CREAT. MATH. INFORM. Volume **29** (2020), No. 2, Pages 243 - 250 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2020.02.16

Weighted composition operators from Bloch-type into Bers-type spaces

HAMID VAEZI and MOHAMAD NAGHLISAR

ABSTRACT. In this paper we consider the weighted composition operator uC_{φ} from Bloch-type space B^{α} into Bers-type space H^{∞}_{β} , in three cases, $\alpha > 1$, $\alpha = 1$ and $\alpha < 1$. We give the necessary and sufficient conditions for boundedness and compactness of the above operator.

1. INTRODUCTION

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and $H(\mathbb{D})$ the space of analytic functions on \mathbb{D} . An analytic function f on \mathbb{D} is said to belong to the Bloch-type space $B^{\alpha}(0 < \alpha < \infty)$, if

$$||f||_{\alpha} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty.$$

The expression $\|.\|_{\alpha}$ defines a seminorm, while the natural norm is given by $\|f\| = |f(0)| + \|f\|_{\alpha}$. This norm makes Bloch-type space B^{α} into a Banach space.

Let *u* be an analytic function on \mathbb{D} and φ a nonconstant analytic self-map of \mathbb{D} . We define a linear operator uC_{φ} on $H(\mathbb{D})$ by

$$uC_{\varphi}f = u(fo\varphi).$$

This operator is called weighted composition operator. The operator uC_{φ} can be regarded as a generalization of a multiplication operator and a composition operator. In case $u \equiv 1$, uC_{φ} reduses to the composition operator C_{φ} and when $\varphi(z) = z$, uC_{φ} will be the multiplication operator M_u . For general back ground on composition operators, we refer [2, 9] and references therein.

Boundedness and compactness of composition operator on the Bers-type space were described by He Weixiang and Jiang Lijian in [12]. Zengjuan Lou in [6] characterized the boundedness and compactness of the composition operators between Bloch-type spaces. Several characterizations for the boundedness and compactness of the weighted composition operators from Bloch-type spaces to nth weighted-type spaces, also, some estimates for their essential norms are given by Li, Abbasi and Vaezi in [5]. Vaezi and Houdfar in [11], characterized the boundedness and compactness of composition and weighted composition operators from Bloch-type to Besov-type spaces.

The weighted composition operators acting on various spaces of analytic functions has been studied by many authors. For example, uC_{φ} was studied by Ohno, Stroethoff and Zhao in [7], where the boundedness and compactness of uC_{φ} between Bloch-type spaces are investigated. Collona and Li in [1] characterized the bounded and the compact weighted composition operators from the Besove space into Bloch space and Kumar in [4] characterized the boundedness and compactness of uC_{φ} between Drichlet-type spaces. In

Received: 12.08.2019. In revised form: 20.02.2020. Accepted: 01.03.2020

²⁰¹⁰ Mathematics Subject Classification. 47B33, 30H30, 30H99.

Key words and phrases. Weighted composition operator, Bloch-type space, Bers-type space, Boundedness, compactness.

Corresponding author: Hamid Vaezi; hvaezi@tabriz.ac.ir

[8], adjoints of rationally induced weighted composition operators on the Hardy, Bergman and Dirichlet spaces was studied by Salaryan and Vaezi. Boundedness and compactness of this operator on weak vector-valued Bergman spaces and Hardy spaces are investigated by Hassanlou, Vaezi and Wang in [3]. In this paper, we study the operator uC_{φ} from the Bloch-type space into the Bers-type space. We characterize boundedness and compactness of $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ in three case, for $\alpha > 1$ in section 2, for $\alpha = 1$ in section 3 and for $0 < \alpha < 1$ in section 4. We need the following lemma (see [10]).

Lemma 1.1. Let $f \in B^{\alpha}$, $0 < \alpha < \infty$. Then

$$|f(z)| \le C \begin{cases} ||f||_{\alpha} & \alpha \in (0,1), \\ ||f||_{\alpha} Ln \frac{e}{1-|z|^2} & \alpha = 1, \\ ||f||_{\alpha} \frac{1}{(1-|z|^2)^{\alpha-1}} & \alpha > 1. \end{cases}$$

where C is a constant.

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other.

2. Boundedness and compactness of $uC_{\omega}: B^{\alpha} \to H^{\infty}_{\beta}$ for $\alpha > 1$

In this section, we characterize the boundedness and compactness of $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$, when $\alpha > 1$.

Theorem 2.1. Let u be an analytic function on \mathbb{D} , φ an analytic self-map of \mathbb{D} , α and β positive real numbers and $\alpha > 1$. Then $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} \frac{|u(z)|(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha-1}} < \infty$$

Proof. First we obtain sufficiency. For a function $f \in B^{\alpha}$, we have

$$\begin{split} \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |uC_{\varphi}f(z)| &= \sup_{z \in \mathbb{D}} |u(z)| (1 - |z|^2)^{\beta} |f(\varphi(z))| \\ &\leq \sup_{z \in \mathbb{D}} |u(z)| (1 - |z|^2)^{\beta} \frac{C||f||_{\alpha}}{(1 - |\varphi(z)|^2)^{\alpha - 1}} \\ &= C \sup_{z \in \mathbb{D}} \frac{|u(z)| (1 - |z|^2)^{\beta}}{(1 - |\varphi(z)|^2)^{\alpha - 1}} ||f||_{\alpha} \\ &= C ||f||_{\alpha}. \end{split}$$

In the above inequality we use the Lemma 1.1 for $\alpha > 1$. Thus uC_{φ} maps B^{α} boundedly into H^{∞}_{β} .

Now, suppose that $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$ is bounded. For fixed $z_0 \in \mathbb{D}$, consider the function f_0 defined by

$$f_0(z) = \frac{1}{(1 - z\overline{\varphi(z_0)})^{\alpha - 1}},$$
(2.1)

for $z \in \mathbb{D}$.

It is easy to check that $f_0 \in B^{\alpha}$ and then

$$\begin{aligned} |u(z)|(1-|z|^2)^{\beta} \frac{1}{|1-\varphi(z)\overline{\varphi(z_0)}|^{\alpha-1}} &= |u(z)|(1-|z|^2)^{\beta}|f_0(\varphi(z))| \\ &= (1-|z|^2)^{\beta}|uC_{\varphi}f_0(z)| \\ &\leq ||uC_{\varphi}f_0||_{\beta} \leq C||f_0||_{\alpha} < \infty. \end{aligned}$$

So for $z_0 \in \mathbb{D}$,

$$\frac{|u(z_0)|(1-|z_0|^2)^{\beta}}{(1-|\varphi(z_0)|^2)^{\alpha-1}} < \infty.$$

Since z_0 is arbitrary, hence

$$\sup_{z\in\mathbb{D}}\frac{|u(z)|(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha-1}}<\infty.$$

Theorem 2.2. Let u be an analytic function on \mathbb{D} , φ an analytic self-map of \mathbb{D} , α and β positive real numbers and $\alpha > 1$. Then $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ is compact if and only if $u \in H^{\infty}_{\beta}$ and

$$\lim_{|\varphi(z)| \to 1^-} \frac{|u(z)|(1-|z|^2)^\beta}{(1-|\varphi(z)|^2)^{\alpha-1}} = 0$$

Proof. Suppose that

$$\lim_{|\varphi(z)| \to 1} \frac{|u(z)|(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha-1}} = 0.$$
(2.2)

By the assumption, for every $\varepsilon > 0$, There exist a $\delta \in (0, 1)$, such that

$$\frac{|u(z)|(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha-1}} < \varepsilon,$$
(2.3)

whenever $\delta < |\varphi(z)| < 1$. To prove the compactness of uC_{φ} , assume that $(f_k)_{k\in\mathbb{N}}$ is a bounded sequence in B^{α} such that $||f_k||_{\alpha} \leq 1$ and converges to zero uniformly on compact subsets of \mathbb{D} . We show that $||uC_{\varphi}f_k||_{\beta} \to 0$.

if $|\varphi(z)| > \delta$, then by (2.3),

$$\begin{aligned} ||uC_{\varphi}f_k||_{\beta} &= \sup_{z \in \mathbb{D}} (1-|z|^2)^{\beta} |uC_{\varphi}f_k(z)| \\ &= \sup_{z \in \mathbb{D}} \frac{|u(z)|(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha-1}} ||f_k||_{\alpha} \\ &< \varepsilon ||f_k||_{\alpha} \le \varepsilon. \end{aligned}$$

Now consider $|\varphi(z)| \leq \delta$. We have

$$||uC_{\varphi}f_k||_{\beta} = \sup_{z \in \mathbb{D}} |u(z)|(1-|z|^2)^{\beta}|f_k(\varphi(z))|.$$

Since $u \in H^{\infty}_{\beta}$, so $||uC_{\varphi}f_k||_{\beta} \to 0$.

Conversely, note that $u = uC_{\varphi}1 \in H^{\infty}_{\beta}$. Now we are going to prove that (2.2) is also necessary condition for compactness of uC_{φ} . Suppose that $(z_k)_{k\in\mathbb{N}}$ is a sequence in \mathbb{D} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$.

Consider the functions f_k defined by

$$f_k(z) = rac{1 - |arphi(z_k)|^2}{(1 - z \overline{arphi(z_k)})^lpha} \qquad ext{ for } \quad z \in \mathbb{D}.$$

245

Clearly $f_k \to 0$ uniformly on compact subsets of \mathbb{D} , and

$$\begin{aligned} |f_{k}'(z)| &= \frac{\alpha(1 - |\varphi(z_{k})|^{2})|\varphi(z_{k})|}{|1 - z\overline{\varphi(z_{k})}|^{\alpha+1}} \\ &\leq \frac{\alpha(1 - |\varphi(z_{k})|^{2})}{(1 - |z||\varphi(z_{k})|)^{\alpha+1}} \\ &= \frac{\alpha(1 - |\varphi(z_{k})|^{2})}{(1 - |z||\varphi(z_{k})|)^{\alpha}(1 - |z||\varphi(z_{k})|)} \\ &\leq \frac{\alpha(1 + |\varphi(z_{k})|)}{(1 - |z|)^{\alpha}} \\ &\leq \frac{2\alpha}{(1 - |z|)^{\alpha}} < \infty. \end{aligned}$$

So,

$$\begin{aligned} ||f_k||_{\alpha} &= \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'_k(z)| \\ &\leq \sup_{z \in \mathbb{D}} \frac{2\alpha (1 - |z|^2)^{\alpha}}{(1 - |z|)^{\alpha}} \\ &\leq 2\alpha \cdot 2^{\alpha} \\ &= \alpha 2^{\alpha + 1} < \infty. \end{aligned}$$

Hence, $(||f_k||_{\alpha})_{k \in \mathbb{N}}$ is uniformly bounded.

Note that

$$f_k(\varphi(z_k)) = \frac{1 - |\varphi(z_k)|^2}{(1 - \varphi(z_k)\overline{\varphi(z_k)})^{\alpha}} = \frac{1}{(1 - |\varphi(z_k)|^2)^{\alpha - 1}}.$$

Thus

$$\frac{|u(z_k)|(1-|z_k|^2)^{\beta}}{(1-|\varphi(z_k)|^2)^{\alpha-1}} = (1-|z_k|^2)^{\beta}|uC_{\varphi}f_k(z_k)| \\ \leq ||uC_{\varphi}f_k||_{\beta}.$$

Since $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ is compact, it follow from the proof of the Weak Convergence Theorem in [9] that $||uC_{\varphi}f_k||_{\beta} \to 0$. Therefore

$$\frac{|u(z_k)|(1-|z_k|^2)^{\beta}}{(1-|\varphi(z_k)|^2)^{\alpha-1}} \to 0$$

as $k \to \infty$. So if uC_{φ} is compact, then (2.2) holds.

3. Boundedness and compactness of
$$uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$$
 for $\alpha = 1$

In this section, we characterize the boundedness and compactness of $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$, when $\alpha = 1$.

Theorem 3.3. Let u be an analytic function on \mathbb{D} , φ an analytic self-map of \mathbb{D} , $\alpha = 1$ and β a positive real number. Then $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} |u(z)| (1 - |z|^2)^{\beta} Ln \frac{e}{1 - |\varphi(z)|^2} < \infty.$$

246

Proof. First we obtain sufficiency. For a function $f \in B^{\alpha}$, we have

$$\begin{aligned} \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |uC_{\varphi}f(z)| &= \sup_{z \in \mathbb{D}} |u(z)|(1 - |z|^2)^{\beta} |f(\varphi(z))| \\ &\leq \sup_{z \in \mathbb{D}} |u(z)(1 - |z|^2)^{\beta} C||f||_{\alpha} Ln \frac{e}{1 - |\varphi(z)|^2} \\ &= C||f||_{\alpha}. \end{aligned}$$

In the above inequality we use the Lemma 1.1 for $\alpha = 1$. Thus uC_{φ} maps B^{α} boundedly into H^{∞}_{β} .

Now, suppose that $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$ is bounded. For fixed $z_0 \in \mathbb{D}$, consider the function f_0 defined by

$$f_0(z) = Ln \frac{e}{1 - z\overline{\varphi(z_0)}}$$

for $z \in \mathbb{D}$.

It is easy to check that $f_0 \in B$, and then

$$\begin{aligned} |u(z)|(1-|z|^2)^{\beta} \Big| Ln \frac{e}{1-\varphi(z)\overline{\varphi(z_0)}} \Big| &= |u(z)|(1-|z|^2)^{\beta} |f_0(\varphi(z))| \\ &= (1-|z|^2)^{\beta} |uC_{\varphi}f_0(z)| \\ &\leq ||uC_{\varphi}f_0||_{\beta} \\ &\leq C||f_0||_{\alpha} < \infty. \end{aligned}$$

So for $z_0 \in \mathbb{D}$, we have

$$|u(z_0)|(1-|z_0|^2)^{\beta}Ln\frac{e}{1-|\varphi(z_0)|^2}<\infty.$$

Since z_0 is arbitrary, hence

$$\sup_{z\in\mathbb{D}}|u(z)|(1-|z|^2)^{\beta}Ln\frac{e}{1-|\varphi(z)|^2}<\infty.$$

Theorem 3.4. Let u be an analytic function on \mathbb{D} , φ an analytic self-map of \mathbb{D} , $\alpha = 1$ and β a positive real number. Then $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ is compact if and only if $u \in H^{\infty}_{\beta}$ and

$$\lim_{|\varphi(z)| \to 1} |u(z)| (1 - |z|^2)^{\beta} Ln \frac{e}{1 - |\varphi(z)|^2} = 0.$$

Proof. Suppose that

$$\lim_{|\varphi(z)| \to 1} |u(z)| (1 - |z|^2)^{\beta} Ln \frac{e}{1 - |\varphi(z)|^2} = 0.$$
(3.4)

By the assumption, for every $\varepsilon > 0$, there is a $\delta \in (0, 1)$ such that

$$|u(z)|(1-|z|^2)^{\beta} Ln \frac{e}{1-|\varphi(z)|^2} < \varepsilon$$
(3.5)

whenever $\delta < |\varphi(z)| < 1$. To prove the compactness of uC_{φ} , assume that $(f_k)_{k \in \mathbb{N}}$ is a bounded sequence in B^{α} such that $||f_k||_{\alpha} \leq 1$ and converges to zero uniformly on compact subsets of \mathbb{D} . We show that $||uC_{\varphi}f_k||_{\beta} \to 0$. if $|\varphi(z)| > \delta$, then by (3.5),

$$\begin{aligned} ||uC_{\varphi}f_k||_{\beta} &= \sup_{z\in\mathbb{D}} (1-|z|^2)^{\beta} |uC_{\varphi}f_k(z)| \\ &= \sup_{z\in\mathbb{D}} |u(z)|(1-|z|^2)^{\beta} ||f_k||_{\alpha} Ln \frac{e}{1-|\varphi(z)|^2} \\ &< \varepsilon ||f_k||_{\alpha} \le \varepsilon. \end{aligned}$$

Now consider $|\varphi(z)| \leq \delta$. In this case we have

$$||uC_{\varphi}f_k||_{\beta} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |uC_{\varphi}f_k(z)|.$$

Since $u \in H^{\infty}_{\beta}$, therefore $||uC_{\varphi}f_k||_{\beta} \to 0$.

We are going to prove that (3.4) is also necessary condition for compactness of uC_{φ} . Suppose that $(z_k)_{k\in\mathbb{N}}$ is a sequence in \mathbb{D} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$. Consider the functions f_k defined by

$$f_k(z) = \frac{1}{Ln \frac{e}{1 - |\varphi(z_k)|^2}} \left(Ln \frac{e}{1 - z\overline{\varphi(z_k)}} \right)^2 \quad \text{for} \quad z \in \mathbb{D}.$$

Clearly $f_k \to 0$ uniformly on compact subset of \mathbb{D} , and

$$|f_k^{'}(z)| = \frac{2}{Ln \frac{e}{1-|\varphi(z_n)|^2}} \frac{|\varphi(z_n)|}{|1-z\overline{\varphi(z_n)}|} \cdot Ln \frac{e}{|1-z\overline{\varphi(z_n)}|} < \infty.$$

Therefore, $f_k \in B$ and $(||f_k||_{\alpha})_{k \in \mathbb{N}}$ is uniformly bounded. Not that

$$f_k(\varphi(z_n)) = Ln \frac{e}{1 - |\varphi(z_n)|^2}.$$

Thus

$$|u(z_k)|(1-|z_k|^2)^{\beta} Ln \frac{e}{1-|\varphi(z_n)|^2} = (1-|z_k|^2)^{\beta} |uC_{\varphi}f_k(z_k)| \\ \leq ||uC_{\varphi}f_k||_{\beta}.$$

Since $uC_{\varphi} : B \to H_{\beta}^{\infty}$ is compact, it follows from the proof of the Weak Convergence Theorem in [9] that, $||uC_{\varphi}f_k||_{\beta} \to 0$. Therefore

$$|u(z_n)|(1-|z_k|^2)^{\beta}Ln\frac{e}{1-|\varphi(z_n)|^2} \to 0$$

as $k \to \infty$. So, if uC_{φ} is compact, then (3.4) holds.

4. Boundedness and compactness of $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$ for $0 < \alpha < 1$

In this section, we characterize the boundedness and compactness of $uC_{\varphi}: B^{\alpha} \to H^{\infty}_{\beta}$ when $0 < \alpha < 1$.

Theorem 4.5. Let u be an analytic function on \mathbb{D} , φ analytic self-map of D, β a positive real number and $0 < \alpha < 1$. Then $uC_{\varphi} : B^{\alpha} \to H_{\beta}^{\infty}$ is bounded if and only if $u \in H_{\beta}^{\infty}$.

Proof. Suppose that $u \in H^{\infty}_{\beta}$. For a function $f \in B^{\alpha}$, we have

$$\begin{aligned} \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |uC_{\varphi}f(z)| &= \sup_{z \in \mathbb{D}} |u(z)|(1 - |z|^2)^{\beta} |f(\varphi(z))| \\ &\leq \sup_{z \in \mathbb{D}} |u(z)|(1 - |z|^2)^{\beta} C||f||_{\alpha} \\ &= C||f||_{\alpha}. \end{aligned}$$

In the above inequality we use the Lemma 1.1 for $\alpha \in (0, 1)$. Thus uC_{φ} maps B^{α} boundedly into H^{∞}_{β} .

Now, suppose that uC_{φ} maps B^{α} boundedly into H^{∞}_{β} . Then $u = uC_{\varphi}1 \in H^{\infty}_{\beta}$. This completes the proof of theorem.

Theorem 4.6. Let u be an analytic function on \mathbb{D} , φ analytic self-map of \mathbb{D} , β a positive number and $0 < \alpha < 1$. Then $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ is compact if and only if $u \in H^{\infty}_{\beta}$.

Before proving the above theorem, we need the following lemma, see [7].

248

Lemma 4.2. Let $0 < \alpha < 1$ and T be a bounded linear operator from B^{α} into normed linear space Y. Then T is compact if and only if $||Tf_k||_Y \to 0$ whenever $(f_k)_{k \in \mathbb{N}}$ is a norm-bounded sequence in B^{α} that converges to 0 uniformly on $\overline{\mathbb{D}}$.

Proof of Theorem 4.6. We have already shown that $u \in H^{\infty}_{\beta}$ is necessary for the weighted composition operator $uC_{\varphi} : B^{\alpha} \to H^{\infty}_{\beta}$ to be bounded. Suppose that $f_k \in B^{\alpha}$ with $||f_k||_{\alpha} \leq 1$ for all k = 1, 2, ... and $f_k \to 0$ uniformly on $\overline{\mathbb{D}}$.

$$\begin{aligned} \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |u C_{\varphi} f_k(z)| &= \sup_{z \in \mathbb{D}} |u(z)| (1 - |z|^2)^\beta |f_k(\varphi(z))| \\ &\leq ||u||_\beta \sup_{|w| \leq 1} |f_k(w)| \to 0 \end{aligned}$$

as $k \to \infty$. So, $||uC_{\varphi}f_k||_{\beta} \to 0$ as $k \to \infty$. It follows from lemma 4.2 that the operator uC_{φ} maps B^{α} compactly into H^{∞}_{β} .

Now, suppose that uC_{φ} maps B^{α} compactly into H^{∞}_{β} . Then $u = uC_{\varphi}1 \in H^{\infty}_{\beta}$. This completes the proof of theorem (4.6).

5. CONCLUSIONS

Boundedness and compactness of (weighted) composition operators on different spaces of analytic functions are studied by many authors. This concepts for composition operators on Bers-type and between Bloch-type spaces were studied in [12] and [6]. We have studied the boundedness and compactness of weighted composition operators from Bloch-type to *n*th weighted-type spaces in [5]. Also, in [11], by using the hyperbolic analytic Besov-type classes, we investigate the boundedness and compactness of composition and weighted composition operators from Bloch-type to Besov-type spaces.

In this paper we give the necessary and sufficient conditions for boundedness and compactness of weighted composition operators from Bloch-type space B^{α} into Berse-type spaces in three cases, $\alpha > 1$, $\alpha = 1$ and $\alpha < 1$. So, the methods and results of this paper are essentially different from [11].

REFERENCES

- Colonna, F. and Li, S., Weighted composition operator from the Besov spaces to the Bloch spaces, Bull. Malaysian Sci. Soc., 36 (2013), No. 4, 1027–1039
- [2] Cowen, C. C. and Maccluer, B. D., Composition operators on spaces of analytic functions, Studies in Advanced Math., CRC Press, Boca Raton, 1995
- [3] Hassanlou, M., Vaezi, H. and Wang, M., Weighted composition operators on weak vector-valued Bergman spaces and Hardy spaces, Banach J. Math. Anal., 9 (2015), No. 2, 35–43
- [4] Kummar, S., Weighted composition operators between spaces of Dirichlet-Type, Rev. Math. Complut., 22 (2009), No. 2, 469–488
- [5] Li, S., Abbasi, E. and Vaezi, H., Weighted composition operators from Bloch-type spaces to nth weighted-type spacese, Annales Polonici Mathematici, 124 (2020), No. 1, 93–107
- [6] Lou, Z., Composition operators on Bloch-type spaces, Anal., 22 (2003), 81-95
- [7] Ohno, S., Strorthoff, K. and Zhao, R., Weighted composition operators between Bloch-type spaces, Rocky mountain J. Math., 33 (2003), No. 1, 191–215
- [8] Salaryan, A. and Vaezi, H., Adjoints of rationally induced weighted composition operators on the Hardy, Bergman and Dirichlet spaces, Period. Math. Hung., 72 (2016), 76–89
- [9] Shapiro, J. H., Composition operators and classical function theory, Springer Verlag, New York, 1993
- [10] Stevic, S., On an integral operator on the unit ball in \mathbb{C}^n , J. Inequal. Appl., 1 (2005), 81–88
- [11] Vaezi, H. and Houdfar, S., Composition and weighted composition operators from Bloch-type to Besov-type spacese, Math. Reports, to appear.
- [12] Weixian, H. and Lijian, J., Composition operator on Bers-type spaces, Acta. Math. Sci., 22B (2002), No. 3, 404–412

DEPARTMENT OF MATHEMATICS FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF TABRIZ TABRIZ, IRAN Email address: hvaezi@tabriz.ac.ir Email address: m.naghlisar@tabrizu.ac.ir