CREAT. MATH. INFORM. Volume **29** (2020), No. 2, Pages 231 - 236 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2020.02.14

Generalized semi-open sets via ideals in topological space

RITU SEN

ABSTRACT. In this paper we have introduced a new type of sets termed as $\hat{\mu}$ -open sets which unifies semiopen sets and discussed some of its properties. We have also introduced another type of weak open sets termed as $\mathcal{I}_{\hat{\mu}}$ -open sets depending on a GT as well as an ideal on a topological space. Finally the concept of weakly $\mathcal{I}_{\hat{\tau}}$ -open sets are investigated.

1. INTRODUCTION

The concept of ideal on topological spaces was studied by Kuratowski [11] and Vaidyanat-haswamy [17] which is one of the important area of research in the branch of mathematics. After then different mathematicians applied the concept of ideals in topological spaces (see [2, 8, 9, 10, 14, 16, 17]). In the past few years mathematicians turned their attention towards the generalized open sets (see [3, 4, 6, 15, 16] for details). Our aim in this paper is to use the concept of ideals in the generalized topology introduced by A. Császár. We recall some notions defined in [4].

Let expX denotes the power set of a non-empty set *X*. A class $\mu \subseteq expX$ is called a generalized topology [4], (briefly, GT) if $\emptyset \in \mu$ and μ is closed under arbitrary union. The elements of μ are called μ -open sets and the complement of μ -open sets are known as μ -closed sets. A set *X* with a GT μ on it is known as a generalized topological space (briefly, GTS) and is denoted by (X, μ) . A GT μ is said to be a quasi topology (briefly QT) [5] if $M, M' \in \mu$ implies $M \cap M' \in \mu$. The pair (X, μ) is said to be a QTS if μ is a QT on *X*.

For any $A \subseteq X$, the generalized μ -closure of A is denoted by $c_{\mu}(A)$ and is defined by $c_{\mu}(A) = \bigcap \{F : F \text{ is } \mu\text{-closed and } A \subseteq F\}$, similarly $i_{\mu}(A) = \bigcup \{U : U \subseteq A \text{ and } U \in \mu\}$ (see [4, 6]). Throughout the paper μ , λ will always mean GT on the respective sets.

An ideal [11] \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X with the following properties : (i) $A \subseteq B$ and $B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ (ii) $A \in \mathcal{I}, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$. A topological space (X, τ) with an ideal \mathcal{I} is denoted by (X, τ, \mathcal{I}) and known as an ideal topological space.

2. Properties of $\hat{\mu}$ -open, $\mathcal{I}_{\hat{\mu}}$ -open, and Weakly $\mathcal{I}_{\hat{\tau}}$ -open sets

Definition 2.1. Let μ be a GT on a topological space (X, τ) . A subset A of X is called $\hat{\mu}$ -open if $A \subseteq c_{\mu}(int(A))$.

Theorem 2.1. Let μ be a GT on a topological space (X, τ) . A subset A of X is $\hat{\mu}$ -open if and only if there exists an open set U such that $U \subseteq A \subseteq c_{\mu}(U)$.

Proof. Let A be a $\hat{\mu}$ -open set. Then $A \subseteq c_{\mu}(int(A))$. Let U = int(A). Then U is an open set and $U \subseteq A \subseteq c_{\mu}(int(A)) = c_{\mu}(U)$.

and $U \subseteq A \subseteq c_{\mu}(tnu(A)) - c_{\mu}(U)$. Conversely, let there be an open set U such that $U \subseteq A \subseteq c_{\mu}(U)$. Now $U \subseteq A \Rightarrow U \subseteq int(A) \Rightarrow c_{\mu}(U) \subseteq c_{\mu}(int(A))$. Thus $A \subseteq c_{\mu}(int(A))$.

Received: 16.10.2019. In revised form: 18.02.2020. Accepted: 25.02.2020

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54C08.

Key words and phrases. μ -open set, ideal, $\hat{\mu}$ -open set, $\mathcal{I}_{\hat{\mu}}$ -open set, weakly $\mathcal{I}_{\hat{\tau}}$ -open set.

Remark 2.1. Let μ be a GT on a topological space (X, τ) . If

(i) $\mu = \tau$, then a $\hat{\mu}$ -open set reduces to a semi-open set.

(ii) every open set is $\hat{\mu}$ -open.

(iii) If λ be any other GT on X with $\mu \subseteq \lambda$, then every $\hat{\lambda}$ -open set is $\hat{\mu}$ -open.

Remark 2.2. Let μ be a GT on a topological space (X, τ) . Then the collection of all $\hat{\mu}$ -open sets forms a GT on X.

Proof. Clearly \varnothing is a $\hat{\mu}$ -open set. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a family of $\hat{\mu}$ -open sets. Then there exist open sets U_{α} such that $U_{\alpha} \subseteq A_{\alpha} \subseteq c_{\mu}(U_{\alpha})$ for each $\alpha \in \Lambda$. Thus $\cup \{U_{\alpha} : \alpha \in \Lambda\} = U$ (say) $\subseteq \cup \{A_{\alpha} : \alpha \in \Lambda\} \subseteq c_{\mu}(U)$, where U is open showing that the union of $\hat{\mu}$ -open sets is a $\hat{\mu}$ -open set.

Example 2.1. (a) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$. Then μ is a GT on the topological space (X, τ) . It can be checked easily that $\{a, b\}$ is a $\hat{\mu}$ -open set which is not an open set.

(b) Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$ and $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, X\}$. Then μ is a GT on the topological space (X, τ) . It can be easily verified that $\{a, d\}$ and $\{c, d\}$ are both $\hat{\mu}$ -open but their intersection $\{d\}$ is not so.

Theorem 2.2. Let μ be a GT on a topological space (X, τ) and A be a $\hat{\mu}$ -open set such that $A \subseteq B \subseteq c_{\mu}(A)$. Then B is also a $\hat{\mu}$ -open set.

Proof. As *A* is $\hat{\mu}$ -open, there exists an open set *U* such that $U \subseteq A \subseteq c_{\mu}(U)$. Thus $U \subseteq B$. Also $c_{\mu}(A) \subseteq c_{\mu}(U) \Rightarrow B \subseteq c_{\mu}(U)$. Thus $U \subseteq B \subseteq c_{\mu}(U)$. Thus *B* is $\hat{\mu}$ -open.

Definition 2.2. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) . A subset A of X is called \mathcal{I}_{μ} -open if there exists an open set U such that $U \setminus A \in \mathcal{I}$ and $A \setminus c_{\mu}(U) \in \mathcal{I}$.

If $A \in \mathcal{I}$, then A is an $\mathcal{I}_{\hat{\mu}}$ -open set and also by Theorem 2.1, every $\hat{\mu}$ -open set (hence every open set) is $\mathcal{I}_{\hat{\mu}}$ -open for any ideal \mathcal{I} on X. Also note that if we take $\mu = \tau$, then $\mathcal{I}_{\hat{\mu}}$ -open set reduces to \mathcal{I} -semi-open set [13].

Example 2.2. (a) Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then μ is a GT on the ideal topological space (X, τ, \mathcal{I}) . It can be verified that $\{b\}$ is \mathcal{I}_a -open but not $\hat{\mu}$ -open.

(b) Let \mathbb{R} be the set of reals, \mathbb{Q} be the set of rationals and \mathbb{I} be the set of irrationals. Consider $\mathcal{I} = \{A \subseteq \mathbb{R} : A \text{ is finite}\}$ and $\mu = \{\emptyset, \mathbb{I}, \mathbb{R}\}$. Then μ is a GT on the ideal topological space $(\mathbb{R}, \tau_u, \mathcal{I})$, where τ_u denotes the usual topology on \mathbb{R} . We note that for all $x \in \mathbb{Q}$, $\{x\}$ is an \mathcal{I}_a -open set as $\{x\} \in \mathcal{I}$ but $\mathbb{Q} = \cup\{\{x\} : x \in \mathbb{Q}\}$ is not \mathcal{I}_a -open.

(c) Let us consider $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, X\}, \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. It can be checked that $\{a, b, c\}$ and $\{b, c, d\}$ are both \mathcal{I}_a -open but their intersection $\{b, c\}$ is not so.

Theorem 2.3. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) where \mathcal{I} is not countably additive. Then \mathcal{I} is a minimal ideal on X i.e., $\mathcal{I} = \{\emptyset\}$ if and only if the concept of $\hat{\mu}$ -openness and $\mathcal{I}_{\hat{\mu}}$ -openness are the same.

Proof. Suppose that $\mathcal{I} = \{\emptyset\}$. It is sufficient to show that whenever A is an $\mathcal{I}_{\hat{\mu}}$ -open set it is $\hat{\mu}$ -open. Indeed, if A is $\mathcal{I}_{\hat{\mu}}$ -open, then there exists an open set U such that $U \setminus A$, $A \setminus c_{\mu}(U) \in \mathcal{I} = \{\emptyset\}$ and so $U \subseteq A \subseteq c_{\mu}(U)$ proving A to be a $\hat{\mu}$ -open set (by Theorem 2.1).

Conversely, whenever a set is $\mathcal{I}_{\hat{\mu}}$ -open then it is $\hat{\mu}$ -open. Let $A \in \mathcal{I}$. Then A is an $\mathcal{I}_{\hat{\mu}}$ open set and hence by the assumption A is a $\hat{\mu}$ -open set. Thus there is an open set V_1 such
that $V_1 \subseteq A \subseteq c_{\mu}(V_1)$. Then $V_1 \in \mathcal{I}$ (as $V_1 \subseteq A$ and $A \in \mathcal{I}$). Thus $A \cup V_1 \in \mathcal{I}$. By the similar

argument as earlier $A \cup V_1$ is also $\hat{\mu}$ -open. Thus there exists an open set V_2 such that $V_2 \subseteq A \cup V_1 \subseteq c_{\mu}(V_2)$. Similarly, there exists an open set V_3 such that $V_3 \subseteq A \cup V_1 \cup V_2 \subseteq c_{\mu}(V_3)$. Continuing in this way we can obtain an infinite sequence of open sets V_1, V_2, V_3, \ldots such that $A \cup V_1 \cup V_2 \cup V_3 \cup \ldots \in \mathcal{I}$. But this is not possible as \mathcal{I} is not countably additive. Thus, it must be the case that $V_1 = \emptyset$ (similarly for the other V_i 's). Thus $c_{\mu}(V_1) = \emptyset$. Thus $A = \emptyset$ (as $V_1 \subseteq A \subseteq c_{\mu}(V_1)$). This shows that $\mathcal{I} = \emptyset$.

Remark 2.3. Let \mathcal{I} and \mathcal{I}' be two ideals on a topological space (X, τ) and μ be a GT on X. If $\mathcal{I} \subseteq \mathcal{I}'$, then every \mathcal{I}_{μ} -open set is \mathcal{I}'_{μ} -open (see Definition 2.2) and hence if A is $(\mathcal{I} \cap \mathcal{I}')_{\mu}$ -open, then it is \mathcal{I}_{μ} -open as well as \mathcal{I}'_{μ} -open.

Proposition 2.1. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) . The union of finite number of \mathcal{I}_{a} -open sets is an \mathcal{I}_{a} -open set.

Proof. Let *A* and *B* be two $\mathcal{I}_{\hat{\mu}}$ -open sets. Then there exist two open sets *G* and *H* such that $G \setminus A \in \mathcal{I}, A \setminus c_{\mu}(G) \in \mathcal{I}, H \setminus B \in \mathcal{I}, B \setminus c_{\mu}(H) \in \mathcal{I}$. Let $U = G \cup H$ and observe that $U \setminus (A \cup B) \subseteq ((G \setminus A) \setminus B) \cup ((H \setminus B) \setminus A) \in \mathcal{I}$. Also $A \cup B \setminus c_{\mu}(G \cup H) \subseteq ((A \setminus c_{\mu}(G) \setminus c_{\mu}(H)) \cup ((B \setminus c_{\mu}(G)) \in \mathcal{I}$. Thus $A \cup B$ is $\mathcal{I}_{\hat{\mu}}$ -open. \Box

Proposition 2.2. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) and suppose that there exists a μ -dense open subset $A \in \mathcal{I}$. Then every subset B of X is \mathcal{I}_a -open.

Proof. Let *B* be any subset of *X*. Note that (as \mathcal{I} is an ideal, $A \in \mathcal{I}$, $A \setminus B \subseteq A$), we shall have $A \setminus B \in \mathcal{I}$. Put U = A. Then $U \setminus B = A \setminus B \in \mathcal{I}$ and $B \setminus c_{\mu}(U) = B \setminus c_{\mu}(A) = B \setminus X = \emptyset \in \mathcal{I}$. Consequently, *B* is $\mathcal{I}_{\hat{\mu}}$ -open.

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ be the topology on $X, \mathcal{I} = \{\emptyset, \{c\}\}$ and $\mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$. Then μ is a GT on the ideal topological space (X, τ, \mathcal{I}) . It is easy to check that $c_{\mu}(\{a\}) = X$ where $\{a\} \notin \mathcal{I}$. It can be checked that $\{b\}$ is not an \mathcal{I}_a -open set.

Proposition 2.3. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) and A be an open set such that $A \subseteq B \subseteq c_{\mu}(A)$. Then B is an \mathcal{I}_{μ} -open set.

Proof. Obvious.

Proposition 2.4. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) where every non-empty open subset is μ -dense in (X, τ) . Then for any subset A of X,

(a) if A is \mathcal{I}_{a} -open with $A \notin \mathcal{I}$, then

(i) $A \subseteq B$ implies B is $\mathcal{I}_{\hat{\mu}}$ -open.

(ii) $A \cup B$ is \mathcal{I}_{a} -open for any subset B of X.

(b) Moreover, if the collection of open subsets of X satisfies finite intersection property and $A, B \notin \mathcal{I}$ be two \mathcal{I}_a -open sets, then $A \cap B$ is also an \mathcal{I}_a -open set.

Proof. (a)(i) Suppose that A is \mathcal{I}_{μ} -open and $A \subseteq B$. Then there is an open set G such that $G \setminus A \in \mathcal{I}$ and $A \setminus c_{\mu}(G) \in \mathcal{I}$. We first observe that $G \neq \emptyset$ for otherwise, $c_{\mu}(G) = \emptyset$ (and $A \in \mathcal{I}$). Since $A \subseteq B$, we have $G \setminus B \subseteq G \setminus A \in \mathcal{I}$ and $B \setminus c_{\mu}(G) = B \setminus X = \emptyset \in \mathcal{I}$. Thus B is \mathcal{I}_{μ} -open.

(ii) As $A \subseteq A \cup B$, (ii) follows directly from (i).

(b) Let *A* and *B* be two $\mathcal{I}_{\hat{\mu}}$ -open sets. If $A \cap B = \emptyset$, then the proof is trivial. We assume therefore that $A \cap B \neq \emptyset$. By assumption there exist two open sets *G* and *H* such that $G \setminus A \in \mathcal{I}, A \setminus c_{\mu}(G) \in \mathcal{I}, H \setminus B \in \mathcal{I}, B \setminus c_{\mu}(H) \in \mathcal{I}$. Consider the open set $G \cap H$ which is non-empty. Since $G \cap H \setminus (A \cap B) = ((G \setminus A) \cap H) \cup ((H \setminus B) \cap G) \in \mathcal{I}, (A \cap B) \setminus c_{\mu}(G \cap H) = (A \cap B) \setminus X = \emptyset \in \mathcal{I}$, thus $A \cap B$ is \mathcal{I}_{μ} -open.

Ritu Sen

Example 2.4. Let $X = \{a, b, c\}$, $\mathcal{I} = \{\emptyset, \{b\}\}$, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mu = \{\emptyset, \{a, c\}, X\}$. Then μ is a GT on the ideal topological space (X, τ) such that every nonempty open set is μ -dense in (X, τ) . It can be checked that $\{b\}$ is an \mathcal{I}_{μ} -open set but $\{b, c\}$ is not so.

Proposition 2.5. Let μ be a QT on an ideal topological space (X, τ, \mathcal{I}) with $\tau \subseteq \mu$ and every non-empty open subset is μ -dense in (X, τ) . A subset A which is not μ -dense is \mathcal{I}_{μ} -open if and only if $c_{\mu}(A)$ is \mathcal{I}_{a} -open.

Proof. Let A be $\mathcal{I}_{\hat{\mu}}$ -open. Then as $A \subseteq c_{\mu}(A)$, by Proposition 2.4(i), $c_{\mu}(A)$ is also $\mathcal{I}_{\hat{\mu}}$ -open (if $A \notin \mathcal{I}$). For $A \in \mathcal{I}$, we proceed as follows: As A is $\mathcal{I}_{\hat{\mu}}$ -open, there exists an open set U such that $U \setminus A$ and $A \setminus c_{\mu}(U)$ are both in \mathcal{I} which implies that $(U \setminus A) \cup A = U \cup A \in \mathcal{I}$. Thus $U \setminus c_{\mu}(A) \in \mathcal{I}$ (as $U \setminus c_{\mu}(A) \subseteq U \subseteq U \cup A$). Also, $c_{\mu}(A) \setminus c_{\mu}(U) = c_{\mu}(A) \setminus X = \emptyset \in \mathcal{I}$.

Conversely, suppose that $c_{\mu}(A)$ is \mathcal{I}_{μ} -open. Then there exists an open set G such that $G \setminus c_{\mu}(A) \in \mathcal{I}$ and $c_{\mu}(A) \setminus c_{\mu}(G) \in \mathcal{I}$. If $G = \emptyset$, then $c_{\mu}(A) \setminus c_{\mu}(G) = c_{\mu}(A) \in \mathcal{I} \Rightarrow A \in \mathcal{I}$. Thus A is \mathcal{I}_{μ} -open. If G is non-empty, consider the μ -open set $H = G \setminus c_{\mu}(A) = G \cap (X \setminus c_{\mu}(A)) \in \mathcal{I}$. Again, $H \setminus A = G \cap (X \setminus c_{\mu}(A)) \cap (X \setminus A) \subseteq G \cap (X \setminus c_{\mu}(A)) \in \mathcal{I}$. Thus $H \setminus A \in \mathcal{I}$ and $A \setminus c_{\mu}(H) = A \setminus c_{\mu}(G \cap (X \setminus c_{\mu}(A))) = A \setminus X = \emptyset$. This shows that A is \mathcal{I}_{μ} -open.

Theorem 2.4. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) . Then $X \setminus A$ is \mathcal{I}_{μ} -open if and only if there exists a closed set F such that $i_{\mu}(F) \setminus A \in \mathcal{I}$ and $A \setminus F \in \mathcal{I}$.

Proof. First suppose that $X \setminus A$ is \mathcal{I}_{μ} -open. Then there exists an open set G such that $G \setminus (X \setminus A) = A \setminus (X \setminus G) \in \mathcal{I}$ and $(X \setminus A) \setminus c_{\mu}(G) = i_{\mu}(X \setminus G) \setminus A \in \mathcal{I}$. Let $F = X \setminus G$. Then F is closed and the rest follows. The converse part can be done similarly by taking $G = X \setminus F$.

Definition 2.3. Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called weakly $\mathcal{I}_{\hat{\tau}}$ -open if $A = \emptyset$ or if $A \neq \emptyset$, there exists a non-empty open set U such that $U \setminus A \in \mathcal{I}$. The complement of a weakly $\mathcal{I}_{\hat{\tau}}$ -open set is termed as weakly $\mathcal{I}_{\hat{\tau}}$ -closed set.

It follows that for an ideal topological space (X, τ, \mathcal{I}) with a GT μ on X, any \mathcal{I}_{μ} -open set (hence open set) is weakly $\mathcal{I}_{\hat{\tau}}$ -open but the converse is false follows from the next example.

Example 2.5. (a) Consider $X = \{a, b, c, d\}, \tau = \mu = \{\emptyset, \{a, b\}, \{c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then (X, τ, \mathcal{I}) is an ideal topological space. It is easy to see that $\{b, c\}$ is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set but not \mathcal{I}_{a} -open.

(b) Consider $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a, b\}, \{c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then \mathcal{I} is an ideal on the topological space (X, τ) . It is easy to see that $\{a, b\}$ and $\{a, c\}$ are two weakly $\mathcal{I}_{\hat{\tau}}$ -open sets but their intersection $\{a\}$ is not so.

Proposition 2.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the collection of all weakly \mathcal{I}_{\star} -open sets form a GT on X.

Proof. \varnothing is clearly a weakly $\mathcal{I}_{\hat{\tau}}$ -open set. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of weakly $\mathcal{I}_{\hat{\tau}}$ open sets. Then for each $\alpha \in \Lambda$, there exists a non-empty open set U_{α} such that $U_{\alpha} \setminus A_{\alpha} \in \mathcal{I}$. But $U_{\alpha} \setminus \bigcup \{A_{\alpha} : \alpha \in \Lambda\} \subseteq U_{\alpha} \setminus A_{\alpha}$. Thus $U_{\alpha} \setminus \bigcup \{A_{\alpha} : \alpha \in \Lambda\} \in \mathcal{I}$. Hence $\bigcup \{A_{\alpha} : \alpha \in \Lambda\}$ is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set.

Theorem 2.5. Let (X, τ, \mathcal{I}) an ideal topological space. Then a non-empty subset A of X is weakly \mathcal{I}_{τ} -open if and only if there exist a non-empty open set U and a set C in \mathcal{I} such that $U \setminus C \subseteq A$.

Proof. Let *A* be a non-empty weakly $\mathcal{I}_{\hat{\tau}}$ -open subset of *X*. Then there exists a non-empty open set such that $U \setminus A \in \mathcal{I}$. Let $C = U \setminus A = U \cap (X \setminus A)$. Then $U \setminus C \subseteq A$.

Conversely, let there exist an open set U and C in \mathcal{I} such that $U \setminus C \subseteq A$. Then $U \setminus A \subseteq U \cap C \in \mathcal{I}$ (as $C \in \mathcal{I}$). Thus $U \setminus A \in \mathcal{I}$.

Theorem 2.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then if a subset A of X is weakly \mathcal{I}_{τ} -closed, then $A \subseteq K \cup B$ for some closed set K of X and $B \in \mathcal{I}$.

Proof. Let *A* be a weakly $\mathcal{I}_{\hat{\tau}}$ -closed set. Then $X \setminus A$ is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set. If $X \setminus A = \emptyset$, then A = X. Thus $A = X \cup \emptyset$. If $A \neq X$, then there is a non-empty open set *U* and $B \in \mathcal{I}$ such that $U \setminus B \subseteq X \setminus A$. So $A \subseteq X \setminus (U \setminus B) = (X \setminus U) \cup B = K \cup B$ where $K = X \setminus U$ which is a closed set and $B \in \mathcal{I}$.

Example 2.6. Let $X = \{a, b, c, d\}, \mathcal{I} = \{\emptyset, \{d\}\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. Then $\{a, d\} \subseteq X \cup \{d\}$, where X is μ -closed and $\{d\} \in \mathcal{I}$ but $\{a, d\}$ is not a weakly $\mathcal{I}_{\hat{\tau}}$ -closed set.

Remark 2.4. Let (X, τ, \mathcal{I}) be an ideal topological space. If $\emptyset \neq A \subsetneq B$ and A is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set, then so is B (by Definition 2.3). Thus if A is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set so is $A \cup B$, for any subset B of X. In particular, cl(A) is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set if A is so but the converse is not true as is seen from the following example.

Example 2.7. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, c\}, \{b, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. It is easy to verify that $\{a\}$ is not a weakly \mathcal{I}_{*} -open set though $cl(\{a\})$ is weakly \mathcal{I}_{*} -open.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space such that $\{a\} \in \tau \cap \mathcal{I}$ for some $a \in X$. Then every subset of X is weakly \mathcal{I}_{\dagger} -open.

Proof. Suppose $\{b\} \subseteq X$. Then either $\{a\} \setminus \{b\} = \emptyset \in \mathcal{I}$ (if b = a) or $\{a\} \setminus \{b\} = \{a\} \in \mathcal{I}$ (if $a \neq b$), where $\{a\} \in \tau$. Thus $\{b\}$ is weakly $\mathcal{I}_{\hat{\tau}}$ -open. Thus by Proposition 2.6, any subset of *X* is weakly $\mathcal{I}_{\hat{\tau}}$ -open.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal topological space (X, τ, \mathcal{I}) . Then the collection of weakly \mathcal{I}_{τ} -open sets form a topology on X.

Proof. Due to Proposition 2.6, we have only to show that *X* is weakly $\mathcal{I}_{\hat{\tau}}$ -open and that the intersection of two weakly $\mathcal{I}_{\hat{\tau}}$ -open sets is so. Since $X \in \tau$, *X* is weakly $\mathcal{I}_{\hat{\tau}}$ -open. Let *A* and *B* be two weakly $\mathcal{I}_{\hat{\tau}}$ -open sets. Then there exist non-empty open sets *U* and *V* such that $U \setminus A \in \mathcal{I}$ and $V \setminus B \in \mathcal{I}$. Then $(U \cap V) \setminus (A \cap B) = [(U \setminus A) \cap V] \cup [U \cap (V \setminus B)] \in \mathcal{I}$. Thus $A \cap B$ is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set.

Theorem 2.9. Let (X, τ, \mathcal{I}) an ideal topological space such that the open sets of X satisfies finite intersection property, where $\mathcal{I} \neq \{\emptyset\}$. Let A be a subset of X such that $cl(A) \neq X$. Then A is weakly \mathcal{I}_{τ} -open if and only if cl(A) is so.

Proof. We first observe that if $A \neq \emptyset$ is weakly $\mathcal{I}_{\hat{\tau}}$ -open and $A \subseteq B$, then *B* is weakly $\mathcal{I}_{\hat{\tau}}$ -open and thus cl(A) is weakly $\mathcal{I}_{\hat{\tau}}$ -open (as $A \subseteq cl(A)$).

Conversely, suppose that cl(A) is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set. If $cl(A) = \emptyset$, then $A = \emptyset$. Thus A is a weakly $\mathcal{I}_{\hat{\tau}}$ -open set. If $cl(A) \neq \emptyset$, then $U \setminus cl(A) \in \mathcal{I}$ for some non-empty open set U. Let $V = U \setminus cl(A)$. Then $V \setminus A = U \setminus cl(A) \in \mathcal{I}$. It is now sufficient to show that $V \neq \emptyset$. We note that $X \setminus cl(A)$ and U are non-empty open sets. Thus $(X \setminus cl(A)) \cap U = V \neq \emptyset$. Thus A is weakly $\mathcal{I}_{\hat{\tau}}$ -open.

Example 2.8. Let $X = \{a, b\}, \tau = \{\emptyset, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Put $A = \{a\}$. Then A is not a weakly $\mathcal{I}_{\hat{\tau}}$ -open subset of X such that cl(A) = X. However, cl(A) is weakly $\mathcal{I}_{\hat{\tau}}$ -open.

Ritu Sen

Acknowledgement. The author is thankful to the referee for some comments for the improvement of the paper.

REFERENCES

- Abd El-Monsef, M. E., El-Deeb S. N. and Mahmoud, R. A., β-open sets and β-continuous mappings, Bulletin of the Faculty Science Assiut Univ., 12 (1983), 77–90
- [2] Arenas, F. G., Dontchev, J. and Puertas, M. L., Idealization of some weak separation axioms, Acta Math. Hungar., 89 (2000), 47–53
- [3] Császár, Á., Generalized open sets, Acta Math. Hungar., 75 (1997), 65-87
- [4] Császár, Á., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357
- [5] Császár, Á., Remarks on quasi topologies, Acta Math. Hungar., 119 (2008), 197-200
- [6] Császár, Á., δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120 (2008), 275–279
- [7] Ekici, E., Generalized hyperconnectedness, Acta Math. Hungar., 133 (2011), No. 1-2, 140-147
- [8] Ekici, E. and Noiri, T., *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122 (2009), 81–90
- [9] Hatir, E. and Noiri, T., On Semi-I-open set and semi-I-continuous functions, Acta Math. Hungar., 107 (2005), 345–353
- [10] Jankovic, D. and Hamlett, T. R., New topologies from old via Ideals, Amer. Math. Monthly, 97 (1990), 295-310
- [11] Kuratowski, K., Topology, Vol-1, New York, Academic Press, 1966
- [12] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41
- [13] Michael, F., On semi-open sets with respect to an ideal, European Jour. Pure and Appl. Math., 6 (2013), No. 1, 53–58
- [14] Mukherjee, M. N., Roy B. and Sen, R., On extension of topological spaces in terms of ideals, Topology and its Applications, 154 (2007), 3167–3172
- [15] Roy, B., On weakly (μ, λ) -open functions, Ukrainian Math. Jour., **66** (2015), No. 10, 1595–1602
- [16] Shen, R. X., A note on generalized connectedness, Acta Math. Hungar., 122 (2009), 231-235
- [17] Vaidyanathaswamy, R., The localization theory in set-topology, Proceedings of the Indian Acad. Sci., 20 (1945), 15–51

DEPARTMENT OF MATHEMATICS PRESIDENCY UNIVERSITY 86/1 COLLEGE STREET, KOLKATA -700 073, W. B., INDIA Email address: ritu_sen29@yahoo.co.in