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Weighted composition operators from Bloch-type into
Bers-type spaces

HAMID VAEZI and MOHAMAD NAGHLISAR

ABSTRACT. In this paper we consider the weighted composition operator uCϕ from Bloch-type space Bα

into Bers-type space H∞
β , in three cases, α > 1, α = 1 and α < 1. We give the necessary and sufficient

conditions for boundedness and compactness of the above operator.

1. INTRODUCTION

Let D be the open unit disc in the complex plane C and H(D) the space of analytic
functions on D. An analytic function f on D is said to belong to the Bloch-type space
Bα(0 < α <∞), if

||f ||α = sup
z∈D

(1− |z|2)α|f
′
(z)| <∞.

The expression ‖.‖α defines a seminorm, while the natural norm is given by ‖f‖ =
|f(0)|+ ‖f‖α. This norm makes Bloch-type space Bα into a Banach space.

Let u be an analytic function on D and ϕ a nonconstant analytic self-map of D. We
define a linear operator uCϕ on H(D) by

uCϕf = u(foϕ).

This operator is called weighted composition operator. The operator uCϕ can be regarded
as a generalization of a multiplication operator and a composition operator. In case u ≡ 1,
uCϕ reduses to the composition operator Cϕ and when ϕ(z) = z, uCϕ will be the multi-
plication operator Mu. For general back ground on composition operators, we refer [2, 9]
and references therein.

Boundedness and compactness of composition operator on the Bers-type space were
described by He Weixiang and Jiang Lijian in [12]. Zengjuan Lou in [6] characterized the
boundedness and compactness of the composition operators between Bloch-type spaces.
Several characterizations for the boundedness and compactness of the weighted composi-
tion operators from Bloch-type spaces to nth weighted-type spaces, also, some estimates
for their essential norms are given by Li, Abbasi and Vaezi in [5]. Vaezi and Houdfar
in [11], characterized the boundedness and compactness of composition and weighted
composition operators from Bloch-type to Besov-type spaces.

The weighted composition operators acting on various spaces of analytic functions
has been studied by many authors. For example, uCϕ was studied by Ohno, Stroethoff
and Zhao in [7], where the boundedness and compactness of uCϕ between Bloch-type
spaces are investigated. Collona and Li in [1] characterized the bounded and the compact
weighted composition operators from the Besove space into Bloch space and Kumar in [4]
characterized the boundedness and compactness of uCϕ between Drichlet-type spaces. In
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[8], adjoints of rationally induced weighted composition operators on the Hardy, Bergman
and Dirichlet spaces was studied by Salaryan and Vaezi. Boundedness and compactness
of this operator on weak vector-valued Bergman spaces and Hardy spaces are investi-
gated by Hassanlou, Vaezi and Wang in [3]. In this paper, we study the operator uCϕ
from the Bloch-type space into the Bers-type space. We characterize boundedness and
compactness of uCϕ : Bα → H∞β in three case, for α > 1 in section 2, for α = 1 in section
3 and for 0 < α < 1 in section 4. We need the following lemma (see [10]).

Lemma 1.1. Let f ∈ Bα, 0 < α <∞. Then

|f(z)| ≤ C


||f ||α α ∈ (0, 1),

||f ||αLn e
1−|z|2 α = 1,

||f ||α 1
(1−|z|2)α−1 α > 1.

where C is a constant.

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other.

2. BOUNDEDNESS AND COMPACTNESS OF uCϕ : Bα → H∞β FOR α > 1

In this section, we characterize the boundedness and compactness of uCϕ : Bα → H∞β ,
when α > 1.

Theorem 2.1. Let u be an analytic function on D, ϕ an analytic self-map of D, α and β positive
real numbers and α > 1. Then uCϕ : Bα → H∞β is bounded if and only if

sup
z∈D

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
<∞.

Proof. First we obtain sufficiency. For a function f ∈ Bα, we have

sup
z∈D

(1− |z|2)β |uCϕf(z)| = sup
z∈D
|u(z)|(1− |z|2)β |f(ϕ(z))|

≤ sup
z∈D
|u(z)|(1− |z|2)β

C||f ||α
(1− |ϕ(z)|2)α−1

= C sup
z∈D

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
||f ||α

= C||f ||α.
In the above inequality we use the Lemma 1.1 for α > 1. Thus uCϕ maps Bα boundedly
into H∞β .
Now, suppose that uCϕ : Bα → H∞β is bounded. For fixed z0 ∈ D, consider the function
f0 defined by

f0(z) =
1

(1− zϕ(z0))α−1
, (2.1)

for z ∈ D.
It is easy to check that f0 ∈ Bα and then

|u(z)|(1− |z|2)β
1

|1− ϕ(z)ϕ(z0)|α−1
= |u(z)|(1− |z|2)β |f0(ϕ(z))|

= (1− |z|2)β |uCϕf0(z)|
≤ ||uCϕf0||β ≤ C||f0||α <∞.
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So for z0 ∈ D,

|u(z0)|(1− |z0|2)β

(1− |ϕ(z0)|2)α−1
<∞.

Since z0 is arbitrary, hence

sup
z∈D

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
<∞.

�

Theorem 2.2. Let u be an analytic function on D, ϕ an analytic self-map of D, α and β positive
real numbers and α > 1. Then uCϕ : Bα → H∞β is compact if and only if u ∈ H∞β and

lim
|ϕ(z)|→1−

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
= 0.

Proof. Suppose that

lim
|ϕ(z)|→1

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
= 0. (2.2)

By the assumption, for every ε > 0, There exist a δ ∈ (0, 1), such that

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
< ε, (2.3)

whenever δ < |ϕ(z)| < 1. To prove the compactness of uCϕ, assume that (fk)k∈N is a
bounded sequence in Bα such that ||fk||α ≤ 1 and converges to zero uniformly on com-
pact subsets of D. We show that ||uCϕfk||β → 0.

if |ϕ(z)| > δ, then by (2.3),

||uCϕfk||β = sup
z∈D

(1− |z|2)β |uCϕfk(z)|

= sup
z∈D

|u(z)|(1− |z|2)β

(1− |ϕ(z)|2)α−1
||fk||α

< ε||fk||α ≤ ε.

Now consider |ϕ(z)| ≤ δ. We have

||uCϕfk||β = sup
z∈D
|u(z)|(1− |z|2)β |fk(ϕ(z))|.

Since u ∈ H∞β , so ||uCϕfk||β → 0.
Conversely, note that u = uCϕ1 ∈ H∞β . Now we are going to prove that (2.2) is also
necessary condition for compactness of uCϕ. Suppose that (zk)k∈N is a sequence in D
such that |ϕ(zk)| → 1 as k →∞.
Consider the functions fk defined by

fk(z) =
1− |ϕ(zk)|2

(1− zϕ(zk))α
for z ∈ D.
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Clearly fk → 0 uniformly on compact subsets of D, and

|f
′

k(z)| =
α(1− |ϕ(zk)|2)|ϕ(zk)|
|1− zϕ(zk)|α+1

≤ α(1− |ϕ(zk)|2)

(1− |z||ϕ(zk)|)α+1

=
α(1− |ϕ(zk)|2)

(1− |z||ϕ(zk)|)α(1− |z||ϕ(zk)|)

≤ α(1 + |ϕ(zk)|)
(1− |z|)α

≤ 2α

(1− |z|)α
<∞.

So,

||fk||α = sup
z∈D

(1− |z|2)α|f
′

k(z)|

≤ sup
z∈D

2α(1− |z|2)α

(1− |z|)α

≤ 2α · 2α

= α2α+1 <∞.

Hence, (||fk||α)k∈N is uniformly bounded.

Note that

fk(ϕ(zk)) =
1− |ϕ(zk)|2

(1− ϕ(zk)ϕ(zk))α
=

1

(1− |ϕ(zk)|2)α−1
.

Thus

|u(zk)|(1− |zk|2)β

(1− |ϕ(zk)|2)α−1
= (1− |zk|2)β |uCϕfk(zk)|

≤ ||uCϕfk||β .

Since uCϕ : Bα → H∞β is compact, it follow from the proof of the Weak Convergence
Theorem in [9] that ||uCϕfk||β → 0.Therefore

|u(zk)|(1− |zk|2)β

(1− |ϕ(zk)|2)α−1
→ 0

as k →∞. So if uCϕ is compact, then (2.2) holds. �

3. BOUNDEDNESS AND COMPACTNESS OF uCϕ : Bα → H∞β FOR α = 1

In this section, we characterize the boundedness and compactness of uCϕ : Bα → H∞β ,
when α = 1.

Theorem 3.3. Let u be an analytic function on D, ϕ an analytic self-map of D, α = 1 and β a
positive real number. Then uCϕ : Bα → H∞β is bounded if and only if

sup
z∈D
|u(z)|(1− |z|2)βLn

e

1− |ϕ(z)|2
<∞.
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Proof. First we obtain sufficiency. For a function f ∈ Bα, we have

sup
z∈D

(1− |z|2)β |uCϕf(z)| = sup
z∈D
|u(z)|(1− |z|2)β |f(ϕ(z))|

≤ sup
z∈D
|u(z)(1− |z|2)βC||f ||αLn

e

1− |ϕ(z)|2

= C||f ||α.
In the above inequality we use the Lemma 1.1 for α = 1. Thus uCϕ maps Bα boundedly
into H∞β .
Now, suppose that uCϕ : Bα → H∞β is bounded. For fixed z0 ∈ D, consider the function
f0 defined by

f0(z) = Ln
e

1− zϕ(z0)

for z ∈ D.
It is easy to check that f0 ∈ B, and then

|u(z)|(1− |z|2)β
∣∣∣Ln e

1− ϕ(z)ϕ(z0)

∣∣∣ = |u(z)|(1− |z|2)β |f0(ϕ(z))|

= (1− |z|2)β |uCϕf0(z)|
≤ ||uCϕf0||β
≤ C||f0||α <∞.

So for z0 ∈ D, we have

|u(z0)|(1− |z0|2)βLn
e

1− |ϕ(z0)|2
<∞.

Since z0 is arbitrary, hence

sup
z∈D
|u(z)|(1− |z|2)βLn

e

1− |ϕ(z)|2
<∞.

�

Theorem 3.4. Let u be an analytic function on D, ϕ an analytic self-map of D, α = 1 and β a
positive real number. Then uCϕ : Bα → H∞β is compact if and only if u ∈ H∞β and

lim
|ϕ(z)|→1

|u(z)|(1− |z|2)βLn
e

1− |ϕ(z)|2
= 0.

Proof. Suppose that

lim
|ϕ(z)|→1

|u(z)|(1− |z|2)βLn
e

1− |ϕ(z)|2
= 0. (3.4)

By the assumption, for every ε > 0, there is a δ ∈ (0, 1) such that

|u(z)|(1− |z|2)βLn
e

1− |ϕ(z)|2
< ε (3.5)

whenever δ < |ϕ(z)| < 1. To prove the compactness of uCϕ, assume that (fk)k∈N is
a bounded sequence in Bα such that ||fk||α ≤ 1 and converges to zero uniformly on
compact subsets of D. We show that ||uCϕfk||β → 0.
if |ϕ(z)| > δ, then by (3.5),

||uCϕfk||β = sup
z∈D

(1− |z|2)β |uCϕfk(z)|

= sup
z∈D
|u(z)|(1− |z|2)β ||fk||αLn

e

1− |ϕ(z)|2

< ε||fk||α ≤ ε.
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Now consider |ϕ(z)| ≤ δ. In this case we have

||uCϕfk||β = sup
z∈D

(1− |z|2)β |uCϕfk(z)|.

Since u ∈ H∞β , therefore ||uCϕfk||β → 0.
We are going to prove that (3.4) is also necessary condition for compactness of uCϕ. Sup-
pose that (zk)k∈N is a sequence in D such that |ϕ(zk)| → 1 as k →∞.
Consider the functions fk defined by

fk(z) =
1

Ln e
1−|ϕ(zk)|2

(
Ln

e

1− zϕ(zk)

)2 for z ∈ D.

Clearly fk → 0 uniformly on compact subset of D, and

|f
′

k(z)| = 2

Ln e
1−|ϕ(zn)|2

|ϕ(zn)|
|1− zϕ(zn)|

· Ln e

|1− zϕ(zn)
<∞.

Therefore, fk ∈ B and (||fk||α)k∈N is uniformly bounded.
Not that

fk(ϕ(zn)) = Ln
e

1− |ϕ(zn)|2
.

Thus

|u(zk)|(1− |zk|2)βLn
e

1− |ϕ(zn)|2
= (1− |zk|2)β |uCϕfk(zk)|

≤ ||uCϕfk||β.
Since uCϕ : B → H∞β is compact, it follows from the proof of the Weak Convergence
Theorem in [9] that, ||uCϕfk||β → 0. Therefore

|u(zn)|(1− |zk|2)βLn
e

1− |ϕ(zn)|2
→ 0

as k →∞. So, if uCϕ is compact, then (3.4) holds. �

4. BOUNDEDNESS AND COMPACTNESS OF uCϕ : Bα → H∞β FOR 0 < α < 1

In this section, we characterize the boundedness and compactness of uCϕ : Bα → H∞β
when 0 < α < 1.

Theorem 4.5. Let u be an analytic function on D, ϕ analytic self-map of D, β a positive real
number and 0 < α < 1. Then uCϕ : Bα → H∞β is bounded if and only if u ∈ H∞β .

Proof. Suppose that u ∈ H∞β . For a function f ∈ Bα, we have

sup
z∈D

(1− |z|2)β |uCϕf(z)| = sup
z∈D
|u(z)|(1− |z|2)β |f(ϕ(z))|

≤ sup
z∈D
|u(z)|(1− |z|2)βC||f ||α

= C||f ||α.
In the above inequality we use the Lemma 1.1 for α ∈ (0, 1). Thus uCϕ maps Bα bound-
edly into H∞β .
Now, suppose that uCϕ maps Bα boundedly into H∞β . Then u = uCϕ1 ∈ H∞β . This
completes the proof of theorem. �

Theorem 4.6. Let u be an analytic function on D, ϕ analytic self-map of D, β a positive number
and 0 < α < 1. Then uCϕ : Bα → H∞β is compact if and only if u ∈ H∞β .

Before proving the above theorem, we need the following lemma, see [7].
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Lemma 4.2. Let 0 < α < 1 and T be a bounded linear operator fromBα into normed linear space
Y . Then T is compact if and only if ||Tfk||Y → 0 whenever (fk)k∈N is a norm-bounded sequence
in Bα that converges to 0 uniformly on D̄.

Proof of Theorem 4.6. We have already shown that u ∈ H∞β is necessary for the weighted
composition operator uCϕ : Bα → H∞β to be bounded. Suppose that fk ∈ Bα with
||fk||α ≤ 1 for all k = 1, 2, . . . and fk → 0 uniformly on D.

Then

sup
z∈D

(1− |z|2)β |uCϕfk(z)| = sup
z∈D
|u(z)|(1− |z|2)β |fk(ϕ(z))|

≤ ||u||β sup
|w|≤1

|fk(w)| → 0

as k → ∞. So, ||uCϕfk||β → 0 as k → ∞. It follows from lemma 4.2 that the operator
uCϕ maps Bα compactly into H∞β .
Now, suppose that uCϕ maps Bα compactly into H∞β . Then u = uCϕ1 ∈ H∞β . This
completes the proof of theorem (4.6). �

5. CONCLUSIONS

Boundedness and compactness of (weighted) composition operators on different spaces
of analytic functions are studied by many authors. This concepts for composition op-
erators on Bers-type and between Bloch-type spaces were studied in [12] and [6]. We
have studied the boundedness and compactness of weighted composition operators from
Bloch-type to nth weighted-type spaces in [5]. Also, in [11], by using the hyperbolic ana-
lytic Besov-type classes, we investigate the boundedness and compactness of composition
and weighted composition operators from Bloch-type to Besov-type spaces.

In this paper we give the necessary and sufficient conditions for boundedness and com-
pactness of weighted composition operators from Bloch-type space Bα into Berse-type
spaces in three cases, α > 1, α = 1 and α < 1. So, the methods and results of this paper
are essentially different from [11].
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