
CREAT. MATH. INFORM.
Volume 31 (2022), No. 1,
Pages 109 - 120

Online version at https://semnul.com/creative-mathematics/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2022.01.11

A new Krasnoselskii’s type algorithm for zeros of strongly
monotone and Lipschitz mappings

M. SENE, M. NDIAYE and N. DJITTE

ABSTRACT. For q > 1, let E be a q-uniformly smooth real Banach space with dual space E∗. Let A : E → E∗

be a Lipschitz and strongly monotone mapping such that A−1(0) ̸= ∅. For given x1 ∈ E, let {xn} be generated
iteratively by the algorithm :

xn+1 = xn − λJ−1(Axn), n ≥ 1,

where J is the normalized duality mapping from E into E∗ and λ is a positive real number choosen in a suitable
interval. Then it is proved that the sequence {xn} converges strongly to x∗, the unique point of A−1(0). Our
theorems are applied to the convex minimization problem. Futhermore, our technique of proof is of independent
interest.

1. INTRODUCTION

Let H be a real Hilbert space with inner product ⟨·, ·⟩H and norm ∥ · ∥H . An operator
A : H → H is called monotone if

⟨Ax−Ay, x− y⟩H ≥ 0 ∀ x, y ∈ H, (1.1)

and is called strongly monotone if there exists k ∈ (0, 1) such that

⟨Ax−Ay, x− y⟩H ≥ k∥x− y∥2H ∀x, y ∈ H. (1.2)

Interest in monotone operators stems mainly from their usefulness in numerous applica-
tions. Many problems in nonlinear analysis and optimization theory can be formulated as
follows: find u such that 0 ∈ Au. This problem has been investigated by many researchers
(see for instance, Brézis and Lions [5], Martinet [26], Minty [29], Reich [41], Rockafellar
[42], Takahashi and Ueda [45] and others). Such a problem is connected with the convex
minimization problem. In fact, if f : H → (−∞,+∞] is a proper, lower-semicontinuous
convex function, then, it is known that the multi-valued map T := ∂f , the subdifferential
of f , is maximal monotone (see, e.g., [29], [42]), where for w ∈ H ,

w ∈ ∂f(x) ⇔ f(y)− f(x) ≥ ⟨y − x,w⟩ ∀ y ∈ H

⇔ x ∈ Argmin(f − ⟨·, w⟩).
In particular, the equation 0 ∈ ∂f(x) is equivalent to f(x) = min

y∈H
f(y).

Several existence theorems have been established for the equation Au = 0 when A is of
the monotone-type (see e.g., Deimling [20], Pascali and Sburian [34]).

The extension of the monotonicity definition to operators from a Banach space into its
dual has been the starting point for the development of nonlinear functional analysis. The
monotone maps constitute the most manageable class because of the very simple structure
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of the monotonicity condition. The monotone mappings appear in a rather wide variety
of contexts since they can be found in many functional equations. Many of them appear
also in calculus of variations as subdifferential of convex functions. (Pascali and Sburian
[34], p. 101 ).

The first extension involves mappings from E to E∗. Here and in the sequel, ⟨·, ·⟩ stands
for the duality pairing between (a possible normed linear space) E and its dual E∗. A
mapping A : D(A) ⊂ E → E∗ is called monotone if for all x, y ∈ D(A),

⟨x− y,Ax−Ay⟩ ≥ 0, (1.3)

where ⟨, ⟩ denotes the duality pairing between elements of E and elements of E∗. It is said
to be strongly monotone if there exists a positive constant k such that for all x, y ∈ D(A),

⟨x− y,Ax−Ay⟩ ≥ k∥x− y∥2. (1.4)

Note that if E is a real Hilbert space H , then H = H∗ and (1.3) coincides with (1.1).

The second extension of the notion of monotonicity to real normed spaces involves map-
pings E into itself . A mapping A : D(A) ⊂ E → E is called accretive if for every
x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that the following inequality holds:

⟨Ax−Ay, j(x− y)⟩ ≥ 0, (1.5)

where J : E → 2E
∗

is the normalized duality mapping of E defined by:

J(x) :=
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 and ∥f∥ = ∥x∥

}
.

Here, if E is a real Hilbert space, J becomes the identity map and condition (1.5) reduces
to (1.1). Hence, in real Hilbert spaces, accretive operators become monotone. Consequently,
accretive operators can be regarded as extension of Hilbert space monotonicity condition
to real normed spaces.

A mapping A : D(A) ⊂ E → E is called strongly accretive if there exists a constant
k > 0 such that for every x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ k∥x− y∥2.
For approximating a solution of Au = 0, assuming existence, where A : E → E is of
accretive-type, Browder [6] defined an operator T : E → E by T := I − A, where I is the
identity map on E. He called such an operator pseudo-contractive. It is trivial to observe
that zeros of A correspond to fixed points of T . For Lipschitz strongly pseudo-contractive
maps, Chidume [12] proved the following theorem.

Theorem 1.1 (Theorem C1). (Chidume, [12]) Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be
nonempty closed convex and bounded. Let T : K → K be a strongly pseudo-contractive and
Lipschitz map. For arbitrary x0 ∈ K, let a sequence {xn} be defined iteratively by xn+1 = (1 −
λn)xn + λnTxn, n ≥ 0, where {λn} ⊂ (0, 1) satisfies the following conditions: (i)

∑∞
n=1 λn =

∞, (ii)
∑∞

n=1 λ
2
n < ∞. Then, {xn} converges strongly to the unique fixed point of T .

By setting T := I − A in Theorem C1, the following theorem for approximating a
solution of Au = 0 where A is a strongly accretive and bounded operator can be proved.

Theorem 1.2 (Theorem C2). Let E = Lp, 2 ≤ p < ∞. Let A : E → E be a strongly accretive
and bounded map. Assume A−1(0) ̸= ∅. For arbitrary x0 ∈ K, let a sequence {xn} be defined
iteratively by xn+1 = xn−λnAxn, n ≥ 0, where {λn} ⊂ (0, 1) satisfies the following conditions:
(i)

∑∞
n=1 λn = ∞, (ii)

∑∞
n=1 λ

2
n < ∞. Then, {xn} converges strongly to the unique solution of

Au = 0.
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The main tool used in the proof of Theorem C1 is an inequality of Bynum [7]. This theo-
rem signalled the return to extensive research efforts on inequalities in Banach spaces and
their applications to iterative methods for solutions of nonlinear equations. Consequently,
Theorem C1 has been generalized and extended in various directions, leading to flourish-
ing areas of research, for the past thirty years or so, for numerous authors (see e.g.,Censor
and Reich [8], Chidume [12], Chidume [10, 11], Chidume and Ali [13], Chidume and
Chidume [15, 16], Chidume and Osilike [17], Deng [19], Zhou and Jia [57], Liu [24], Qihou
[35], Reich [36, 37, 38], Reich and Sabach [39, 40], Weng [46], Xiao [48], Xu [50, 55, 54],
Berinde et al. [4], Moudafi [30, 31, 32], Moudafi and Thera [33], Xu and Roach [51], Xu et
al. [52], Zhu [58] and a host of other authors). Recent monographs emanating from these
researches include those by Berinde [3], Chidume [9], Goebel and Reich [22], and William
and Shahzad [47].
Unfortunately, the success achieved in using geometric properties developed from the
mid 1980s to early 1990s in approximating zeros of accretive-type mappings has not carried
over to approximating zeros of monotone-type operators in general Banach spaces. Part of
the problem is that since A maps E to E∗, for xn ∈ E, Axn is in E∗. Consequently, a
recursion formula containing xn and Axn may not be well defined.
Attemps have been made to overcome this difficulty by introducing the inverse of the nor-
malized duality mapping in the recursion formulas for approximating zeros of monotone-
type mappings.
In the case of Banach spaces, for finding zeros point of a maximal monotone mappings by
using the proximal point algorithm, Kohshada and Takahashi [44] introduced the follow-
ing iterative sequence for a monotone mapping A : E → 2E

∗
:

x1 = u ∈ E, xn+1 = J−1
(
αnJu+ (1− α)JJrnxn

)
, n ≥ 1, (1.6)

where Jrn := (J + rnA)−1, and J the duality mapping from E into E∗, {αn} ∈ (0, 1) and
{rn} ∈ (0,∞) satisfy limn→∞ αn = 0,

∑
αn = ∞ and limn→∞ rn = ∞. They proved that

if E is smooth and uniformly convex and A maximal monotone with A−1(0) ̸= ∅, then
the sequence {xn} converges strongly to an element of A−1(0). However, the algorithm
requires the computation of (J+rnA)−1xn at each step of the process, which make difficult
its implementation for applications.
Following the work of Kohshada and Takahashi [44], in [56], Zegeye introduced an iter-
ative scheme for approximating zeros of maximal monotone mappings defined in uni-
formly smooth and 2- uniformly convex real Banach spaces. In fact, he proved the follow-
ing theorem.

Theorem 1.3 (Theorem Z). (Zegeye [56]) Let E be a uniformly smooth and 2- uniformly convex
real Banach space with dual E∗. Let A : E → E∗ be a Lipschitz continuous monotone mappings
with constant L > 0 and A−1(0) ̸= ∅. For given u, x1 ∈ E, let {xn} be generated by the algorithm

xn+1 = J−1
(
βnJu+ (1− βn)(Jxn − αnAxn)

)
, n ≥ 1

where J is the normalized duality mapping from E into E∗ and {αn} and {βn} are real se-
quences in (0, 1) satisfying (i) limn→∞ βn = 0, (ii)

∑
βn = ∞ and (iii) αn = o(βn). Sup-

pose that Bmin ∩
(
AJ−1

)−1

(0) ̸= ∅. Then {xn} converges strongly to x∗ ∈ A−1(0) and that

R(Ju) = Jx∗ ∈
(
AJ−1

)−1

(0), where R is a sunny generalized nonexpansive retraction of E∗

onto
(
AJ−1

)−1

(0).
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Motivated by approximating zeros of monotone mappings, Chidume et. al. [14] proposed
a krasnoselskii type scheme and proved a strong convergence theorem in Lp, 2 ≤ p < ∞.
In fact, they obtained the following result.

Theorem 1.4 (Theorem CA). (Chidume et. al. [14]). Let X= Lp, 2 ≤ p < ∞ and A : X →
X∗ be a Lipschitz map. Assume that there exists a constant k ∈ (0, 1) such that A satisfies the
following condition: 〈

Ax−Ay, x− y
〉
≥ k∥x− y∥

p
p−1 , (1.7)

and that A−1(0) ̸= ∅. For arbitrary x1 ∈ X , define the sequence {xn} iteratively by:

xn+1 = J−1(Jxn − λAxn), n ≥ 1, (1.8)

where λ ∈ (0, δp) and δp is some positive constant. Then, the sequence {xn} converges strongly
to the unique solution of the equation Ax = 0.

In [14], they also proved a similar result for the class of Lipschitzian strongly monotone
mappings in Lp-spaces for 1 < p ≤ 2.

Remark 1.1. Theorem CA is proved in Lp-spaces, 2 ≤ p < ∞ with Lipschitz mapping
satisfying condition (1.7). The method of proof used in (1.7) is not extendable to the class
of strongly monotone mappings.

Remark 1.2. In [14], the authors posed the following open problem: If E = Lp, 2 ≤
p < ∞, attempts to obtain strong convergence of the Krasnoselskii-type sequence defined for
x0 ∈ E, by:

xn+1 = J−1(Jxn − λAxn), n ≥ 0, λ ∈ (0, 1) (1.9)

to a solution of the equation Au = 0, where A is strongly monotone and Lipschitz, have
not yielded any positive result. It is, therefore, of interest to find out if a Krasnoselskii-type
sequence will converge strongly to a solution of Au = 0 in this space.

Following the works of Chidume et. al., [14] and motivating by approximating zeros of
monotone type mappings, several strong convergence results have been established by
various authors using the algorithm (1.8) proposed by Chidume et. al in [14] (see, e.g.,
Diop et. al [21], Mendy et. al [27], Mendy et. al [28], Sow et.al [43] ).
Recently Mendy et. al [27] study the Krasnoselskii-type algorithm introduced by Chidume
et.al [14] and they prove strong convergence theorems to approximate the unique zero
of a Lipschitz strongly monotone mapping 2-uniformly smooth and p-uniformly convex real
Banach space for p ≥ 2. In fact, they prove the following theorem.

Theorem 1.5 (Theorem MA). (Mendy et. al. [27]). For p ≥ 2, let E be a 2-uniformly smooth
and p-uniformly convex real Banach space and let A : X → X∗ be a Lipschitz strongly monotone
mapping such that A−1(0) ̸= ∅. For arbitrary x1 ∈ E, define the sequence {xn} iteratively by:

xn+1 = J−1(Jxn − λAxn), n ≥ 1, (1.10)

where λ is a postive real number and J is the duality mapping of E. Then there exists a positive real
number δp such that if λ ∈ (0, δp), the sequence {xn} converges strongly to the unique solution of
the equation Ax = 0.

Remark 1.3. The results obtained by Mendy et. al [27] extend and generalize recent works
by various authors. In particular, Mendy et. al provide an affirmative answer to the
Chidume et al. open problem in [14].
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In this paper, we introduce a new type Krasnoselskii algorithm to approximate the unique
zero of a Lipschitz strongly monotone mapping defined in some class of Banach spaces includ-
ing the Lp and Sobolev spaces. The algorithm proposed in this work is simpler than the
one used by Chidume et. al in [14]. Applications are also given for convex minimisation
problem.

2. PRELIMINARIES

Let E be a normed linear space. E is said to be smooth if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.11)

exist for each x, y ∈ SE (here SE := {x ∈ E : ||x|| = 1} is the unit sphere of E). E is said to
be uniformly smooth if it is smooth and the limit is attained uniformly for each x, y ∈ SE ,
and E is Fréchet differentiable if it is smooth and the limit is attained uniformly for y ∈ SE .

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E , ρE ,
is defined by:

ρE(τ) := sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ = 1, ∥y∥ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

It is well known (see, e.g., [2] p.95 ) that ρE is nondecreasing. If there exist a constant c > 0
and a real number q > 1 such that ρE(τ) ≤ cτ q , then E is said to be q-uniformly smooth.
A normed linear space E is said to be strictly convex if:

∥x∥ = ∥y∥ = 1, x ̸= y ⇒
∥∥∥x+ y

2

∥∥∥ < 1.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by:

δE(ϵ) := inf
{
1− 1

2
∥x+ y∥ : ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ

}
.

E is uniformly convex if and only if δE(ϵ) > 0 for every ϵ ∈ (0, 2]. Let p > 1. Then E is
said to be p-uniformly convex if there exists a constant c > 0 such that δE(ϵ) ≥ cϵp for all
ϵ ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly convex.

Typical examples of such spaces are the Lp, ℓp and Wm
p spaces for 1 < p < ∞ where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p < ∞;
p− uniformly smooth and 2− uniformly convex if 1 < p < 2.

It is well known that E is smooth if and only if J is single valued. Moreover, if E is a
reflexive smooth and strictly convex Banach space, then J−1 is single valued, one-to-one,
surjective and it is the duality mapping from E∗ into E. Finally, if E has uniform Gâteaux
differentiable norm, then J is norm-to-weak∗ uniformly continuous on bounded sets.

Remark 2.4. Note also that a duality mapping exists in each Banach space. We recall from
[18] some of the examples of this mapping in ℓp, LP ,W

m,p-spaces, 1 < p < ∞.

(i) ℓp : Jx = ∥x∥2−p
lp

y ∈ ℓq, x = (x1, x2, · · · , xn, · · · ), y = (x1|x1|p−2, x2|x2|p−2,

· · · , xn|xn|p−2, · · · ),



114 M. Sene, M. Ndiaye and V. N. Djitte

(ii) Lp : Ju = ∥u∥2−p
Lp

|u|p−2u ∈ Lq ,

(iii) Wm,p : Ju = ∥u∥2−p
Wm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈ W−m,q ,

where 1 < q < ∞ is such that 1/p+ 1/q = 1.

Lemma 2.1 (Xu, [53]). Let q > 1 be a real number and E be a Banach space. Then the following
assertions are equivalent.

(i) E is q-uniformly smooth.
(ii) There exists a constant dq > 0 such that for all x, y ∈ E, one has,

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ dq∥y∥q.

As examples,

i) the Lp, ℓp and Wm,p spaces for 1 < p < ∞ are q-uniformly smooth real Banach
spaces with q given by q = min{2, p} and dq ≥ 1 is given by:

dq =


1+τq−1

(1+τ)q−1 , if 1 < p < 2,

p− 1, if 2 ≤ p < ∞,

where τ ∈ (0, 1) is the unique solution of the equation (q−2)tq−1+(q−1)tq−2−1= 0.

ii) Hilbert spaces are q-uniformly smooth Banach spaces with q = 2 and dq = 1.

3. MAIN RESULTS

Let E be a 2-uniformly smooth Banach space. For the remainder of this paper, d2 denotes
the constant appearing in Lemma 2.1.

Let A : E → E∗ be a map. We assume that :

(i) A is Liptchitzian, that is, there exists a constant L > 0 such that ∥Ax − Ay∥ ≤
L∥x− y∥, ∀x, y ∈ E..

(ii) A is strongly monotone, that is, there exists k > 0 such that is ⟨x − y,Ax − Ay⟩ ≥
k∥x− y∥2, ∀x, y ∈ E.

(iii) L2(d2 − 1) < k2.

With these assumptions, we prove the following theorem..

Theorem 3.6. Let E be a 2-uniformly smooth Banach space. Let A : E → E∗ be a mapping with
A−1(0) ̸= ∅ and such that the assumptions (i), (ii) and (iii) are satisfied. For given x1 ∈ E, let
the sequence {xn} be defined as follows:

xn+1 = xn − λJ−1(Axn), n ≥ 1, (3.12)

where λ ∈ (α1, α2) with α1 = k
L2 and α2 =

k+
√

k2−L2(d2−1)

L2 . Then, the sequence {xn}
converges strongly to x∗, the unique solution of Au = 0.
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Proof. Let x∗ ∈ E be the unique solution of Ax = 0. Using (3.12), Lemma 2.1 and the fact
that ∥J−1v∥ = ∥v∥ for all v ∈ E∗, we have the following estimates:

∥xn+1 − x∗∥2 = ∥xn − x∗ − λJ−1(Axn)∥2

≤ ∥λJ−1(Axn)∥2 − 2⟨xn − x∗, J(λJ−1(Axn))⟩+ d2∥xn − x∗∥2

= λ2∥Axn∥2 − 2λ⟨xn − x∗, Axn⟩+ d2∥xn − x∗∥2.

Using the assumptions (i) and (ii) we obtain

∥xn+1 − x∗∥2 ≤ λ2L2∥xn − x∗∥2 − 2kλ∥xn − x∗∥2 + d2∥xn − x∗∥2.

=
(
λ2L2 − 2kλ+ d2

)
∥xn − x∗∥2.

Using the fact that λ ∈ (α1, α2), it follows that 0 < λ2L2 − 2kλ+ d2 < 1 and we have,

∥xn+1 − x∗∥ ≤ δ(λ)∥xn − x∗∥, (3.13)

where δ(λ) :=
(
λ2L2 − 2kλ+ d2

) 1
2 . Therefore the sequence {xn} converges strongly to

x∗. This completes the proof. □

Convergence in Lp, 2 ≤ p < ∞.

Observing that Lp spaces, for 2 ≤ p < ∞ are 2-uniformly smooth real banach spaces,
using the fact that d2 = p− 1, then the following corollary is immediate.

Corollary 3.1. Let E = Lp, p ≥ 2 and let A : E → E∗ be a mapping, with A−1(0) ̸= ∅ and
such that (i) and (ii) are satisfied. Assume that 2 ≤ p < 2 + k2

L2 . For arbitrary x1 ∈ E, let the
sequence {xn} be defined as follows:

xn+1 = xn − λJ−1(Axn), n ≥ 1, (3.14)

where λ ∈ (α1, α2) with α1 = k
L2 and α2 =

k+
√

k2−L2(p−2)

L2 .
Then, the sequence {xn} converges strongly to x∗, the unique solution of Au = 0.

Proof. Since Lp-spaces, 2 ≤ p < ∞ are 2-uniformly Banach spaces and observing that
from 2 ≤ p < 2 + k2

L2 , the condition (iii) is satisfied, then the proof follows from Theorem
3.6. □

Hilbert spaces are 2-uniformly smooth real Banach spaces. For a real Hilbert space, the
duality mapping is the identity map and in addition, d2 = 1, so the condition (iii),
L2(d2 − 1) < k2 is satisfied.
With these observations, the following corollary is immediate.

Corollary 3.2. Let H be a real Hilbert space and let A : H → H be a mapping with A−1(0) ̸= ∅
and such that (i) and (ii) are satisfied. For given x1 ∈ E, let the sequence {xn} be defined as
follows:

xn+1 = xn − λAxn, n ≥ 1, (3.15)

where λ ∈ ( k
L2 , 2

k
L2 ), Then, the sequence {xn} converges strongly to x∗, the unique solution of

Au = 0.
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Convergence in Lp, 1 < p ≤ 2.

In the sequel, we need the following result.

Lemma 3.2. [7] Let E = Lp, 1 < p ≤ 2, one has the following inequality:

(p− 1)∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x)⟩+ ∥y∥2, ∀x, y ∈ E. (3.16)

We now prove the following result.

Theorem 3.7. Let E = Lp, 1 < p ≤ 2 and let A : E → E∗ be a mapping, with A−1(0) ̸= ∅ and
such that (i) and (ii) are satisfied. Assume that 2 − k2

L2 < p ≤ 2. For arbitrary x1 ∈ E, let the
sequence {xn} be defined as follows:

xn+1 = xn − λJ−1(Axn), n ≥ 1, (3.17)

where λ ∈ (β1, β2) with β1 = k
L2 and β2 =

k+
√

k2−L2(2−p)

L2 .
Then, the sequence {xn} converges strongly to x∗, the unique solution of Au = 0.

Proof. Let x∗ ∈ E such that Ax∗ = 0. Using (3.17), Lemma 3.2 and the fact that ∥J−1v∥ =
∥v∥ for all v ∈ E∗, we have the following estimates:

(p− 1)∥xn+1 − x∗∥2 = (p− 1) ∥xn − x∗ − λJ−1(Axn)∥2

≤ ∥λJ−1(Axn)∥2 − 2⟨xn − x∗, J(λJ−1(Axn))⟩+ 1∥xn − x∗∥2

= λ2∥Axn∥2 − 2λ⟨xn − x∗, Axn⟩+ 1∥xn − x∗∥2.

Using (i) and (ii), we obtain

(p− 1)∥xn+1 − x∗∥2 ≤ λ2L2∥xn − x∗∥2 − 2kλ∥xn − x∗∥2 + ∥xn − x∗∥2,

which implies that

∥xn+1 − x∗∥2 ≤
(
λ2L2 − 2kλ+ 1

p− 1

)
∥xn − x∗∥2.

Using the fact that λ ∈ (β1, β2), it follows that 0 < λ2L2−2kλ+1
p−1 < 1 and we have,

∥xn+1 − x∗∥ ≤ δ(λ)∥xn − x∗∥, (3.18)

where δ(λ) :=
(

λ2L2−2kλ+1
p−1

) 1
2

Therefore the sequence {xn} converges strongly to x∗. This
completes the proof.

□

4. APPLICATION TO CONVEX MINIMIZATION PROBLEMS

In this section, we study the problem of finding a minimizer of a convex function f de-
fined from a real Banach space E to R.

The following basic results are well known.

Remark 4.5. It is well known that if f : E → R is a real-valued differentiable convex
function and a ∈ E, then the point a is a minimizer of f on E if and only if df(a) = 0.
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Definition 4.1. A function f : E → R is said to be strongly convex if there exists α > 0
such that for every x, y ∈ E with x ̸= y and λ ∈ (0, 1), the following inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)α

2
∥x− y∥2. (4.19)

Lemma 4.3. Let E be normed linear space and f : E → R a real-valued differentiable convex
function. Assume that f is strongly convex. Then the differential map df : E → E∗ is strongly
monotone, i.e., there exists a positive constant k such that

⟨df(x)− df(y), x− y⟩ ≥ k∥x− y∥2 ∀x, y ∈ E. (4.20)

We now prove the following theorem.

Theorem 4.8. Let E = Lp,p ≥ 2 and f : E → R be a differentiable, strongly convex real-
valued function which satisfies the growth condition: f(x) → +∞ as ∥x∥ → +∞. Assume
that the differential map df : E → E∗ is Lipschitz. Let k and L denote the constants from the
strong convexity of f and the Lipschtz property of the differential map df of f . Assume that
2 ≤ p < 2 + k2

L2 . For arbitrary x1 ∈ E, let {xn} be a sequence defined iteratively by:

xn+1 = xn − λJ−1(df(xn)), n ≥ 1, (4.21)

where λ ∈ (α1, α2) with α1 = k
L2 and α2 =

k+
√

k2−L2(p−2)

L2 .

Then, f has a unique minimizer a∗ ∈ E and the sequence {xn} converges strongly to a∗.

Proof. Since E is reflexive, then from the growth condition, the continuity and the strict
convexity of f , it follws that f has a unique minimizer a∗ characterized by df(a∗) = 0
(Remark 4.5). Finally, from Lemma 4.3 and the fact that the differential map df : E → E∗

is Lipschitz, the proof follows from Corollary 3.1. □

Theorem 4.9. Let E = Lp,1 < p ≤ 2 and f : E → R be a differentiable, strongly convex
real-valued function which satisfies the growth condition: f(x) → +∞ as ∥x∥ → +∞. Assume
that the differential map df : E → E∗ is Lipschitz. Let k and L denote the constants from the
strong convexity of f and the Lipschtz property of the differential map df of f . Assume that
2− k2

L2 < p ≤ 2. For arbitrary x1 ∈ E, let {xn} be a sequence defined iteratively by:

xn+1 = xn − λJ−1(df(xn)), n ≥ 1, (4.22)

where λ ∈ (α1, α2) with α1 = k
L2 and α2 =

k+
√

k2−L2(2−p)

L2 .

Then, f has a unique minimizer a∗ ∈ E and the sequence {xn} converges strongly to a∗.

Proof. Since E is reflexive, then from the growth condition, the continuity and the strict
convexity of f , it follws that f has a unique minimizer a∗ characterized by df(a∗) = 0
(Remark 4.5). Finally, from Lemma 4.3 and the fact that the differential map df : E → E∗

is Lipschitz, the proof follows from Theorem 3.7. □

5. ILLUSTRATION OF THE PROPOSED ALGORITHM IN Lp SPACES

From [1], the duality mapping J is known precisely in Lp(Ω) for 1 < p < ∞ and is given
by :

Ju = ∥u∥2−p
Lp

|u|p−2u, ∀u ∈ Lp(Ω).
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For 1 < p < ∞, Lp(Ω) is a smooth, reflexive and strictly convex real Banach space, then
its duality mapping J is one-to-one, surjective and its inverse J−1 is the duality mapping
of Lq(Ω) with1/p+ 1/q = 1. Therefore,

J−1v = ∥v∥2−q
Lq

|v|q−2v, ∀ v ∈ Lq(Ω),

In this settings, the sequences {xn} defined in (3.12) is given iteratively from x1 ∈ Lp(Ω)
by:

xn+1 = xn − λ∥Axn∥2−q
Lq

|Axn|q−2Axn, n ≥ 1. (5.23)

From Corollary 3.1 and Theorem 3.7, it follows that the sequence {xn} given by (5.23)
converges strongly to some x∗ ∈ Lp(Ω), where x∗ is the unique zero of the mapping A.
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