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Ways to organize learning paths to discover solutions to
competition problems

MARCEL TELEUCA and LARISA SALI

ABSTRACT. In this article, we illustrate a method of organizing the process of discovering solutions to prob-
lems for mathematical contests. We describe the authors’ experience in creating situations of learning indi-
vidually, through cooperation and collaboration in pairs, and in small groups. The examples proposed for
discussion can be considered mini-scientific works, which allow thorough research of the situation, but require
detailed explanation and collaboration between students in order to refresh the supporting concepts and create
generalizations.

1. INTRODUCTION

Discussions on the impact of excessive student guidance in the process of assimilating
knowledge have been going on for many years. It is obvious that the dose of explana-
tions and proofs differs from case to case. Often schools focus too much on knowledge
transfer. Students usually remain passive, while the teacher strives to personally transmit
the relevant material. The obsession with ”passing on the material” allows for a smaller
contribution from students. For this reason, we need a fundamental reorientation. The
priority among teachers should not be to transfer knowledge to the students, but rather
to allow students to access knowledge on their own. If students with an average level of
knowledge are targeted in the teaching-learning process complete explanations are wel-
come. In the case of gifted student teams, the process of studying methods of solving
special problems or solving complicated problems can be organized following a scheme
of three steps: me→ pairs→ team. This scheme is designed in the following way: “me”
→ “me and you”→ “all of us”. The sequence allows for the probing of the solution or the
execution of tests, particular cases. Naturally that these tests may be different for different
students. In order to ”shrink” the particular cases examined individually, we move on to
the exploration of the problem situation in pairs. At this stage, the distribution of tasks
is also accepted, if the exploration is laborious, so it is natural for students to cooperate
to move faster in finding the solution. If working in pairs, the students find an elegant
solution, its presentation to the whole team follows. If the pairs are far from a plausible
solution, examination of the solution proposed by the authors of the problem and its pre-
sentation to the whole team follows. In this situation, students collaborate to develop the
author’s ideas and argue each reasoning based on their own knowledge.

We will illustrate this activity as an example of solving some problems proposed at the
International Mathematical Olympiad.
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2. EXAMPLES

Problem 2.1. (IMO 1997) In a finite sequence of real numbers the sum of any 7 succes-
sive terms is negative and the sum of any 11 successive terms is positive. Determine the
maximum number of terms in the sequence.

Solution: Let x1, x2 . . . xn be this sequence.
Students are asked to work individually to discover that a case can correspond to a

sequence of 77 terms. The idea of writing :

(x1 + x2 + . . .+ x7) + (x8 + . . .+ x14) + . . .+ (x71 + x72 + . . .+ x77) =

= (x1 + x2 + . . .+ x11) + (x12 + . . .+ x22) + . . .+ (x67 + . . .+ x77)

leads to a contradiction, because the first term must be negative, and the second posi-
tive. This gives us that n < 77.

For pairs, the idea of ”shrinking” the calculations is suggested until we reach:

(x1 + x2 + . . .+ x7) + (x2 + x3 + . . .+ x8) + . . .+ (x11 + x12 + . . .+ x17) =

= (x1 + x2 + . . .+ x11) + (x2 + x3 + . . .+ x12) + . . .+ (x7 + x8 + . . .+ x17).

A contradiction is obtained which yields to the conclusion that n < 17.

Also in pairs, concrete examples can be built to verify the solution.

The author solution continues by an example of a sequence with the properties of the
statement with 16 elements, namely 5, 5,−13, 5, 5, 5,−13, 5, 5,−13, 5, 5, 5,−13, 5, 5, show-
ing that the maximum number of terms required by the problem is 16.

The main activity can be oriented towards the examination of the solution awarded with
the special prize by the Olympic Committee :

Let x1, x2 . . . xn be a finite sequence of real numbers. Let us note : y0 = 0, y1 = x1,
yk = x1 + x2 + . . . + xk. There is a bijective correspondence between the sequences
x1, . . . , xn and y1, . . . , yn made in the opposite direction : xk = yk − yk−1.

The conditions of the problem are equivalent to : yk+7− yk < 0 for any 0 ≤ k ≤ n− 7, and
yk+11−yk > 0 for any 0 ≤ k ≤ n−11. So we have that yk+7 < yk and yk < yk+11 for those k.

Let’s write these ”consecutive” inequalities, completing each time on the right with a y
of minimum possible index:

0 = y0 < y11 < y4 < y15 < y8 < y1 < y12 < y5 <

< y16 < y9 < y2 < y13 < y6 < y17 < y10 < y3 < y14 < y7 < y0 = 0.

In this way, it is seen that n ≥ 17 leads to contradiction. For n = 16 it is observed that
these inequalities contain all terms of the sequence and that it is no longer cyclic, but lin-
ear, starting with : y10 < y3 < y14 < . . . and ending with < y2 < y13 < y6. By choosing
x1, . . . , x16 so that these inequalities are true, which is obviously possible, we can deter-
mine x1, . . . , x16 by the formula at the end of the first paragraph of the solution. In this
way, in addition to the conclusion that 16 is the maximum number of terms in a sequence
with the properties in the statement, the general form of these sequences of 16 elements is
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also obtained.
We also apply the described organizational procedure to familiarize students with the
method of solving another problem proposed at the 2011 International Mathematical
Olympiad (Amsterdam).

Problem 2.2. (IMO 2011) Let A be a finite set of at least two points in the plane. Assume
that no three points ofA are collinear. A windmill is a process that starts with a line ` going
through a single point P ∈ A. The line rotates clockwise about the pivot P until the first
time that the line meets some other point belonging to A. This point, Q, takes over as the
new pivot, and the line now rotates clockwise about Q, until it next meets a point of A.
This process continues indefinitely. Show that we can choose a point P in A and a line `
going through P such that the resulting windmill uses each point ofA as a pivot infinitely
many times.

Solution:
”Me” : Students individually try to examine various situations, varying the number of
points and their position in the plane. It appears that it is possible to move the line on the
convex hull, and the line will not pass through other points except those on the hull.
”Me and You” : The idea that the problem be approached from the inside is suggested
to the pairs, considering lines that would satisfy various conditions. Fix a line ` passing
through one of the points of the set A and consider the obtained half-planes painted in
orange and blue. Executing the rotation of this line allows students to observe that after
the ”pivot” changes its position from one point T to another point U . T will be on the
same side as point U in the previous stage. That is why the number of elements in A in
each half-plane remains the same throughout the process, except the case in which the
line ` contains 2 points.

FIGURE 1. The windmill process

We will first consider the case |A| = 2n+1. We claim that for any point T ∈ A, there is a
line that divides the setA, so that in each half-plane there are exactly n points. To observe
this, we choose a line that passes through T and does not contain other points in A, and
we assume that there are n + r points in the orange part. If r = 0, then we have proved
the statement. Suppose that r 6= 0. While the line rotates by 180◦ around T , the number of
points on the orange side changes by ±1 as the line passes through each point. After the
rotation by 180◦, the number of points on the orange side is n − r. Thus, there will be an
intermediate phase in which both the orange and the blue part will both contain exactly
n points.
Let’s choose a line that passes through an arbitrary point P ∈ A and separates n points
on each side, which should be the initial state of the windmill. We will show that after a
rotation by 180◦, the windmill line passes through each point in A, as a pivot. We select
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any point T inA and a line ` passing through T that separates the plane in two parts with
the same number of points. The set A has no other point with the property that drawing
through it a line parallel with ` separates the plane in 2 subsets with the same number of
points, because, ` will be on the left of that line, or on the right(suppose it’s on the left,
there is contradiction because both lines can’t have simultaneously n points on the left),
which will lead us to a contradiction. Therefore, when the windmill is parallel to ` , it
will coincide with ` therefore passes through T. This means that the line has returned to
it’s original state and the ”windmill” movement continues to pass an infinite number of
times through each point of A.
Now we assume that |A| = 2n. Analogously to the first case, for any T ∈ A there is an
oriented line passing through T such that there are n − 1 points in the orange part and n
points in the blue part. Such a line passing through an arbitrary point P will be the initial
state of the ”windmill”. We claim this line will do the job. After a rotation by 360◦ the line
will return to it’s original position. Now we take a fixed point T in A, and we know there
is a line such that the orange part contains n − 1 points and the blue one n points. When
the line of the windmill ` is parallel to this line, by the same arguments as above these
lines must be the same, so after a rotation by 360◦ our windmill goes through all points of
A.
A more general solution, proposed by an ex-Olympiad student can be examined next.
This solution is a mini-scientific work, which allows thorough research of the situation,
but requires detailed explanation and collaboration between students in order to update
the supporting concepts.
Initial considerations: We will denote by A the set of corresponding points, and by M
our mills. Let S be the convex hull of A. For a certain line, we choose it’s direction, then
the rotation of the line will correspond to the rotation of it’s ”direction”, so each line in the
mill will have a direction and so we can say that a point is on line’s left side or on line’s
right side. We notice that the rotation of the mill can be reversed, the reverse having the
same principle of rotation, but in a counterclockwise direction. Furthermore we notice
that the mill is periodical because there is a finite number of pairs of points inM. So if
the mill passes through a point once, it will pass through it an infinite number of times.
Suppose that the millM does not pass through a point P from A. We choose a straight
line from the mill. Then P will be either on it’s left or on it’s right. By rotating this line, P
will not be able to change from it’s from left to right, because then by continuity, P would
have to pass through the line, which is impossible by assumption. Thus the point P is
either always on the left side of all the lines from our windmill, or on the right side. In the
first case, we callM the mill a left-mill, and in the second, a right-mill. We now assume
that each mill avoids some point in A, so each is a left or right mill.

Claim:
a) A windmill can’t be a left-mill and a right-mill at the same time.
b) Let X be a point on the perimeter of S. Then every mill passes through X .

Proof. a) Suppose that P is to the left of the lines inM and Q is to the right of the lines in
M (obviously P 6= Q). M will contain a line d parallel to PQ. then P and Q will be on
the same side of the line d, but one of them should be on the left and one of them on the
right. Contradiction.

b) For each line d (the direction), we denote : A, B first and second point of intersection
of the straight line d with S. When d rotates clockwise, A, B move on the perimeter of S
continuously in a clockwise direction (or remain fixed if d rotates around them). Since the
mill is periodic, so it returns to the initial position, both A and B must travel, in clockwise
order, the entire perimeter of S which implies the conclusion. �
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For a straight line ` with direction, we denote d(`) the half-plane to the right of ` and
s(`) the half-plane to the left of `.
Reparametrization: For a mill M generated by a line (with direction) we denote this
”initial” line byM0. Then we denoteMt the line obtained whenM0 rotates in total with
the angle t (around several points, in a row), so :

Mt+2π =Mt andM = ∩∞t=0Mt

Now we can speak about the ”reparametrization” of a mill: if γ : R≥0 → R≥0 is an infinite
continuous increasing function, we denote M′ by M′ = Mγ(t). Obviously the set of
points inM′ is the same as the set of points inM, in factM′ is the sameM rotated with
different ”speed”. This definition is important because of the following sentence:

Lemma 2.1. Let X be a vertex on the convex hull. And, let Y , and Z be two points on the
perimeter of S, so that Y is between X and Z on the perimeter. In other words : d(XY ) ∩
Int(S) ⊆ d(XZ) ∩ Int(S). Then the millM1 generated by XY (rotated around X) will be to
the ”right” of the millM2 generated by XZ (rotated around X) in the following sense: there is a
reparametrizationM′1 ofM1 with the property that d((M′1)t)∩Int(S) ⊆ d((M′2)t)∩Int(S).

Proof. We build the reparametrization in the following way : we already know that the
first intersection of the line (with direction) with S moves continuously in a clockwise di-
rection around the perimeter of S. Then we can uniquely define reparametrization ofM′1,
so that the first intersection of the straight lineM′1(t) with the perimeter of S coincides
with the intersection of the lineM2(t) with the perimeter of S. This reparametrization is
unique unless this intersection is a vertex P of S , andM1 andM2 both rotate around this
point. On this time interval, we make the fallowing reparametrization : M1 moves at a
constant speed so thatM′1 andM2 meet another point at the same time, i.e. γ to be linear
in interval.

M′1(t) ∩ Int(P ) = (UtVt),M′2(t) ∩ Int(P ) = (UtWt).

It is enough to show that Vt is between Ut and Vt on the perimeter of S, on the clockwise
direction. This is true for t very small because U0 = X , V0 = Y , W0 = Z. Next we use
continuity, the limit case would be when Vt = Wt. In this case, the mills will be either the
same (in which case the problem is obvious) or we will be in the situation when UtVt=
AB, where A, B are vertices, andM1 rotated around A until it changed into B, andM2

rotated aroundB until it changed intoA. However, it is easy to see that in this case Vt does
not pass over Wt but moves backwards towards Ut: for U to the right of AB, the order
of the intersection of UA with the perimeter of S and the intersection of UB with the
perimeter of S is the same as order intersection of UB perimeter of S and the intersection
and UAwith the perimeter of S. If U is to the left of the line, for Ut = U , these intersections
describe exactly Vt and Wt. The lemma is proved. �

This lemma is important in the following corollary, which results immediately from it,
without the need for demonstration.

Corollary 2.1. Let X be a vertex of S and Y , Z on the perimeter of S so that Y is between X and
Z on the perimeter of S, in clockwise order. LetM1 be the mill generated by XY (around X) and
M2 the mill generated by XZ. IfM1 is a left-mill thenM2 is a left-mill, moreover ifM1 does
not pass through a certain vertex U thenM2 does not pass through U either. Conversely, ifM2

is a right-mill thenM1 is a right-mill, and ifM2 does not pass through V thenM1 does not pass
through V either.

Note: The concept of reparametrization was introduced to facilitate the demonstration of
this corollary, which is essential in solving the problem.
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The solution to the problem: With the help of this corollary, we can now finish the prob-
lem.
Let be X a vertex of S . Draw all the lines between X and other vertices of the set A. They
divide the perimeter of S into several ”arcs” (which are actually segments). We know that
each arc determines a mill: if Y , Y ′ are on the same arc then XY and XY ′ generate the
same mill becauseXY will eventually rotate to becomeXY ′ or vice versa. We order these
arcs in clockwise order. According to the corollary, the first few arcs will give right-mills,
and the last will give left mills. Let’s take the last arc that gives us a right-mill. Then it will
not go through a vertex P of A. According to the corollary, the other mills on the right
will be ”further to the right” (after parameterization) of it. So they will have P on the
right too. Similarly, all left-mills will not pass through any point Q. Thus we established
that left-mills passing through X are not passing through P and the right-mills are not
passing through Q. We now consider the mill generated by PQ. It will pass through X
because X is on convex hull, but it can’t be a left-mill or a right-mill as it passes through
P and Q. Contradiction.

3. CONCLUSION

The peer learning process contributes to student’s personal development and self-
affirmation. In this way, tolerance towards different ways of thinking are being educated,
communication skills and competitive spirit are developed. These strategies are effective,
if the ways of grouping individuals are carefully selected, to ensure a positive interde-
pendence between students, they stimulate involvement in the task, leading to an interac-
tive learning process. In collaborative learning, students work together to solve the same
problem, to study solutions to complicated problems, to research authentic innovations.
Serious problems require collaboration between students.
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