv) The equitable chromatic total irregularity index of G, denoted by Mϕet
4 (G), is defined

as Mϕet
4 (G) = 1

2

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)|, vi, vj ∈ V (G).

In view of the above notions, the minimum and maximum equitable chromatic Zagreb
indices and the corresponding irregularity indices are defined as follows.

M
ϕ−

e
1 (G) = min{Mϕet

1 (G) : 1 ≤ t ≤ `!},

M
ϕ+

e
1 (G) = max{Mϕet

1 (G) : 1 ≤ t ≤ `!},

M
ϕ−

e
2 (G) = min{Mϕet

2 (G) : 1 ≤ t ≤ `!},

M
ϕ+

e
2 (G) = max{Mϕet

2 (G) : 1 ≤ t ≤ `!},

M
ϕ−

e
3 (G) = min{Mϕet

3 (G) : 1 ≤ t ≤ `!},

M
ϕ+

e
3 (G) = max{Mϕet

3 (G) : 1 ≤ t ≤ `!}

M
ϕ−

e
4 (G) = min{Mϕet

4 (G) : 1 ≤ t ≤ `!},

M
ϕ+

e
4 (G) = max{Mϕet

4 (G) : 1 ≤ t ≤ `!}.

3. EQUITABLE CHROMATIC ZAGREB INDEX OF MYCIELSKIAN OF A GRAPH

Motivated by the studies mentioned above, we study the equitable chromatic Zagreb
indices and equitable chromatic irregularity indices of Mycielskian of certain fundamental
graph classes in the following discussion.
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Definition 3.2. [9] Let G be a graph with the vertex set V (G) = {v1, . . . , vn}. The Myciel-
ski graph or the Mycielskian of a graph G, denoted by µ(G), is the graph with vertex set
V (µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that vivj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G),
viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G) and uiw ∈ E(µ(G)) for all i = 1, . . . , n.

For the ease of the notation, we denote the Mycielski graph of a graph G by Ğ.

Theorem 3.1. For the Mycielskian of a path Pn, we have

(i) Mϕ−
e

1 (P̆n) =

{
15n+ 1; if n is even
15n− 1; if n is odd;

(ii) Mϕ−
e

2 (P̆n) =

{
31n−24

2 ; if n is even
33n−27

2 ; if n is odd;

(iii) Mϕ−
e

3 (P̆n) =

{
6n− 4; if n is even
9n−7

2 ; if n is odd;

(iv) Mϕ−
e

4 (P̆n) =

{
5n2+6n

4 ; if n is even
2n2 + n− 1; if n is odd.

c1 c2 c1 c2 c1 c2 c1 c2

c3 c4 c3 c4 c3 c4 c3 c4

c1

FIGURE 1. Equitable coloring of P̆8

Proof. Consider a path Pn with vertex set {v1, v2, . . . , vn} and it’s Mycielskian P̆n, with
vertex set {v1, v2, . . . , vn, u1, u2, . . . , un, w}. Then, P̆n has 2n+1 vertices and 4n−3 edges.The
vertices ui and vi may be called the twin vertices and the vertex w may be called the root
vertex. We introduce here the notation ηts to denote the number of edges with end points
t and s respectively, where t < s, 1 ≤ t, s ≤ χe(P̆n). Now we proceed with the proof
considering even and odd cases separately.

Case-1: Let n be even. It is clear that χe(P̆n) = 4. For the easy flow of the proof we de-
fine four independent sets in P̆n as S1 = {w, v1, v3, . . . , vn−1}, S2 = {v2, v4, . . . , vn}, S3 =
{u1, u3, . . . , un−1} and S4 = {u2, u4, . . . , un}. Now we color Si with color ci for 1 ≤ i ≤ 4
to have the values θ(c1) = n+2

2 , θ(c2) = θ(c3) = θ(c4) = n
2 and η12 = η23 = n − 1, η13 =

n
2 , η14 = 3n−2

2 .
Part (i): From the definition of the first equitable chromatic Zagreb index the result

follows as:

M
ϕ−

e
1 (P̆n) =

4∑
i=1

(θ(ci))i
2 = 1 + 30

n

2
= 15n+ 1.

Part (ii): From the definition of the second equitable chromatic Zagreb indices the result
follows as:

M
ϕ−

e
2 (P̆n) =

t<s∑
1≤t,s≤χe(P̆n)

tsηts = 8(n− 1) +
3n

2
+ 4

3n− 2

2
=

31n− 24

2
.
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Part (iii): In this case, S1 is colored with c1, S2 with c3, S3 with c4 and S4 with c2. So
we will have η34 = η13 = n − 1, η14 = n

2 , η12 = 3n−2
2 . Now the definition of the equitable

chromatic irregularity indices of a graph, gives the result as follows:

M
ϕ−

e
3 (P̆n) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 3(n− 1) +
3n

2
+

3n− 2

2
= 6n− 4.

Part (iv): First we assign equitable coloring to the vertices as Si is colored with ci for
1 ≤ i ≤ 4. In order to calculate the equitable chromatic total irregularity of P̆n, all the
possible vertex pairs from P̆n have to be considered and their possible color distances are
determined. We observe that vertex pairs with same colors contribute nothing to the color
distance and we discard such cases. The possibility of the vertex pairs which contribute
to the color distance are calculated considering all vertex pairs. Now from the definition
of the equitable chromatic total irregularity indices of a graph, the result follows as:

M
ϕ−

e
4 (P̆n) =

1

2

∑
u,v∈V (P̆n)

|ϕe(u)− ϕe(v)| = 1

2

(
n2 + 3n

(
n+ 2

2

))
=

5n2 + 6n

4
.

c1 c2 c1 c2 c1 c2 c1 c2 c1

c3 c4 c3 c4 c3 c4 c3 c4 c3

c1

FIGURE 2. Equitable coloring of P̆9

Case-2: Let n be odd. It is clear that χe(P̆n) = 4. Here we define 4 independent sets
in P̆n as S1 = {v1, v3, . . . , vn}, S2 = {w, v2, v4, . . . , vn−1}, S3 = {u1, u3, . . . , un} and S4 =
{u2, u4, . . . , un−1}. Here, S1 is colored with c2, S2 with c1, S3 with c3 and S4 with c4 to
have the values θ(c1) = θ(c2) = θ(c3) = n+1

2 , θ(c4) = n−1
2 and η12 = η24 = n − 1, η13 =

3n−1
2 , η14 = n−1

2 .
Part (i): From the definition of the first equitable chromatic Zagreb indices the result

follows as:

M
ϕ−

e
1 (P̆n) =

4∑
i=1

(θ(ci))i
2 = 7(n+ 1) + 8(n− 1) = 15n− 1.

Part (ii): From the definition of the second equitable chromatic Zagreb indices the result
follows as:

M
ϕ−

e
2 (P̆n) =

t<s∑
1≤t,s≤χe(P̆n)

tsηts = 12(n− 1) + 3
3n− 1

2
=

33n− 27

2
.

Part (iii): Here S1 is colored with c3, S2 with c2, S3 with c1 and S4 with c4. So we will
have η23 = η34 = n − 1, η24 = n−1

2 , η12 = 3n−1
2 . Now the definition of the equitable

chromatic irregularity indices of a graph, gives the result as follows:

M
ϕ−

e
3 (P̆n) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 3(n− 1) +
3n− 1

2
=

9n− 7

2
.
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Part (iv): In this case, S1 is colored with c2, S2 with c1, S3 with c3 and S4 with c4 to
have the values θ(c1) = θ(c2) = θ(c3) = n+1

2 , θ(c4) = n−1
2 and η12 = η24 = n − 1, η13 =

3n−1
2 , η14 = n−1

2 . Now from the definition of the equitable chromatic total irregularity
indices of a graph, the result follows as:

M
ϕ−

e
4 (P̆n) =

1

2

∑
u,v∈V (P̆n)

|ϕe(u)− ϕe(v)| = 1

2
((n+ 1)2 + 3(n2 − 1)) = 2n2 + n− 1.

�

Theorem 3.2. For the Mycielskian of a path Pn, we have

(i) Mϕ+
e

1 (P̆n) =

{
15n+ 16; if n is even
15n; if n is odd;

(ii) Mϕ+
e

2 (P̆n) =

{
30n− 22; if n is even
55n−31

2 ; if n is odd;

(iii) Mϕ+
e

3 (P̆n) =

{
15n−10

2 ; if n is even
13(n−1)

2 ; if n is odd;

(iv) Mϕ+
e

4 (P̆n) =

{
7n2+6n

4 ; if n is even
2n2 + n− 1; if n is odd.

Proof. Here the proof is almost similar to that of the proof of Theorem 3.1 and so we
proceed with the proof considering even and odd cases separately.

Case-1: Let n be even. It is clear that χe(P̆n) = 4. We define 4 independent sets in
P̆n as S1 = {w, v1, v3, . . . , vn−1}, S2 = {v2, v4, . . . , vn}, S3 = {u1, u3, . . . , un−1} and S4 =
{u2, u4, . . . , un}. Here, S1 is colored with c4, S2 with c2, S3 with c1 and S4 with c3 to have
the values θ(c4) = n+2

2 , θ(c3) = θ(c2) = θ(c1) = n
2 and η12 = η24 = n − 1, η14 = n

2 , η34 =
3n−2

2 .
Part (i): From the definition of the first equitable chromatic Zagreb indices the result

follows as:

M
ϕ+

e
1 (P̆n) =

4∑
i=1

(θ(ci))i
2 = 7n+ 16

n+ 2

2
= 15n+ 16.

Part (ii): From the definition of the second equitable chromatic Zagreb indices the result
follows as:

M
ϕ+

e
2 (P̆n) =

t<s∑
1≤t,s≤χe(P̆n)

tsηts = 10(n− 1) +
4n

2
+ 12

3n− 2

2
= 30n− 22.

Part (iii): Here S1 is colored with c4, S2 with c3, S3 with c1 and S4 with c2. So we will
have η34 = η13 = n−1, η14 = n

2 , η12 = 3n−2
2 . Now the definition of the equitable chromatic

irregularity indices of a graph, gives the result as follows:

M
ϕ−

e
3 (P̆n) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 3(n− 1) +
3n

2
+ 4

3n− 2

2
=

15n− 10

2
.

Part (iv): First we assign equitable coloring to the vertices as described above for part
one and two. Now from the definition of the equitable chromatic total irregularity indices
of a graph, the result follows as:

M
ϕ+

e
4 (P̆n) =

1

2

∑
u,v∈V (P̆n)

|ϕe(u)− ϕe(v)| = 1

2
(2n2 + 3

n2 + 2n

2
) =

7n2 + 6n

4
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Case-2: Let n be odd. It is clear that χe(P̆n) = 4. Here we define 4 independent sets
in P̆n as S1 = {v1, v3, . . . , vn}, S2 = {w, v2, v4, . . . , vn−1}, S3 = {u1, u3, . . . , un}, and S4 =
{u2, u4, . . . , un−1}. Here, S1 is colored with c2, S2 with c1, S3 with c3 and S4 with c4 to
have the values θ(c4) = θ(c2) = θ(c3) = n+1

2 , θ(c1) = n−1
2 and η12 = η23 = n − 1, η34 =

3n−1
2 , η13 = n−1

2 .
Part (i): From the definition of the first equitable chromatic Zagreb indices the result

follows as:

M
ϕ+

e
1 (P̆n) =

4∑
i=1

(θ(ci))i
2 =

29n+ 1

2
+
n− 1

2
= 15n.

Part (ii): From the definition of the second equitable chromatic Zagreb indices the result
follows as:

M
ϕ+

e
2 (P̆n) =

t<s∑
1≤t,s≤χe(P̆n)

tsηts =
19(n− 1)

2
) + 12

3n− 1

2
=

55n− 31

2

Part (iii): Here S1 is colored with c3, S2 with c2, S3 with c4 and S4 with c1. So we will have
η23 = η13 = n − 1, η12 = n−1

2 , η24 = 3n−1
2 . Now the definition of the equitable chromatic

irregularity indices of a graph, gives the result as follows:

M
ϕ+

e
3 (P̆n) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 3(n− 1) +
7(n− 1)

2
=

13(n− 1)

2
.

Part (iv): Here the proof of the result is as same as in theorem 3.2 and from the definition
of the equitable chromatic total irregularity indices of a graph, the result follows as:

M
ϕ+

e
4 (P̆n) =

1

2

∑
u,v∈V (P̆n)

|ϕe(u)− ϕe(v)| = 1

2
((n+ 1)2 + 3(n2 − 1)) = 2n2 + n− 1.

�

Theorem 3.3. For the Mycielskian of a cycle Cn, we have

(i) Mϕ−
e

1 (C̆n) =

{
15n+ 1; if n is even
15n− 1; if n is odd;

(ii) Mϕ−
e

2 (C̆n) =

{
31n
2 ; if n is even

31n+29
2 ; if n is odd;

(iii) Mϕ−
e

3 (C̆n) =

{
15n
2 ; if n is even

15n−13
2 ; if n is odd;

(iv) Mϕ−
e

4 (C̆n) =

{
5n2+6n

4 ; if n is even
5n2+4n−1

4 ; if n is odd.

Proof. Consider a cycle Cn with vertex set {v1, v2, . . . , vn} and it’s Mycielskian C̆n, with
vertex set {v1, v2, . . . , vn, u1, u2, . . . , un, w}. Then, C̆n has 2n+ 1 vertices and 4n edges.The
vertices ui and vi may be called the twin vertices and the vertex w may be called the root
vertex. Now we proceed with the proof considering even and odd cases separately.

Case-1: Let n be even. It is clear that χe(C̆n) = 4. For the easy flow of the proof we de-
fine four independent sets in P̆n as S1 = {w, v1, v3, . . . , vn−1}, S2 = {v2, v4, . . . , vn}, S3 =
{u1, u3, . . . , un−1}, and S4 = {u2, u4, . . . , un}. Now we color Si with color ci for 1 ≤ i ≤ 4
to have the values θ(c1) = n+2

2 , θ(c2) = θ(c3) = θ(c4) = n
2 and η12 = η23 = n, η13 =

n
2 , η14 = 3n

2 .
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c1

c2
c1c2

c1

c2

c1

c2 c2
c2

c3

c4

c3c4

c3

c4

c3

c4 c4

c4

c1

FIGURE 3. An equitable coloring of C̆10.

Part (i): From the definition of the first equitable chromatic Zagreb indices the result
follows as:

M
ϕ−

e
1 (C̆n) =

4∑
i=1

(θ(ci))i
2 =

n+ 2

2
+ 29

n

2
= 15n+ 1.

Part (ii): From the definition of the second equitable chromatic Zagreb indices the result
follows as:

M
ϕ−

e
2 (C̆n) =

t<s∑
1≤t,s≤χe(C̆n)

tsηts = 14n+
3n

2
=

31n

2
.

Part (iii): From the definition of the equitable chromatic irregularity indices of a graph,
gives the result as follows:

M
ϕ−

e
3 (C̆n) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n+
11n

2
=

15n

2
.

Part (iv): First we assign equitable coloring to the vertices as Si is colored with ci for
1 ≤ i ≤ 4. In order to calculate the equitable chromatic total irregularity of C̆n, all the
possible vertex pairs from C̆n have to be considered and their possible color distances are
determined. We observe that vertex pairs with same colors contribute nothing to the color
distance and we discard such cases. The possibility of the vertex pairs which contribute
to the color distance are calculated considering all vertex pairs. Now from the definition
of the equitable chromatic total irregularity indices of a graph, the result follows as:

M
ϕ−

e
4 (C̆n) =

1

2

∑
u,v∈V (C̆n)

|ϕe(u)− ϕe(v)| = 1

2

(
n2 + 3n · n+ 2

2

)
=

5n2 + 6n

4
.

Case-2: Let n be odd. Here also χe(C̆n) = 4. Here we define 4 independent sets in C̆n
as S1 = {v1, v3, . . . , vn−2, w}, S2 = {v2, v4, . . . , vn−3, vn, un−3}, S3 = {u1, u3, . . . ,
un−4, un−1, vn−1} and S4 = {u2, u4, . . . , un−5, un−2, un}. Here, S1 is colored with c1, S2

with c2, S3 with c3 and S4 with c4 to have the values θ(c1) = θ(c2) = θ(c3) = n+1
2 ,

θ(c4) = n−1
2 and η12 = n+ 1, η13 = n+3

2 , η14 = 3(n−3)
2 , η23 = n− 1, η24 = 1, η34 = 2.

Part (i): From the definition of the first equitable chromatic Zagreb indices the result
follows as:

M
ϕ−

e
1 (C̆n) =

4∑
i=1

(θ(ci))i
2 = 7(n+ 1) + 8(n− 1) = 15n− 1.
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Part (ii): From the definition of the second equitable chromatic Zagreb indices the result
follows as:

M
ϕ−

e
2 (C̆n) =

t<s∑
1≤t,s≤χe(C̆n)

tsηts = 2(n+ 1) + 3
n+ 3

2
+ 6(n− 3) + 6(n− 1) + 32 =

31n+ 29

2

Part (iii): From the definition of the equitable chromatic irregularity indices of a graph,
gives the result as follows:

M
ϕ−

e
3 (C̆n) =

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = (n+ 1) + (n+ 3) + (n− 1) +
9(n− 3)

2
+ 4 =

15n− 13

2

Part (iv): Now from the definition of the equitable chromatic total irregularity indices
of a graph, the result follows as:

M
ϕ−

e
4 (C̆n) =

1

2

∑
u,v∈V (C̆n)

|ϕe(u)− ϕe(v)| = 1

2
((n+ 1)2 + 3(n2 − 1)) =

5n2 + 4n− 1

4

�

c1

c2
c3

c1

c2

c3

c1
c2

c3

c4

c5

c6
c4

c5

c6

c4
c5

c6

c1

FIGURE 4. An equitable coloring of C̆9.

Theorem 3.4. For the Mycielskian of a cycle Cn, we have

(i) Mϕ+
e

1 (C̆n) =

{
15n+ 16; if n is even
30n+28

2 ; if n is odd;

(ii) Mϕ+
e

2 (C̆n) =

{
30n; if n is even
28n+ 7; if n is odd;

(iii) Mϕ+
e

3 (C̆n) =

{
15n
2 ; if n is even

15n−9
2 ; if n is odd;

(iv) Mϕ+
e

4 (C̆n) =

{
5n2+6n

4 ; if n is even
5n2+4n−1

4 ; if n is odd.

Proof. Proof of the theorem is almost similar to that of the proof of Theorem 3.2. �

4. CONCLUSION

In this paper, we determined four important chromatic topological indices, related to
equitable coloring of certain graph classes derived from paths and cycles. These param-
eters defined for graph coloring problems can be used in various areas like project man-
agement, communication networks, optimization problems etc. The concepts of equitable
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chromatic parameters can be utilized in certain practical and industrial problems like re-
source allocation, resource smoothing, inventory management, service and distribution
systems etc.

The equitable chromatic topological indices of several other graph classes are yet to
be studied. Further investigations on the other topological indices corresponding to the
equitable coloring of many other standard graphs seem to be promising open problems.
Studies on the graph operations in correspondence to different types of edge colorings,
map colorings, total colorings etc. of graphs also offer much for future studies. Also, a
comparative study on chromatic Zagreb indices and irregularity indices of graph classes
and their operations will be interesting.
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