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Balcobalancing numbers and balcobalancers

AHMET TEKCAN and MERYEM YILDIZ

ABSTRACT. In this work, we determine the general terms of balcobalancing numbers, balcobalancers and
also Lucas–balcobalancing numbers in terms of balancing numbers. Further we formulate the sums of these
numbers and derive some relations associated with Pell, Pell–Lucas and square triangular numbers.

1. INTRODUCTION

A positive integer n is called a balancing number ([2]) if the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)

holds for some positive integer r which is called balancer corresponding to n. If n is a
balancing number with balancer r, then from (1.1)

r =
−2n− 1 +

√
8n2 + 1

2
. (1.2)

From (1.2) we note that n is a balancing number if and only if 8n2 + 1 is a perfect square.
Though the definition of balancing numbers suggests that no balancing number should
be less than 2. But from (1.2) we note that 8(0)2 + 1 = 1 and 8(1)2 + 1 = 32 are perfect
squares. So we accept 0 and 1 to be balancing numbers. Let Bn denote the nth balancing
number. Then B0 = 0, B1 = 1, B2 = 6 and Bn+1 = 6Bn −Bn−1 for n ≥ 2.

Later Panda and Ray ([12]) defined that a positive integer n is called a cobalancing
number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.3)

holds for some positive integer r which is called cobalancer corresponding to n. If n is a
cobalancing number with cobalancer r, then from (1.3)

r =
−2n− 1 +

√
8n2 + 8n+ 1

2
. (1.4)

From (1.4) we note that n is a cobalancing number if and only if 8n2 + 8n + 1 is a perfect
square. Since 8(0)2 + 8(0) + 1 = 1 is a perfect square, we accept 0 to be a cobalancing
number, just like Behera and Panda accepted 0, 1 to be balancing numbers. Cobalancing
number is denoted by bn, and b0 = b1 = 0, b2 = 2 and bn+1 = 6bn − bn−1 + 2 for n ≥ 2.

It is clear from (1.1) and (1.3) that every balancing number is a cobalancer and every
cobalancing number is a balancer, that is, Bn = rn+1 and Rn = bn for n ≥ 1, where Rn is
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the nth the balancer and rn is the nth cobalancer. Since Rn = bn, we get from (1.1) that

bn =
−2Bn − 1 +

√
8B2

n + 1

2
and Bn =

2bn + 1 +
√

8b2n + 8bn + 1

2
. (1.5)

Thus from (1.5), we see that Bn is a balancing number if and only if 8B2
n + 1 is a perfect

square and bn is a cobalancing number if and only if 8b2n + 8bn + 1 is a perfect square. So

Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1 (1.6)

are integers which are called the Lucas–balancing number and Lucas–cobalancing num-
ber, respectively.

Let α = 1 +
√

2 and β = 1 −
√

2 be the roots of the characteristic equation for Pell and
Pell–Lucas numbers which are the numbers defined by P0 = 0, P1 = 1, Pn = 2Pn−1+Pn−2
and Q0 = Q1 = 2, Qn = 2Qn−1 +Qn−2 for n ≥ 2. Ray ([16]) derived some nice results on
balancing numbers and Pell numbers his Phd thesis. Since x is a balancing number if and
only if 8x2+1 is a perfect square, he set 8x2+1 = y2 for some integer y ≥ 1. Then y2−8x2 =
1 which is a Pell equation ([1, 3, 9]). The fundamental solution is (y1, x1) = (3, 1). So
yn+xn

√
8 = (3+

√
8)n for n ≥ 1 and similarly yn−xn

√
8 = (3−

√
8)n. Let γ = 3+

√
8 and

δ = 3 −
√

8. Then he get xn = γn−δn
γ−δ which is the Binet formula for balancing numbers,

that is, Bn = γn−δn
γ−δ . Since α2 = γ and β2 = δ, he conclude that the Binet formula for

balancing numbers is Bn = α2n−β2n

4
√
2

. Similarly he get bn = α2n−1−β2n−1

4
√
2

− 1
2 , Cn = α2n+β2n

2

and cn = α2n−1+β2n−1

2 for n ≥ 1 (see also [10, 11, 15]).
Balancing numbers and their generalizations have been investigated by several authors

from many aspects. In [7], Liptai proved that there is no Fibonacci balancing number
except 1 and in [8] he proved that there is no Lucas–balancing number. In [19], Szalay
considered the same problem and obtained some nice results by a different method. In
[5], Kovács, Liptai and Olajos extended the concept of balancing numbers to the (a, b)−ba-
lancing numbers defined as follows: Let a > 0 and b ≥ 0 be coprime integers. If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some positive integers n and r, then an+b is an (a, b)−balancing number. The sequence
of (a, b)−balancing numbers is denoted byB(a,b)

m form ≥ 1. In [6], Liptai, Luca, Pintér and
Szalay generalized the notion of balancing numbers to numbers defined as follows: Let
y, k, l ∈ Z+ with y ≥ 4. Then a positive integer x with x ≤ y − 2 is called a (k, l)−power
numerical center for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They studied the number of solutions of the equation above and proved several effective
and ineffective finiteness results for (k, l)−power numerical centers. For positive integers
k, x, let

Πk(x) = x(x+ 1) . . . (x+ k − 1).

Then it was proved in [5] that the equation

Bm = Πk(x)

for fixed integer k ≥ 2 has only infinitely many solutions and for k ∈ {2, 3, 4} all solutions
were determined. In [23] Tengely, considered the case k = 5 and proved that this Diophan-
tine equation has no solution for m ≥ 0 and x ∈ Z. In [14], Panda, Komatsu and Davala
considered the reciprocal sums of sequences involving balancing and Lucas–balancing
numbers and in [17], Ray considered the sums of balancing and Lucas–balancing num-
bers by matrix methods. In [13], Panda and Panda defined the almost balancing number
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and its balancer. In [21], the first author considered amost balancing numbers, triangular
numbers and square triangular numbers and in [22], he considered the sums and spectral
norms of all almost balancing numbers.

2. RESULTS.

In this work, we set three new integer sequences called balcobalancing number, bal-
cobalancer and Lucas–balcobalancing number and try to determine the general terms of
them in terms of balancing numbers. We also want to derive some relations with Pell,
Pell–Lucas and square triangular numbers.

If we sum both sides of (1.1) and (1.3), then we get the Diophantine equation

1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n = 2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]. (2.7)

Thus a positive integer n is called a balcobalancing number if the Diophantine equation
in (2.7) verified for some positive integer r which is called balcobalancer. For example,
10, 348, 11830, · · · are balcobalancing numbers with balcobalancers 4, 144, 4900, · · · . (Here
we want to use name “balcobalancing” since it comes from balancing and cobalancing
numbers).

From (2.7), we get

r =
−2n− 1 +

√
8n2 + 4n+ 1

2
. (2.8)

Let Bbcn denote the balcobalancing number and let Rbcn denote the balcobalancer. Then
from (2.8), Bbcn is a balcobalancing number if and only if 8(Bbcn )2 + 4Bbcn + 1 is a perfect
square. Thus

Cbcn =
√

8(Bbcn )2 + 4Bbcn + 1 (2.9)

is an integer which are called the Lucas–balcobancing number. (Here we notice that bal-
cobalancing numbers should be greater that 0. But in (2.9), 8(0)2 + 4(0) + 1 = 1 is a perfect
square, so we assume that 0 is a balcobalancing number, that is, Bbc0 = 0. In this case,
Rbc0 = 0 and Cbc0 = 1).

In order to determine the general terms of balcobalancing numbers, balcobalancers
and Lucas–balcobalancing numbers we have to determine the set of all (positive) integer
solutions of the Pell equation

x2 − 2y2 = −1. (2.10)

We see from (2.8) that Bbcn is a balcobalancing number if and only if 8(Bbcn )2 + 4Bbcn + 1 is
a perfect square. So we set 8(Bbcn )2 + 4Bbcn + 1 = y2 for some integer y ≥ 1. If we multiply
both sides of the last equation by 2, then we get 16(Bbcn )2 + 8Bbcn + 2 = 2y2 and hence
(4Bbcn + 1)2 + 1 = 2y2. Taking x = 4Bbcn + 1, we get the Pell equation in (2.10).

Let Ω denotes the set of all integer solutions of (2.10), that is, Ω = {(x, y) : x2 − 2y2 =
−1}. Then we can give the following theorem.

Theorem 2.1. The set of all integer solutions of (2.10) is Ω = {(cn, 2bn + 1) : n ≥ 1}.

Proof. For the Pell equation x2−2y2 = −1, the set of representatives Rep = {[±1 1]} and

M =

[
3 2
4 3

]
. In this case [−1 1]Mn generates all integer solutions (xn, yn) for n ≥ 1. It

can be easily seen that the nth power of M is

Mn =

[
Cn 2Bn
4Bn Cn

]
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for n ≥ 1. So

[xn yn] = [−1 1]

[
Cn 2Bn
4Bn Cn

]
= [−Cn + 4Bn − 2Bn + Cn].

Thus the set of all integer solutions is Ω = {(−Cn + 4Bn,−2Bn + Cn) : n ≥ 1}. But it can
be easily seen that −Cn + 4Bn = cn and −2Bn + Cn = 2bn + 1. So we conclude that the
set of all integer solutions of (2.10) is Ω = {(cn, 2bn + 1) : n ≥ 1}. �

From Theorem 2.1, we can give the following result.

Theorem 2.2. The general terms of balcobalancing numbers, Lucas–balcobalancing numbers and
balcobalancers are

Bbcn =
c2n+1 − 1

4
, Cbcn = 2b2n+1 + 1 and Rbcn =

4b2n+1 − c2n+1 + 1

4

for n ≥ 1.

Proof. We proved in Theorem 2.1 that Ω = {(cn, 2bn + 1) : n ≥ 1}. Since x = 4Bbcn + 1, we
get

Bbcn =
x2n+1 − 1

4
=
c2n+1 − 1

4

for n ≥ 1. Thus from (2.9), we obtain

Cbcn =
√

8(Bbcn )2 + 4Bbcn + 1

=

√
8(
c2n+1 − 1

4
)2 + 4(

c2n+1 − 1

4
) + 1

=

√
c22n+1 + 1

2

=

√
(α

4n+1+β4n+1

2 )2 + 1

2

=

√[
2(
α4n+1 − β4n+1

2
√

2
− 1

2
) + 1

]2
= 2b2n+1 + 1.

Finally from (2.8), we deduce that

Rbcn =
4b2n+1 − c2n+1 + 1

4

as we wanted. �

We can also give the general terms of balcobalancing numbers, Lucas–balcobalancing
numbers and balcobalancers in terms of balancing and cobalancing numbers as follows.

Theorem 2.3. The general terms of balcobalancing numbers, Lucas–balcobalancing numbers and
balcobalancers are

Bbcn =
B2n + b2n+1

2
, Cbcn = 2b2n+1 + 1 and Rbcn =

−B2n + b2n+1

2

for n ≥ 1.
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Proof. We proved in Theorem 2.2 that Bbcn = c2n+1−1
4 . So we easily deduce that

Bbcn =
c2n+1 − 1

4

=
α4n+1 + β4n+1

8
− 1

4

=
α4n+1(α

−1+1
4
√
2

) + β4n+1(−β
−1−1
4
√
2

)

2
− 1

4

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
B2n + b2n+1

2
.

Cbcn = 2b2n+1 + 1 is already proved in Theorem 2.2. Similarly it can be proved that Rbcn =
−B2n+b2n+1

2 . �

As in Theorem 2.3, we can give the general terms of balcobalancing numbers, Lucas–
balcobalancing numbers and balcobalancers in terms of only balancing numbers or only
Lucas–balancing numbers as follows.

Theorem 2.4. The general terms of balcobalancing numbers, Lucas–balcobalancing numbers and
balcobalancers are

Bbcn = 2Bn(Bn+1 −Bn), Cbcn = B2n+1 −B2n, R
bc
n = 4B2

n

or

Bbcn =
C2n+1 − C2n − 2

8
, Cbcn =

C2n+1 + C2n

4
, Rbcn =

C2n − 1

4
for n ≥ 1.

Proof. From Theorem 2.3, we get

Bbcn =
B2n + b2n+1

2

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n+1 + β4n+1

8
− 1

4

=
α4n+1 − α2nβ2n+1 − β2nα2n+1 + β4n+1

8

= 2

(
α2n − β2n

4
√

2

)(
α2n+1 − β2n+1

2
√

2

)
= 2

(
α2n − β2n

4
√

2

)(
α2n(α2 − 1)− β2n(β2 − 1)

4
√

2

)
= 2

(
α2n − β2n

4
√

2

)(
α2n+2 − β2n+2

4
√

2
− α2n − β2n

4
√

2

)
= 2Bn(Bn+1 −Bn).

The others can be proved similarly. �

In Theorems 2.2, 2.3 and 2.4, we can give the general terms of balcobalancing numbers,
Lucas–balcobalancing numbers and balcobalancers in terms of balancing, cobalancing,
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Lucas–balancing and Lucas–cobalancing numbers. Conversely, we can give the gene-
ral terms of balancing, cobalancing, Lucas–balancing and Lucas–cobalancing numbers in
terms of balcobalancing numbers, Lucas–balcobalancing numbers and balcobalancers as
follows.

Theorem 2.5. The general terms of balancing, cobalancing, Lucas–balancing and Lucas–cobalan-
cing numbers are

Bn =

{
Bbcn

2
−Rbcn

2
n ≥ 2 even

(Bbcn+1
2

+Bbcn−1
2

− 2Rbcn+1
2

)/2 n ≥ 1 odd

bn =

{
−Bbcn

2
+ 3Rbcn

2
n ≥ 2 even

Bbcn−1
2

+Rbcn−1
2

n ≥ 1 odd

Cn =

{
−4Bbcn

2
+ 2Cbcn

2
− 1 n ≥ 2 even

4Bbcn−1
2

+ 2Cbcn−1
2

+ 1 n ≥ 1 odd

cn =

{
12Bbcn

2
− 4Cbcn

2
+ 3 n ≥ 2 even

4Bbcn−1
2

+ 1 n ≥ 1 odd.

Proof. From Theorem 2.3, we get Bbcn = B2n+b2n+1

2 and Rbcn = −B2n+b2n+1

2 . Thus we get
B2n = Bbcn −Rbcn and hence

Bn = Bbcn
2
−Rbcn

2

for even n ≥ 2. The others can be proved similarly. �

Thus we construct one-to-one correspondence between all balcobalancing numbers
and all balancing numbers.

3. BINET FORMULAS, RECURRENCE RELATIONS AND COMPANION MATRIX.

Theorem 3.6. Binet formulas for balcobalancing numbers, Lucas–balcobalancing numbers and
balcobalancers are

Bbcn =
α4n+1 + β4n+1

8
− 1

4
, Cbcn =

α4n+1 − β4n+1

2
√

2
and Rbcn =

α4n + β4n

8
− 1

4

for n ≥ 1.

Proof. Since Bn = α2n−β2n

4
√
2

and bn = α2n−1−β2n−1

4
√
2

− 1
2 , we get from Theorem 2.3 that

Bbcn =
B2n + b2n+1

2

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n( 1+α

4
√
2

) + β4n(−1−β
4
√
2

)

2
− 1

4

=
α4n+1 + β4n+1

8
− 1

4
.

The others can be proved similarly. �

Recall that balancing numbers satisfy recurrence relationBn = 6Bn−1−Bn−2 for n ≥ 2.
Similarly we can give the following result.
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Theorem 3.7. Bbcn , Cbcn and Rbcn satisfy the recurrence relations

Bbcn = 35(Bbcn−1 −Bbcn−2) +Bbcn−3

Rbcn = 35(Rbcn−1 −Rbcn−2) +Rbcn−3

for n ≥ 3 and

Cbcn = 34Cbcn−1 − Cbcn−2

for n ≥ 2.

Proof. Recall that Bbcn = α4n+1+β4n+1

8 − 1
4 by Theorem 3.6. Since 35α−3−35α−7 +α−11 = α

and 35β−3 − 35β−7 + β−11 = β, we get

35(Bbcn−1 −Bbcn−2) +Bbcn−3

= 35

[
(
α4n−3 + β4n−3

8
− 1

4
)− (

α4n−7 + β4n−7

8
− 1

4
)

]
+
α4n−11 + β4n−11

8
− 1

4

=
α4n(35α−3 − 35α−7 + α−11) + β4n(35β−3 − 35β−7 + β−11)

8
− 1

4

=
α4n+1 + β4n+1

8
− 1

4

= Bbcn

The others can be proved similarly. �

Recall that the companion matrix for balancing numbers is

M =

[
6 −1
1 0

]
.

It can be easily seen that the nth power of M is

Mn =

[
Bn+1 −Bn
Bn −Bn−1

]
(3.11)

for n ≥ 1. Since Bbcn = 35(Bbcn−1 − Bbcn−2) + Bbcn−3 and Rbcn = 35(Rbcn−1 − Rbcn−2) + Rbcn−3 by
Theorem 3.7, the companion matrix for balcobalancing numbers and balcobalancers are
same and is

M bc =

 35 −35 1
1 0 0
0 1 0


and sinceCbcn = 34Cbcn−1−Cbcn−2, the companion matrix for Lucas–balcobalancing numbers
is

N bc =

[
34 −1
1 0

]
.

As in (3.11), we can give the following theorem.
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Theorem 3.8. The nth power of M bc is

(M bc)n =



n
2∑
i=0

B4i+1 −
n∑
i=1

B2i+1

n−2
2∑
i=0

B4i+3

n−2
2∑
i=0

B4i+3 −
n−1∑
i=1

B2i+1

n−2
2∑
i=0

B4i+1

n−2
2∑
i=0

B4i+1 −
n−2∑
i=1

B2i+1

n−4
2∑
i=0

B4i+3


for even n ≥ 4 or

(M bc)n =



n−1
2∑
i=0

B4i+3 −
n∑
i=1

B2i+1

n−1
2∑
i=0

B4i+1

n−1
2∑
i=0

B4i+1 −
n−1∑
i=1

B2i+1

n−3
2∑
i=0

B4i+3

n−3
2∑
i=0

B4i+3 −
n−2∑
i=1

B2i+1

n−3
2∑
i=0

B4i+1


for odd n ≥ 3, and the nth power of N bc is

(N bc)n = (−1)n


n+1∑
i=1

(−1)i+1B2i−1
n∑
i=1

(−1)i+1B2i−1

−
n∑
i=1

(−1)i+1B2i−1 −
n−1∑
i=1

(−1)i+1B2i−1


for every n ≥ 1.

Proof. It can be proved by induction on n. �

We can rewrite the nth power ofM bc andN bc in terms of balancing and Lucas–balancing
numbers instead of sums of balancing numbers. For this purpose, we set two integer se-
quences kn and ln to be

kn =
−8B2n + 3C2n − 3

96
and ln =

−288B2n − 102C2n + 102

96

for n ≥ 0. Then we can give the following theorem.

Theorem 3.9. The nth power of M bc is

(M bc)n =


kn+2 ln kn+1

kn+1 ln−1 kn

kn ln−2 kn−1


for every n ≥ 2, and the nth power of N bc is
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(N bc)n = (−1)n



 kn+2 − kn+1 kn − kn+1

−kn + kn+1 −kn + kn−1

 for even n ≥ 2

 kn+1 − kn+2 kn+1 − kn

−kn+1 + kn −kn−1 + kn

 for odd n ≥ 1.

Proof. It can be proved by induction on n. �

4. RELATIONSHIP WITH PELL AND PELL–LUCAS NUMBERS.

Recall that general terms of all balancing numbers can be given in terms of Pell num-
bers

Bn =
P2n

2
, bn =

P2n−1 − 1

2
, Cn = P2n + P2n−1 and cn = P2n−1 + P2n−2

and also in terms of Pell–Lucas numbers

Bn =
Q2n +Q2n−1

8
, bn =

Q2n −Q2n−1 − 4

8
, Cn =

Q2n

2
and cn =

Q2n−1

2
.

Similarly we can give the following theorem.

Theorem 4.10. The general terms of balcobalancing numbers, Lucas–balcobalancing numbers
and balcobalancers are

Bbcn = P2n+1P2n, C
bc
n = P 2

2n+1 + P 2
2n, R

bc
n = P 2

2n

or

Bbcn =
Q2n+1Q2n − 4

8
, Cbcn =

Q2
2n+1 +Q2

2n

8
, Rbcn = (

Q2n+1 −Q2n

4
)2

for n ≥ 1.

Proof. We deduce from Theorem 2.3 that

Bbcn =
B2n + b2n+1

2

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n+1(α−1 + 1) + β4n+1(−1− β−1)

8
√

2
− 1

4

=
α4n+1 + β4n+1

8
− 1

4

=
α4n+1 + β4n+1 − (αβ)2n(α+ β)

8

=
α4n+1 − α2n+1β2n − β2n+1α2n + β4n+1

8

=

(
α2n+1 − β2n+1

2
√

2

)(
α2n − β2n

2
√

2

)
= P2n+1P2n.

The others can be proved similarly. �

Conversely, we can give the general terms of Pell and Pell–Lucas numbers in terms of
balcobalancing numbers, Lucas–balcobalancing numbers and balcobalancers as follows.



212 Ahmet Tekcan and Meryem Yıldız

Theorem 4.11. The general terms of Pell and Pell–Lucas numbers are

Pn =


2(Bbcn

4
−Rbcn

4
) n ≡ 0(mod4)

Cbcn−1
4

n ≡ 1(mod4)

4Bbcn−2
4

+ Cbcn−2
4

+ 1 n ≡ 2(mod4)

8Bbcn−3
4

+ 3Cbcn−3
4

+ 2 n ≡ 3(mod4)

and

Qn =


8Rbcn

4
+ 2 n ≡ 0(mod4)

8Bbcn−1
4

+ 2 n ≡ 1(mod4)

8Bbcn−2
4

+ 4Cbcn−2
4

+ 2 n ≡ 2(mod4)

(Cbcn+1
4

− Cbcn−3
4

)/2 n ≡ 3(mod4).

Proof. It can be proved as in the same way that Theorem 2.3 was proved. �

Thus we construct one-to-one correspondence between all balcobalancing numbers
and Pell and Pell–Lucas numbers.

5. RELATIONSHIP WITH TRIANGULAR AND SQUARE TRIANGULAR NUMBERS.

Recall that triangular numbers denoted by Tn are the numbers of the form

Tn =
n(n+ 1)

2
.

It is known that there is a correspondence between balancing (and also cobalancing) num-
bers and triangular numbers. Indeed from (1.1), we note that n is a balancing number if
and only if n2 is a triangular number since

(n+ r)(n+ r + 1)

2
= n2.

So
TBn+Rn

= B2
n, (5.12)

Similarly from (1.3), n is a cobalancing number if and only if n2 +n is a triangular number
since

(n+ r)(n+ r + 1)

2
= n2 + n.

So
Tbn+rn = b2n + bn.

As in (5.12), we can give the following theorem.

Theorem 5.12. Bbcn is a balcobalancing number if and only if (Bbcn )2+
Bbc

n

2 is a triangular number,
that is,

TBbc
n +Rbc

n
= (Bbcn )2 +

Bbcn
2
.

Proof. From (2.7), we get n2 = 2nr + r2 + r and hence

(n+ r)(n+ r + 1)

2
= n2 +

n

2
.

So the result is obvious. �
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There are infinitely many triangular numbers that are also square numbers which are
called square triangular numbers and is denoted by Sn. Notice that

Sn = s2n =
tn(tn + 1)

2
,

where sn and tn are the sides of the corresponding square and triangle. We can give the
general terms of Sn, sn and tn in terms of balancing and cobalancing numbers, namely,
Sn = B2

n, sn = Bn and tn = Bn + bn. Their Binet formulas are

Sn =
α4n + β4n − 2

32
, sn =

α2n − β2n

4
√

2
and tn =

α2n + β2n − 2

4
(5.13)

for n ≥ 1. We can give the general terms of balcobalancing numbers, Lucas–balcobalan-
cing numbers and balcobalancers in terms of sn and tn as follows.

Theorem 5.13. The general terms of balcobalancing numbers, Lucas–balcobalancing numbers
and balcobalancers are

Bbcn =
2s2n+1 − t2n+1 − 1

2

Cbcn = −2s2n+1 + 2t2n+1 + 1

Rbcn =
−4s2n+1 + 3t2n+1 + 1

2

for n ≥ 1.

Proof. From Theorem 2.3, we get

Bbcn =
B2n + b2n+1

2

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n+2( 1

2
√
2
− 1

4 ) + β4n+2(− 1
2
√
2
− 1

4 )− 1
2

2

=
2(α

4n+2−β4n+2

4
√
2

)− (α
4n+2+β4n+2−2

4 )− 1

2

=
2s2n+1 − t2n+1 − 1

2

by (5.13). The others can be proved similarly. �

Conversely, we can give the following theorem.

Theorem 5.14. The general terms of Sn, sn and tn are

Sn =
Rbcn
4

sn =

{
Bbcn

2
−Rbcn

2
n ≥ 2 even

(4Bbcn−1
2

+ Cbcn−1
2

+ 1)/2 n ≥ 1 odd

tn =

{
2Rbcn

2
n ≥ 2 even

2Bbcn−1
2

+ Cbcn−1
2

n ≥ 1 odd.
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Proof. From Theorem 2.3, we get

Rbcn =
−B2n + b2n+1

2

=
−α

4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n(−1 + α) + β4n(1− β)

8
√

2
− 1

4

=
α4n + β4n

8
− 1

4
.

So from (5.13), we observe that

Sn =
α4n + β4n − 2

32
=

α4n+β4n

8 − 1
4

4
=
Rbcn
4

as we wanted. The others can be proved similarly. �

Thus we construct one-to-one correspondence between all balcobalancing numbers
and square triangular numbers.

Finally, we want to construct a correspondence between triangular and square trian-
gular numbers via balcobalancing numbers, that is, we want to find out that for which
balcobalancing numbers m, the equation Tm = Sn holds. The answer is given below.

Theorem 5.15. For triangular numbers Tn and square triangular numbers Sn, we have

(1) if n ≥ 1 is odd, then

T2Bbc
n−1
2

+Cbc
n−1
2

= Sn.

(2) if n ≥ 2 is even, then

T−2Bbc
n
2
+Cbc

n
2
−1 = Sn.

Proof. (1) Let n ≥ 1 be odd. Then

T2Bbc
n−1
2

+Cbc
n−1
2

=
(2Bbcn−1

2

+ Cbcn−1
2

)(2Bbcn−1
2

+ Cbcn−1
2

+ 1)

2

=


[
2
(
α2n−1+β2n−1

8 − 1
4

)
+ α2n−1−β2n−1

2
√
2

]
×[

2
(
α2n−1+β2n−1

8 − 1
4

)
+ α2n−1−β2n−1

2
√
2

+ 1
]  /2

=

(
α2n + β2n − 2

)
(α2n + β2n + 2)

32

=
α4n + β4n − 2

32
= Sn

by (5.13). The other case can be proved similarly. �
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6. SUMS OF BALCOBALANCING NUMBERS.

Theorem 6.16. The sum of first n−terms of Bbcn , Cbcn and Rbcn is

n∑
i=1

Bbci =
b2n+2 − 2n− 2

8

n∑
i=1

Cbci =
c2n+2 − 7

8

n∑
i=1

Rbci =
B2n+1 − 2n− 1

8

for n ≥ 1.

Proof. Recall that Bbcn = α4n+1+β4n+1

8 − 1
4 by Theorem 3.6. Since

n∑
i=1

α4i+1 =
−α3(1− α4n)

4
√

2
and

n∑
i=1

β4i+1 =
β3(1− β4n)

4
√

2
,

we get

n∑
i=1

Bbci =

n∑
i=1

(
α4i+1 + β4i+1

8
− 1

4
)

=

−α3(1−α4n)

4
√
2

+ β3(1−β4n)

4
√
2

8
− n

4

=
α4n+3 − β4n+3 − α3 + β3

32
√

2
− n

4

=
α4n+3 − β4n+3 − 10

√
2

32
√

2
− n

4

=
α4n+3 − β4n+3

32
√

2
− 5

16
− n

4

=

α4n+3−β4n+3

4
√
2

− 1
2 + 1

2

8
− 5

16
− n

4

=

α4n+3−β4n+3

4
√
2

− 1
2

8
− n+ 1

4

=
b2n+2 − 2n− 2

8
.

The others can be proved similarly. �

We can give the sums of first n−terms of balcobalancing numbers in terms of balancing
numbers, sums of first n−terms of Lucas–balcobalancing numbers in terms of Lucas–
balancing numbers and sums of first n−terms of balcobalancers in terms of balancers as
follows.
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Theorem 6.17. The sum of first n−terms of Bbcn , Cbcn and Rbcn is

n∑
i=1

Bbci =
B2n+2 −B2n+1 − 4n− 5

16

n∑
i=1

Cbci =
5C2n+1 − C2n − 14

16

n∑
i=1

Rbci =
R2n+2 −R2n+1 − 4n− 2

16

for n ≥ 1.

Proof. It can be easily seen that B2n+2 − B2n+1 = 2b2n+2 + 1. So from Theorem 6.16, we
get

n∑
i=1

Bbci =
b2n+2 − 2n− 2

8
=

B2n+2−B2n+1−1
2 − 2n− 2

8
=
B2n+2 −B2n+1 − 4n− 5

16
.

The others can be proved similarly. �

Recall that the sum of first n−terms of all balancing numbers can be given in terms of
same balancing numbers, that is,

n∑
i=1

Bi =
5Bn −Bn−1 − 1

4
,

n∑
i=1

bi =
5bn − bn−1 + 2− 2n

4

n∑
i=1

Ci =
5Cn − Cn−1 − 2

4
,

n∑
i=1

ci =
5cn − cn−1 − 2

4
.

Similarly we can give the sums of first n−terms of balcobalancing numbers in terms of bal-
cobalancing numbers, sums of first n−terms of Lucas–balcobalancing numbers in terms
of Lucas–balcobalancing numbers and sums of first n−terms of balcobalancers in terms
of balcobalancers as follows.

Theorem 6.18. The sum of first n−terms of Bbcn , Cbcn and Rbcn is

n∑
i=1

Bbci =
33Bbcn −Bbcn−1 − 8n− 2

32

n∑
i=1

Cbci =
33Cbcn − Cbcn−1 − 28

32

n∑
i=1

Rbci =
33Rbcn −Rbcn−1 − 8n+ 4

32

for n ≥ 1.

Proof. It can be proved similarly. �
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We also note that
n∑
i=1

(−1)iBi =

{
2B2

n
2

+Bn
2
Cn

2
n ≥ 2 even

−2Bn+1
2

(bn+1
2

+ 1
2 ) n ≥ 1 odd

n∑
i=1

(−1)ibi =

{
2B2

n
2

n ≥ 2 even
−2b2n+1

2

− 2bn+1
2

n ≥ 1 odd

n∑
i=1

(−1)iCi =

{
Bn + 8B2

n
2

n ≥ 2 even
−Bn − 8(bn+1

2
+ 1

2 )2 n ≥ 1 odd
n∑
i=1

(−1)ici =

{
Bn n ≥ 2 even
−Bn n ≥ 1 odd.

Similarly we can give the following theorem.

Theorem 6.19. For Bbcn , Cbcn and Rbcn , we get
n∑
i=1

(−1)iBbci =

{
(35Bbcn −Bbcn−1 − 2)/36 n ≥ 2 even

(−35Bbcn +Bbcn−1 − 10)/36 n ≥ 1 odd
n∑
i=1

(−1)iCbci =

{
(35Cbcn − Cbcn−1 − 30)/36 n ≥ 2 even

(−35Cbcn + Cbcn−1 − 30)/36 n ≥ 1 odd
n∑
i=1

(−1)iRbci =

{
(35Rbcn −Rbcn−1 + 4)/36 n ≥ 2 even

(−35Rbcn +Rbcn−1 − 4)/36 n ≥ 1 odd.

Proof. It can be proved similarly. �

In [20], Tekcan and Tayat set two integer sequences

Xn =
αn+1 + βn+1

2
and Yn =

αn+1 − βn+1

√
2

for n ≥ 0 and proved that
n∑
i=1

BiCi =
XnXn−1YnYn−1

8
.

It can be easily seen that
n∑
i=1

BiCi =
C2n+1 − 3

32
. (6.14)

As in (6.14), we can give the following theorem.

Theorem 6.20. For Bbcn and Cbcn , we get
n∑
i=1

Bbci C
bc
i =

(3Bbcn + Cbcn )2 − 1

12
.

Proof. From Theorem 3.6, we find that
n∑
i=1

Bbci C
bc
i = Bbc1 C

bc
1 +Bbc2 C

bc
2 + · · ·+Bbcn C

bc
n



218 Ahmet Tekcan and Meryem Yıldız

=

(
α5 + β5

8
− 1

4

)(
α5 − β5

2
√

2

)
+

(
α9 + β9

8
− 1

4

)(
α9 − β9

2
√

2

)
+ · · ·+

(
α4n+1 + β4n+1

8
− 1

4

)(
α4n+1 − β4n+1

2
√

2

)
=

(α10 + α18 + · · ·+ α8n+2)− (β10 + β18 + · · ·+ β8n+2)

16
√

2

− (α5 + α9 + · · ·+ α4n+1)− (β5 + β9 + · · ·+ β4n+1)

8
√

2

=
1

16
√

2

[
α10(α8n − 1)

α8 − 1
− β10(β8n − 1)

β8 − 1

]
− 1

8
√

2

[
α5(α4n − 1)

α4 − 1
− β5(β4n − 1)

β4 − 1

]
=

1

32

[
α8n+6 + β8n+6 − 198

24

]
− 1

16

[
α4n+3 + β4n+3 − 14

4

]
=

1

32.24

[
(α4n+3 + β4n+3 − 6)2 − 64

]
=

1

12

[
3

(
α4n+1 + β4n+1

8
− 1

4

)
+

(
α4n+1 − β4n+1

2
√

2

)]2
− 1

12

=
(3Bbcn + Cbcn )2 − 1

12
.

This completes the proof. �

In [18], Santana and Diaz–Barrero proved that

P2n+1

∣∣∣∣∣
2n∑
i=0

P2i+1 and P2n

∣∣∣∣∣
2n∑
i=1

P2i−1.

Similarly we can give the following theorem.

Theorem 6.21. Cbcn

∣∣∣∣ 4n∑
i=0

P2i+1.

Proof. As in Theorem 6.16, we find that
4n∑
i=0

P2i+1 = Cbcn (4Bbcn + 1).

So the result is obvious. �

7. SUMS OF PELL AND BALANCING NUMBERS.

Panda and Ray proved in [11] that the sum of first 2n − 1 Pell numbers is equal to the
sum of nth balancing number and its balancer, that is,

2n−1∑
i=1

Pi = Bn + bn. (7.15)

Later Gözeri, Özkoç and Tekcan proved in [4] that the sum of Pell–Lucas numbers from 0

to 2n − 1 is equal to the the sum of nth Lucas–balancing and Lucas–cobalancing number,
that is,

2n−1∑
i=0

Qi = Cn + cn.
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Since Rn = bn, (7.15) becomes
2n−1∑
i=1

Pi = Bn +Rn. (7.16)

As in (7.16), we can give the following result.

Theorem 7.22. The sum of even ordered Pell numbers from 1 to 2n is equal to the sum of the nth

balcobalancing number and its balcobalancer, that is,

2n∑
i=1

P2i = Bbcn +Rbcn .

Proof. Since
2n∑
i=1

α2i = −α(1−α4n)
2 and

2n∑
i=1

β2i = −β(1−β4n)
2 , we deduce that

2n∑
i=1

P2i =

2n∑
i=1

(
α2i − β2i

2
√

2
)

=
−α(1−α4n)

2 − −β(1−β
4n)

2

2
√

2

=
α4n+1 − β4n+1

4
√

2
− 1

2

=
α4n+1(1 + α−1) + β4n+1(1 + β−1)

8
− 1

2

=

(
α4n+1 + β4n+1

8
− 1

4

)
+

(
α4n + β4n

8
− 1

4

)
= Bbcn +Rbcn

by Theorem 3.6. �

Similarly we can give the following theorem which can be proved similarly.

Theorem 7.23. For the sums of Pell, Pell–Lucas and balancing numbers, we have

(1) the sum of odd ordered Pell numbers from 1 to 2n is equal to the difference of the nth

balcobalancing number and its balcobalancer, that is,

2n∑
i=1

P2i−1 = Bbcn −Rbcn .

(2) the half of the sum of Pell numbers from 1 to 4n is equal to the nth balcobalancing number,
that is,

4n∑
i=1

Pi

2
= Bbcn .

(3) the sum of Pell–Lucas numbers from 0 to 4n+ 1 is equal to the sum of the twelve times of
the nth balcobalancing number, four times of the its balcobalancer plus 4, that is,

4n+1∑
i=0

Qi = 12Bbcn + 4Rbcn + 4.
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(4) the sum of Pell–Lucas numbers from 1 to 4n is equal to the two times of the nth Lucas–
balcobalancing number minus 1, that is,

4n∑
i=1

Qi = 2(Cbcn − 1).

(5) the sum of balancing numbers from 1 to 4n+ 1 is equal to the product of the sum of three
times of the nth balcobalancing number, its balcobalancer plus 1 and the four times of the
nth balcobalancing number plus 1, that is,

4n+1∑
i=1

Bi = (3Bbcn +Rbcn + 1)(4Bbcn + 1).

In [18], Santana and Diaz–Barrero proved that the sum of first nonzero 4n+ 1 terms of
Pell numbers is a perfect square, that is,

4n+1∑
i=1

Pi =

[
n∑
i=0

(
2n+ 1

2i

)
2i

]2
.

In fact this sum is equals to c2n+1, that is,

4n+1∑
i=1

Pi = c2n+1.

Similarly we can give the following result.

Theorem 7.24. The sum of Pell numbers from 1 to 8n+ 1 is a perfect square and is

8n+1∑
i=1

Pi = (4Bbcn + 1)2.

Proof. Since
n∑
i=1

Pi = Pn+1+Pn−1
2 , we get

8n+1∑
i=1

Pi =
P8n+2 + P8n+1 − 1

2

=

α8n+2−β8n+2

2
√
2

+ α8n+1−β8n+1

2
√
2

− 1

2

=

α8n+2(1+α−1)+β8n+2(−1−β−1)

2
√
2

2
− 1

2

=
α8n+2 + β8n+2

4
− 1

2

=
α8n+2 + 2α4n+1β4n+1 + β8n+2

4
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= 16

[(
α4n+1 + β4n+1

8

)2

− 2

(
α4n+1 + β4n+1

8

)
(
1

4
) +

1

16

]

+ 8

(
α4n+1 + β4n+1

8

)
− 2 + 1

= 16

[
α4n+1 + β4n+1

8
− 1

4

]2
+ 8

[
α4n+1 + β4n+1

8
− 1

4

]
+ 1

= 16(Bbcn )2 + 8Bbcn + 1

= (4Bbcn + 1)2

by Theorem 3.6. �

Apart from Theorem 7.24, we can give the following theorem which can be proved
similarly.

Theorem 7.25. For the sums of Pell, Pell–Lucas, balancing and Lucas–cobalancing numbers, we
have

(1) the sum of Pell numbers from 1 to 8n+ 3 plus 1 is a perfect square and is

1 +

8n+3∑
i=1

Pi = (4Bbcn + 2Cbcn + 1)2.

(2) the sum of odd ordered Pell–Lucas numbers from 1 to 4n+ 2 is a perfect square and is
4n+2∑
i=1

Q2i−1 = (8Bbcn + 2Cbcn + 2)2.

(3) the half of the sum of odd ordered Pell–Lucas numbers from 0 to 4n is a perfect square and
is

4n∑
i=0

Q2i+1

2
= (4Bbcn + 1)2.

(4) the sum of odd ordered balancing numbers from 1 to 2n+ 1 is a perfect square and is
2n+1∑
i=1

B2i−1 = (3Bbcn +Rbcn + 1)2.

(5) the sum of Lucas–cobalancing numbers from 1 to 4n+ 2 plus 1 is a perfect square and is

1 +

4n+2∑
i=1

ci = (8Bbcn + 4Rbcn + 3)2.
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