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Counting points on elliptic curves modulo a prime power

JASBIR S. CHAHAL and OMAR KHADIR

ABSTRACT. Let p > 3 be a prime number and r > 0 an integer. In this paper, we give a formula for counting
the points of elliptic curves over the modular ring Z/pr Z.

1. INTRODUCTION

During the last fifteen years of the last century, there were several major breakthroughs
in number theory, which rendered the study of elliptic curves indispensable. Most of them
were triggered by Frey’s paper [6] in which he proposed a strategy to prove Fermat’s Last
Theorem by converting it into a problem in the arithmetic of elliptic curves. Following
Frey’s suggestion, Ribet [21] proved that a proof of (a weaker version of) the so-called
Taniyama-Shimura conjecture proves Fermat’s Last Theorem. It was this weaker version
of the Taniyama-Shimura conjecture which Wiles [26] proved to complete the proof. It was
truly a monumental achievement. Fermat’s Last Theorem had defied all attempts to prove
it for over three centuries. Another important, but unrelated to the proof of Fermat’s Last
Theorem, is Lenstra’s paper [15] on factoring integers with elliptic curves. Although his
method was inspired by the classical Pollard’s (p - 1) method, it is much more powerful.
Miller [17] suggested an analogue of the Diffie-Hellman protocol for sharing a common
secret key before communicating over a public channel while Koblitz [11] proposed an
analogue of Massey-Omura and ElGamal cryptosystems.
In 1991 the KMOV cryptosystem [12], based on a combination of RSA and the elliptic
curves was published. It was an important application of elliptic curves to public key
cryptography.
The elliptic curves method defined over finite fields Fq of q elements are well-suited for
constructing secure cryptosystems [5, 13, 19]. To this end one needs to compute the num-
ber of the points on the curve [10, p. 423], [2].
The first deterministic polynomial time algorithm was constructed in 1985 by Schoof
[7, 22, 23]. It was improved successively by Atkin [1] and Elkies [4]. However the method
is practical only if q is small. In [14], the authors discuss the equivalence between counting
points modulo n and factoring n.
In this work, we give a formula for #En(a, b), the number of solutions of the equation

y2 = x3 + ax+ b (mod n) (1.1)

when n is a power prime. To the best of our knowledge, this problem has not been studied
before.
The paper is organized as follows: In Section 2 we present an overview of elliptic curves.
In Section 3, we describe our contribution. Section 4 contains an application of our for-
mula to a special case. We conclude our discussion in Section 5.
Throughout this paper, we shall use standard notation. In particular, N (resp. N+) is the

Received: 21.05.2021. In revised form: 08.11.2021. Accepted: 15.11.2021
2010 Mathematics Subject Classification. 14H52, 11T71.
Key words and phrases. elliptic curves, Hensel’s lemma.
Corresponding author: Omar Khadir; khadir@hotmail.com

51



52 J. Chahal and O. Khadir

set of non-negative (resp. positive) integers. The cardinality of a set S is denoted by #S.
Let f(x, y) be a polynomial with cœfficients in Z and n an integer. By

f(x, y) ≡ 0 (mod n) (1.2)

we mean the equation

f(x, y) = 0 (1.3)

over the ring A = Z/nZ obtained from (1.2) by its reduction modulo n. By a solution of
(1.2) we mean a solution of (1.2) with (x, y) in A.
We begin with a brief review of elliptic curves. (For details, see [1, 3, 8, 24, 25]).

2. OVERVIEW ON ELLIPTIC CURVES

1) Elliptic curves over the Field R
Let a, b be two fixed numbers in R with 4a3 + 27b2 ̸= 0. The elliptic curve E, or E(a, b) to
show its dependence on a, b, defined over R or (E/R for short) is the set of points (x, y) in
the projective plane P2 that verify

y2 = x3 + ax+ b. (2.4)

If P = (x1, y1) and Q = (x2, y2) are two points on the affine part of E then the line (PQ)
will necessary meet the curve in a third point R = (x3, y3) . When P = Q the line (PQ)
becomes the tangent. To ovoid singular points, we suppose that 4a3 + 27b2 ̸= 0. When
x1 = x2 and y1 = −y2, i.e when (PQ) is vertical, R is the point at infinity at both end of
this line, denoted by O.
We define an addition on E(a, b) by setting P+Q to be the reflection R′ of R in the x−axis,
i.e. P +Q = (x3,−y3). See Figure 1.
The following is well-known.

Theorem 2.1. The set E(a, b) is an Abelian group.

From the geometrical situation, we can compute purely algebraically the coordinates
x3, y3. Indeed:

1. If x1 ̸= x2 then
{

x3 = λ2 − (x1 + x2)
y3 = λ(x1 − x3)− y1

where λ =
y2 − y1
x2 − x1

.

2. If x1 = x2 and y1 = y2 = 0 then P +Q = O.
3. If x1 = x2 and y1 = −y2 with y1 ̸= 0, then P +Q = O.

4. If x1 = x2 and y1 = y2 ̸= 0 then
{

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

where λ =
3x2

1 + a

2y1
.

(2.5)

Now let n > 1 be an integer and a, b in Z with 4a3+27b2 ̸≡ 0 mod n. We denote by En(a, b)
the set of solutions of the elliptic curve

y2 ≡ x3 + ax+ b (mod n) (2.6)

in the ring A = Z/nZ = {0, 1, . . . , n − 1}. In this set up, we lose the geometry, but
algebraically everything works perfectly. Let us first assume that n = p, an odd prime, so
that A is the finite field Fp of p elements.
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Figure 1. The elliptic curve y2 = x3 + 8
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2) Elliptic curves over the field Fp = Z/pZ = {0, 1, . . . , p− 1}
We define the elliptic curve E/Fp as the set E(Fp) of points with coordinates Fp (a, b ∈ Fp)
on the affine curve defined by

y2 ≡ x3 + ax+ b, (2.7)
togetter with its point O at infinity.
Because Z/pZ is a field, we can define the addition operation by taking the formulas (2.5)
in the field Fp. The set E(Fp) is again a finite Abelian group with O as the identity.
The following estimate on the cardinality of E(Fp) is a famous theorem of Hasse, he
proved in 1934, (Cf. [3, 11]).

Theorem 2.2.
|#E(Fp)− (p+ 1)| ≤ 2

√
p. (2.8)

Note that (2.8) remains valid if p is replaced by q = pr, r ≥ 1, (See [3]).

3) Elliptic curves over the ring Z/nZ
We now assume that n is arbitrary, not necessary a prime. Again we denote the set of
solutions of (1.1) in Z/nZ by En(a, b). We cannot define an addition operation on, say
unequal points Pj = (xj , yj) in En(a, b), j = 1, 2, unless x1 − x2 is a unit in the ring Z/nZ,
which happens if and only if x1 − x2 is coprime to n, the failure of which is in fact the
main idea behind the elliptic curve method to find factors of n.

3. OUR CONTRIBUTION

Let p > 3 be a prime number, r > 1 an integer and a, b ∈ Z with 4a3 + 27b2 ̸≡ 0 mod p.

Now consider a fixed point (X0, Y0) in Epr−1(a, b) such that 0 ≤ X0, Y0 < pr−1. We put

A(X0,Y0) = {(x, y) ∈ Epr (a, b) | x mod pr−1 is X0 and y mod pr−1 is Y0}. (3.9)

Lemma 3.1. If −a

3
is not a square modulo p then the cardinality of the set A(X0,Y0) is p.
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Proof. For each natural integer i ∈ {0, 1, 2, . . . , p − 1}, put Yi = Y0 + ipr−1. Define the
polynomials fYi

(X) = X3 + aX − Yi
2 + b. We have fYi

(X0) ≡ 0 mod pr−1 and f ′
Yi
(X0) ≡

f ′
Y0
(X0) ̸≡ 0 mod p. So by Hensel’s lifting lemma [20, p. 87] there exists a unique element

xi, 0 ≤ xi < pr, such that fYi
(xi) ≡ 0 mod pr and xi mod pr−1 = X0. Therefore the point

(xi, Yi) belongs to the elliptic curve Epr (a, b). As, modulo pr, all the constructed values Yi

are different, we conclude that the cardinality of A(X0,Y0) is at least equal to p.
Consider (x, y) ∈ A(X0,Y0), 0 ≤ y < pr. The Euclidean division of y by the prime power
pr−1 gives : y = pr−1q + s where 0 ≤ q < p and 0 ≤ s < pr−1. By the definition of
the set A(X0,Y0) we have y mod pr−1 = Y0. So s = Y0 and then y = Yq . Moreover, the
integer x verifies simultaneously fYq

(x) ≡ 0 mod pr and X0 is the reduction of x mod
pr−1. By the uniqueness of elements xi in Hensel’s lemma, x must be equal to xq . So
(x, y) = (xq, Yq) and then the cardinality of the set A(X0,Y0) cannot be greater than p.
Therefore #A(X0,Y0) = p. □

The hypothesis of the lemma means that integers a and −3 must not be both squares or
both non-squares modulo p. And since exactly half of the elements in the multiplicative
group (Z/pZ)∗ are squares [9, p. 289], the parameter a has at least (p− 1)/2 possibilities.
We now give examples of elliptic curves Epr (a, b) for which parameter a satisfies the hy-
pothesis of Lemma 3.1.

Example 3.1. 1) Let g be a primitive root modulo p. Set a = −3g mod p.

We have (
−a

3
)

p−1
2 ≡ g

p−1
2 ≡ −1 mod p. The equation of the associate elliptic curve is

y2 ≡ x3 − 3gx+ bmod.
2) Let p = 2q + 1 > 7 be a safe prime [16, p. 164] [18, p. 171].
a) As g = −3 is always a primitive root modulo p. So the elliptic curve defined by y2 ≡
x3 + a2x+ bmod p, a ̸≡ 0 mod, satisfies the lemma.
b) If q ≡ 1 mod 4, g = 2 is a primitive root then a = −3g = −6. The equation of the elliptic
curve is y2 ≡ x3 − 6x+ bmod p.
c) If q ≡ 3 mod 4, g = −2 is a primitive root then a = −3g = 6. The equation of the elliptic
curve is y2 ≡ x3 + 6x+ bmod p.

Lemma 3.2. Let p > 3 be a prime integer. If −a

3
is not a square modulo p then the sets A(X,Y )

with (X,Y ) in Epr−1(a, b) are all pairwise disjoint.

Proof. Let (X,Y ) and (X ′, Y ′) be two distinct points in Epr−1(a, b).
Suppose that the intersection of the two sets A(X,Y ) and A(X′,Y ′) is not empty. Let (x, y) ∈
A(X,Y ) ∩A(X′,Y ′). We have;:
(x, y) ∈ A(X,Y ) =⇒ (x, y) ∈ Epr (a, b), xmod pr−1 is X and y mod pr−1 is Y .
Also (x, y) ∈ A(X′,Y ′) =⇒ x mod pr−1 is X ′ and y mod pr−1 is Y ′. As x mod pr−1 and
y mod pr−1 are unique, we get X = X ′ and Y = Y ′. This is a contradiction with the fact
that (X,Y ) ̸= (X ′, Y ′). □

Theorem 3.3. Let p > 3 be a prime integer and r ∈ N+. If −a

3
is not a square modulo p then

#Epr (a, b) = pr−1#Ep(a, b) (3.10)

Proof. It is easy to check that every element (x, y) of Epr (a, b) is also an element of the set
A(X0,Y0) where X0 = x mod pr−1 and Y0 = y mod pr−1. On an other hand, by Lemma 3.1
and Lemma 3.2, the collection A(X,Y ) where (X,Y ) are in Epr−1(a, b) constitues a partition
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of Epr (a, b). Therefore #Epr (a, b) =
∑

(X,Y )∈Epr−1 (a,b)

#A(X,Y ) = p#Epr−1(a, b). The proof

follows by an induction on the natural number r. □

By Theorem 3.3 and the Schoof algorithm [22, 23] we are able to efficiently compute the
cardinality of Epr (a, b).

Let n be a natural number. By the fundamental theorem of arithmetic, n =

r∏
i=1

pαi
i , where

r ∈ N+ and the pi are prime integers. Putting together, we have the following result:

Corollary 3.1. If for all i ∈ {1, 2, . . . , r}, pi > 3 and −a

3
is not a square modulo pi then

#En(a, b) =

r∏
i=1

pαi−1
i

r∏
i=1

#Epi
(a, b) (3.11)

Proof. By the Chinese remainder theorem the curve En(a, b) is isomorphic to the cartesian

product
r∏

i=1

Ep
αi
i
(a, b). So:

#En(a, b) =

r∏
i=1

#Epi(a, b) =

r∏
i=1

pαi−1
i #Epi(a, b) =

r∏
i=1

pαi−1
i

r∏
i=1

#Epi(a, b). □

4. APPLICATIONS

The results of Section 3 lead to some new ones.

Proposition 4.1. Let p > 3 be a prime number such that p ≡ 3 mod 4 and let r ∈ N+. Suppose
that a ̸≡ 0 mod p. If

a

3
is a square modulo p then the cardinality of the elliptic curve y2 ≡

x3 + axmod pr is pr.

Proof. Let p be a prime number and a ̸≡ 0 mod p. If p ≡ 3 mod 4 then the cardinality of the
elliptic curve Ep(a, 0) defined by y2 ≡ x3+axmod p is p, see for instance [25, p. 115]. Here
we don’t count the neutral element O. The rest is an immediate consequence of Theorem
3.3. □

We also have the fact:

Proposition 4.2. Let p = α2 + β2 be a prime number such that p ≡ 1 mod 4, α, β ∈ N, β even
and α+ β ≡ 1 mod 4. We Suppose that a ̸≡ 0 mod p.
If

a

3
is a square modulo p, then for any r ∈ N, the cardinality of Epr (a, 0) defined by y2 ≡

x3 + axmod pr is:
pr−1(p− 2α) if − a is a fourth power modulo p,
pr−1(p+ 2α) if − a is a square power modulo p but not a fourth power modulo p, and
pr−1(p± 2β) if − a is not a fourth power modulo p.

Proof. Use Theorem 3.3 and see [25, p. 115] for the cardinality of y2 ≡ x3 + ax (mod p)
when p ≡ 1 (mod 4). □

5. CONCLUSION

This paper reduces the problem of counting points on Epr (a, b) to that of counting
points on Ep(a, b)
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