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Computational approach to Transient solution for single
unreliable server Retrial Queue under non-preemptive
priority

S. DAMODARAN1 , A. MUTHU GANAPATHI SUBRAMANIAN2 and GOPAL SEKAR2

ABSTRACT. Single server Retrial Queueing model with system repair and breakdown under non-preemptive
priority is considered in this paper. The study of the model so far is mostly explored only for steady state solu-
tions with few exceptions to Transient solutions. Though some researchers have attempted transient solution to
the model analytically, the solution thus obtained is more complicated that it cannot be solved. In this context,
we have found the transient numerical solution to the model using eigenvalues and eigenvectors. Time depen-
dent system performance measures and probability distributions are evaluated and validated with steady state
solutions.

1. INTRODUCTION

In many practical queueing models, the occurrence of interruption is inevitable. Inter-
ruption arises due to either server break down or in case server goes for vacation. The im-
pact of inclusion of interruption in Queueing models reflects in the characteristics of the
queueing system. In most of the daily life queueing models such as Ticket reservation,
Banking services, ATM services, Vending machines, Billing counters and Toll collection
centres, often we come across the situation wherein either the server goes for vacation or
the system breaksdown and the customers need to wait either for the server to return from
vacation or the server to be made ready. Thus the study of system interruption become
more significant.

Study of Interrupted Queueing models started way back in 1950’s. Performance mea-
sures of a waiting line with interruptions are explored by Gaver [6]. By applying gen-
erating function method, White and Christie [13] investigated Queueing structure with
breakdown. Queue length generating function of several breakdown models of queue
were obtained by Thiruvengadam [11]. Explicit moment generating function of Queue
size for many server queue with interruptions is found by Mitrany and Avi-itzhak [8].
Shengli and Jingbo [10] analyzed M/M/N queue with variable breakdowns.

Study of server breakdown interruption in Retrial Queueing models were initiated only
in 1990’s. By employing Markov regenerating processes, Kulkarni and Choi [7], derived
stability and limiting behavior of Retrial queues with server subject to breakdowns and
repairs. Artalejo [3] investigated the asymptotic behavior of Retrial queueing systems
with breakdown of the servers. Applying the theory of piecewise Markovian Process,
Aissani[1] analyzed Retrial queue with redundancy and unreliable server. Aissani and
Artalejo [2] obtained expression of the generating function of the server state for the Sin-
gle server retrial queue subject to breakdowns. Jinting Wang and Jinhua Cao [12] studied
Reliability Analysis of Retrial Queue with server breakdown and repairs. Discrete time
Geo/G/1 retrial queue with server Breakdown is investigated by Atencia and Moreno [4].
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Muthu ganapathy Subramanian et al [9] studied unreliability of M/M/c retrial queue. All
these efforts provide only steadystate solutions to breakdown models.

Transient analysis of finite capacity single server queueing system with working break-
downs is explored by using fourth order Runge Kutta method by Ezeagu [5]. The pur-
pose of this paper is to find time dependent solution to M/M/1 Retrial queue with server
breakdown and repair. The transient solution to the model is found by matrix exponential
method. Time dependent probabilities and system performance measures are obtained.

2. MODEL DESCRIPTION

Queueing model of single server retrial system with active breakdown and repair of
service under priority is taken up for study. Two types of customers arrive at the system
to get the service done. Arrival of customers follow Poisson distribution. Low and high
priority customers arrive with rates λ1 and λ2 respectively. Time taken by the server to
serve follow exponential distribution with parameters µ1 and µ2 for low and high priority
customers respectively. Service breakdown is distributed exponentially with parameter α
and repair of server follows an exponential distribution with parameter β. Active break-
down is considered here, which means that the system does not break while it is idle.
The priority taken up is non-preemptive. According to non-preemptive, high priority
customer on arrival to the system and finds the server busy with low priority customer
and there is no one in the high priority queue, need to wait for the server to complete the
service for the low priority customer, to get his service done. The maximum number of
waiting spaces for high priority customers in front of the service station is s. When a low
priority customer arrive at the system, then

(1) When the server is idle, he get his service done immediately and leaves the system
(2) When the server is busy, he joins the orbit and become a source of repeated cus-

tomer with the intention of trying for the service independently after some ran-
dom time.

The retrial rate is exponentially distributed with intensity rate σ.
When a high priority customer arrive at the system, then

(1) When the server is idle, he get his service done immediately and leaves the system
(2) When the server is busy, and the high priority queue is not empty and in case

there is a space in the high priority queue, then he joins the queue otherwise he
leaves the system.

(3) When the server is busy with low/high priority customer and the high priority
queue is empty, due to non-preemptive priority principle, the customer waits for
the server to complete the service for the low/high priority customer and then
proceed to get his service done.

When the server breakdown while serving for a low priority customer (active break-
down), the customer with his incomplete service goes to orbit and the server goes to the
state of breakdown. When the server breakdown while serving for a high priority cus-
tomer (active breakdown), the customer with incomplete service will stay in the queue
in front of the service station and the server goes to the state of breakdown. Access of
customer from the orbit to the server is controlled by classical retrial policy. According to
this policy the customers from the orbit try for service independently of each other. The
probability of retrial in the interval (t, t + ∆t), when there are n customers in the orbit is
nσ∆(t) +O(t).

2.1. Random Process. The random variables N(t), P (t) and S(t) are respectively stand
for number of low priority customers, number of high Priority customers in the queue and
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the status of the server at time t. The random process is (N(t), P (t), S(t)). The different
status of the server in this model are either idle or busy with low priority customer or
busy with high priority customer or in breakdown.

(1) S(t) = 0 if the server is idle at time t
(2) S(t) = 1 if the server is busy with low priority customer at time t
(3) S(t) = 2 if the server is busy with high priority customer at time t
(4) S(t) = 3 if the server is in the status of breakdown at time t.

The possible State spaces are

{(u, v, w)/u = 0, 1, 2, 3 · · · ; v = 0;w = 0, 1, 2, 3}U
{(u, v, w)/u = 0, 1, 2, 3 · · · ; v = 1, 2, 3 · · · , s;w = 1, 3}U
{(u, v, w)/u = 0, 1, 2, 3 · · · ; v = 1, 2, 3 · · · , s− 1;w = 2}

2.2. Truncation. In order to carry out the computation, the infinitesimal generator matrix
must be of finite order. Since the number of customers in the low and high priority queue
takes infinite values, the infinitesimal generator matrix will not be a matrix of finite order.
To get a matrix of finite order, the number of customers in the queue of high priority order
is restricted to the finite number s and the number of customers in the orbit needs to be
truncated to M in such a way that the probability that will be lost is negligible. In this
model, open truncation is applied to overcome the difficulty.

2.3. Transitions. The transitions can be categorized into three classes
(1) Transitions from the state when there are no customers in the Orbit
(2) Transitions from the state when there is at least one customer in the Orbit
(3) Transitions from the state at the Truncation level.

These transitions are provided in Tables 1, 2 and 3.

2.4. Chapman-Kolmogorov Governing equations. The probability at time t for N(t) =
i, P (t) = j and S(t) = k is denoted as Pijk(t). The Chapman – Kolmogorov governing
Difference Differential equations for the M/M/1 queue with system breakdown and re-
pair under non-preemptive priority services which are obtained using transition tables 1,
2 and 3 are shown in page

3. TRANSIENT SOLUTION

3.1. Matrix form. Let Aij be the transition matrix corresponding to the state of N(t) = j
from the state N(t) = i. Then the infinitesimal generator matrix is Q = (Aij) The
Chapman-Kolmogorov Difference Differential equations can be expressed as

d(X(t))

dt
= X(t)Q (3.1)

where
X(t) = ((X0(t), X1(t), X2(t), · · · , XM (t))

and

Xi(t) = ((Pi00(t), Pi01(t), Pi02(t), Pi03(t), Pi11(t), Pi12(t), Pi13(t), · · · ,

Pis−11(t), Pis−12(t), Pis−13(t), Pis1(t), Pis3(t))
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TABLE 1. Transitions from the state when there are no customers in the Orbit.

From the state Event To the state
i j k l m n
0 0 0 −(λ1 + λ2 + ν) 0 0 0
0 0 0 λ1 0 0 1
0 0 0 λ2 0 0 2
0 0 1 −(λ1 + λ2 + µ1 + ν) 0 0 1
0 0 1 λ1 1 0 1
0 0 1 λ2 0 1 1
0 0 1 µ1 0 0 0
0 0 1 α 1 0 3
0 0 2 −(λ1 + λ2 + µ2 + ν) 0 0 2
0 0 2 λ1 1 0 2
0 0 2 λ2 0 1 2
0 0 2 µ2 0 0 0
0 0 2 α 0 1 3
0 0 3 −(λ1 + λ2 + β) 0 0 3
0 0 3 λ1 1 0 3
0 0 3 λ2 0 1 3
0 0 3 β 0 0 0
0 1,2,3,...,s-1 1 −(λ1 + λ2 + µ1 + α) 0 j 1
0 1,2,3,...,s-1 1 λ1 1 j 1
0 1,2,3,...,s-1 1 λ2 0 j+1 1
0 1,2,3,...,s-1 1 µ1 0 j-1 2
0 1,2,3,...,s-1 1 α 1 j 3
0 1,2,3,...,s-2 2 −(λ1 + λ2 + µ2 + α) 0 j 2
0 1,2,3,...,s-2 2 λ1 1 j 2
0 1,2,3,...,s-2 2 λ2 0 j+1 2
0 1,2,3,...,s-2 2 µ2 0 j-1 2
0 1,2,3,...,s-2 2 α 0 j+1 3
0 1,2,3,...,s-1 3 −(λ1 + λ2 + β) 0 j 3
0 1,2,3,...,s-1 3 λ1 1 j 3
0 1,2,3,...,s-1 3 λ2 0 j+1 3
0 1,2,3,...,s-1 3 β 0 j-1 2
0 s 1 −(λ1 + µ1 + α) 0 s 1
0 s 1 λ1 1 s 1
0 s 1 µ1 0 s-1 2
0 s 1 α 1 s 3
0 s-1 2 −(λ1 + µ2 + α) 0 s-1 2
0 s-1 2 λ1 1 s-1 2
0 s-1 2 µ2 0 s-2 2
0 s-1 2 α 0 s 3
0 s 3 −(λ1 + β) 0 s 3
0 s 3 λ1 1 s 3
0 s 3 β 0 s-1 2
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TABLE 2. Transitions from the state when there is \atleast one cus-
tomer in the Orbit.

From the state Event To the state
i j k l m n

1,2,3,... 0 0 −(λ1 + λ2 + iσ) i 0 0
1,2,3,... 0 0 λ1 i 0 1
1,2,3,... 0 0 λ2 i 0 2
1,2,3,... 0 0 iσ i-1 0 1
1,2,3,... 0 1 −(λ1 + λ2 + µ1 + α) i 0 1
1,2,3,... 0 1 λ1 i+1 0 1
1,2,3,... 0 1 λ2 i 1 1
1,2,3,... 0 1 µ1 i 0 0
1,2,3,... 0 1 α i+1 0 3
1,2,3,... 0 2 −(λ1 + λ2 + µ2 + α) i 0 2
1,2,3,... 0 2 λ1 i+1 0 2
1,2,3,... 0 2 λ2 i 1 2
1,2,3,... 0 2 µ2 i 0 0
1,2,3,... 0 2 α i 1 3
1,2,3,... 0 3 −(λ1 + λ2 + β) i 0 3
1,2,3,... 0 3 λ1 i+1 0 3
1,2,3,... 0 3 λ2 i 1 3
1,2,3,... 0 3 β i 0 0
1,2,3,... 1,2,3,...,s-1 1 −(λ1 + λ2 + µ1 + α) i j 1
1,2,3,... 1,2,3,...,s-1 1 λ1 i+1 j 1
1,2,3,... 1,2,3,...,s-1 1 λ2 i j+1 1
1,2,3,... 1,2,3,...,s-1 1 µ1 i j-1 2
1,2,3,... 1,2,3,...,s-1 1 α i+1 j 3
1,2,3,... 1,2,3,...,s-2 2 −(λ1 + λ2 + µ2 + α) i j 2
1,2,3,... 1,2,3,...,s-2 2 λ1 i+1 j 2
1,2,3,... 1,2,3,...,s-2 2 λ2 i j+1 2
1,2,3,... 1,2,3,...,s-2 2 µ2 i j-1 2
1,2,3,... 1,2,3,...,s-2 2 α i j+1 3
1,2,3,... 1,2,3,...,s-1 3 −(λ1 + λ2 + β) i j 3
1,2,3,... 1,2,3,...,s-1 3 λ1 i+1 j 3
1,2,3,... 1,2,3,...,s-1 3 λ2 i j+1 3
1,2,3,... 1,2,3,...,s-1 3 β i j-1 2
1,2,3,... s 1 −(λ1 + µ1 + α) i s 1
1,2,3,... s 1 λ1 i+1 s 1
1,2,3,... s 1 µ1 i s-1 2
1,2,3,... s 1 α i+1 s 3
1,2,3,... s-1 2 −(λ1 + µ2 + α) i s-1 2
1,2,3,... s-1 2 λ1 i+1 s-1 2
1,2,3,... s-1 2 µ2 i s-2 2
1,2,3,... s-1 2 α i s 3
1,2,3,... s 3 −(λ1 + β) i s 3
1,2,3,... s 3 λ1 i+1 s 3
1,2,3,... s 3 β i s-1 2
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TABLE 3. Transitions from the state at the \Truncation level.

From the state Event To the state
i j k l m n

M 0 0 −(λ2 +Mσ) M 0 0
M 0 0 λ2 M 0 2
M 0 0 Mσ M-1 0 1
M 0 1 −(λ2 + µ1 + α) i 0 1
M 0 1 λ2 M 1 1
M 0 1 µ1 M 0 0
M 0 2 −(λ2 + µ2 + α) M 0 2
M 0 2 λ2 M 1 2
M 0 2 µ2 M 0 0
M 0 2 α M 1 3
M 0 3 −(λ2 + β) M 0 3
M 0 3 λ2 M 1 3
M 0 3 β M 0 0
M 1,2,3,...,s-1 1 −(λ2 + µ1) M j 1
M 1,2,3,...,s-1 1 λ2 M j+1 1
M 1,2,3,...,s-1 1 µ1 M j-1 2
M 1,2,3,...,s-2 2 −(λ2 + µ2 + α) M j 2
M 1,2,3,...,s-2 2 λ2 M j+1 2
M 1,2,3,...,s-2 2 µ2 M j-1 2
M 1,2,3,...,s-2 2 α M j+1 3
M 1,2,3,...,s-1 3 −(λ2 + β) M j 3
M 1,2,3,...,s-1 3 λ2 M j+1 3
M 1,2,3,...,s-1 3 β M j-1 2
M s 1 −µ1 M s 1
M s 1 µ1 M s-1 2
M s-1 2 −µ2 M s-1 2
M s-1 2 µ2 M s-2 2
M s-1 2 α M s 3
M s 3 −β M s 3
M s 3 β M s-1 2

3.2. Generator Matrix. The truncated generator matrix is

Q =


A00 A01 A02 . . . A0M−1 A0M

A10 A11 A12 . . . A1M−1 A1M

A20 A21 A22 . . . A2M−1 A2M

. . . . . . . . . . . . . . . . . .
AM−1,0 AM−1,1 AM−1,2 ... AM−1M−1 AM−1M

AM0 AM1 AM2 ... AMM−1 AMM
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3.3. Chapman Kolmogorov Equations.

For i = 1, 2, 3, · · · ,M − 1;

P
′

000 (t) = − (λ1 + λ2)P000(t) + µ1P001(t) + µ2P002(t) + βP003(t)

P
′

001 (t) = − (λ1 + λ2 + µ1 + α)P001(t) + λ1P000(t) + σP100(t)

P
′

002 (t) = − (λ1 + λ2 + µ2 + α)P002(t) + λ2P000(t) + µ1P011(t) + µ2P012(t) + βP013(t)

P
′

003 (t) = − (λ1 + λ2 + β))P003(t)

P
′

0j1 (t) = − (λ1 + λ2 + µ1 + α)P0j1(t) + λ2P0j−11(t) , j = 1, 2, 3, · · · , s− 1

P
′

0s1 (t) = − (λ1 + µ1 + α)P0s1(t) + λ2P0s−11(t)

P
′

0j2 (t) = − (λ1 + λ2 + µ2 + α)P0j2(t) + λ2P0j−12(t) + µ1P0j+11(t) + µ2P0j+12(t)
+βP0j+13(t), j = 1, 2, 3, · · · , s− 2

P
′

0s−12 (t) = − (λ1 + µ2)P0s−12(t) + λ2P0s−22(t) + µ1P0s1(t) + βP0s3(t)

P
′

0j3 (t) = − (λ1 + λ2 + β)P0j3(t) + λ2P0j−13(t) + αP0j−12(t) , j = 1, 2, 3, · · · , s− 1

P
′

0s3 (t) = − (λ1 + β)P0s3(t) + λ2P0s−13(t) + αP0s−12(t)

P
′

i00 (t) = − (λ1 + λ2 + iσ)Pi00(t) + µ1Pi01(t) + µ2Pi02(t) + βPi03(t)

P
′

i01 (t) = − (λ1 + λ2 + µ1 + ν)Pi01(t) + λ1Pi−101(t) + λ1Pi00(t) + (i+ 1)σPi+100(t)

P
′

ij1 (t) = − (λ1 + λ2 + µ1 + ν)Pij1(t) + λ1Pi−1j1(t) + λ2Pij−11(t) , j = 1, 2, 3, · · · , s− 1

P
′

is1 (t) = − (λ1 + µ1 + ν)Pis1(t) + λ1Pi−1s1(t) + λ2Pis−11(t)

P
′

i02 (t) = − (λ1 + λ2 + µ2 + ν)Pi02(t) + λ1Pi−102(t) + λ2Pi00(t) + µ1Pi11(t) + µ2Pi12(t)

P
′

ij2 (t) = − (λ1 + λ2 + µ2 + ν)Pij2(t) + λ1Pi−1j2(t) + λ2Pij−12(t) + µ1Pij+11(t)
+µ2Pij+12(t), j = 1, 2, 3, · · · , s− 2

P
′

is−12 (t) = − (λ1 + µ2 + ν)Pis−12(t) + λ1Pi−1s−12(t) + λ2Pis−22(t)

P
′

i03 (t) = − (λ1 + λ2 + β)Pi03(t) + λ1Pi−103(t) + αPi−101(t)

P
′

ij3 (t) = − (λ1 + λ2 + β)Pij3(t) + λ1Pi−1j3(t) + λ2Pij−13(t) + αPi−1j1(t) + αPij−12(t),
j = 1, 2, 3, · · · , s− 1

P
′

is3 (t) = − (λ1 + β)Pis3(t) + λ1Pi−1s3(t) + λ2Pis−13(t) + αPi−1s1(t) + αPis−12(t)

P
′

M00 (t) = − (λ2 +Mσ)PM00(t) + µ1PM01(t) + µ2PM02(t) + βPM03(t)

P
′

M01 (t) = − (λ2 + µ1 + α)PM01(t) + λ1PM−101(t) + λ1PM00(t)

P
′

Mj1 (t) = − (λ2 + µ1)PMj1(t) + λ1PM−1j1(t) + λ2PMj−11(t) , j = 1, 2, 3, · · · , s− 1

P
′

Ms1 (t) = −µ1PMs1(t) + λ1PM−1s1(t) + λ2PMs−11(t)

P
′

M02 (t) = − (λ2 + µ2 + α)PM02(t) + λ1PM−102(t) + λ2PM00(t) + µ1PM11(t)
+µ2PM12(t) + βPM13

P
′

Mj2 (t) = − (λ2 + µ2 + ν)PMj2(t) + λ1PM−1j2(t) + λ2PMj−12(t) + µ1PMj+11(t)+

µ2PMj+12(t) + βPMj+13 , j = 1, 2, 3, · · · , s− 2

P
′

Ms−12 (t) = −µ2PMs−12(t) + λ1PM−1s−12(t) + λ2PMs−22(t) + βPMs3(t)

P
′

M03 (t) = − (λ2 + β)PM03(t) + λ1PM−103(t) + αPM−101(t)

P
′

Mj3 (t) = − (λ2 + β)PMj3(t) + λ1PM−1j3(t) + λ2PMj−13 + αPMj−12(t) + αPM−1j1(t),

j = 1, 2, 3, · · · , s− 1

P
′

Ms3 (t) = βPMs3(t) + λ1PM−1s3(t) + λ2PMs−13(t) + αPMs−12(t)

The matrices Aij can be obtained from the system of Chapman - Kolmogrov equa-
tions.Under Markovian process A01 = A12 = A23 = · · · = AM−1M andAij = 0 for
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|i− j| > 1.Thus the generator matrix is

Q =


A00 A0 0 . . . 0 0
A10 A11 A0 . . . 0 0
0 A21 A22 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 ... AM−1M−1 A0

0 0 0 ... AMM−1 AMM



The solution of the equation is

X(t) = X(0)etQ where [X(0)] = (1, 0, 0, ..., 0)

4. DESCRIPTION OF THE COMPUTATIONAL METHOD

The procedure of computational method to find transient solution to the M/M/1 Re-
trial model combined with system breakdown and repair under non-preemptive priority.

(1) Determination of the generator matrix Q which is square matrix of order
3(M + 1)(s+ 1)

(2) Diagonalization of the diagonal matrix of tQ using eigenvalues and eigenvectors
for given time instance t.

(3) Estimatation of etQ using diagonalization matrix of tQ
(4) First row of e tQ fetches X(t)
(5) Repeat the above steps for different values of t

5. TIME DEPENDENT SYSTEM PERFORMANCE MEASURES

5.1. The probability mass function of Server state.

(1) Probability that the server is idle at time t

P0(t) =

∞∑
i=0

Pi00(t)

(2) Probability that the server is busy with a low priority customer at time t is

P1(t) =

∞∑
i=0

s∑
j=0

Pij1(t)

(3) Probability that the server is busy with a high priority customer at time t is

P2(t) =

∞∑
i=0

s−1∑
j=0

Pij2(t)

(4) Probability that the server is inactive at time t is

P3(t) =

∞∑
i=0

s∑
j=0

Pij3(t)
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5.2. The probability mass function of number of customers in the orbit.

Let PLi(t) represent the probability of i customers in the Orbit at time t.

(1) Probability of no customers in the orbit at t is

PL0(t) =

3∑
l=0

P00l(t) +

s−1∑
j=1

3∑
l=1

P0jl(t) + P0s1(t) + P0s3(t)

(2) Probability of n customers in the orbit at time t is

PLn(t) =

s−1∑
j=1

2∑
l=1

Pnjl(t) + Pns1(t) +

2∑
l=0

Pn0l(t)

5.3. The Probability mass function of number of high priority customers.

Let PHi(t) represent the probability of i customers in the Orbit at time t.

(1) Probability of no customer in the high priority queue at time t

PH0(t) =

∞∑
i=0

3∑
l=0

Pi0l(t)

(2) Probability of n(< S) customers in the high priority queue at time t is

PHn(t) =

∞∑
i=0

3∑
l=1

Pinl(t), n = 1, 2, 3, · · · , s− 1

(3) Probability of S customers in the high priority queue at time t is

PHs(t) =

∞∑
i=0

∑
l=1,3

Pisl(t),

(4) The Mean Priority Queue Length at time t is

MPQL(t) =

s∑
j=1

j PHj(t)

(5) The Mean Number of Customers in the Orbit at time t is

MNCO(t) =

∞∑
i=0

iPLi(t)

(6) The probability that the orbiting customer is blocked at time t is
∞∑
i=1

s−1∑
j=0

3∑
l=1

Pijl(t) +

∞∑
i=1

∑
l=1,3

Pisl(t)

(7) The probability that an arriving customer(high or low) enters the service station

immediately at time t =
∑∞

i=0 Pi00(t)
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6. TIME DEPENDENT NUMERICAL STUDY

The time dependent probability mass distributions and system performance measures
of the model were estimated for µ1= 10, µ2= 20 σ = 10, s = 4, α = 100 and ν=5 and for
various values of λ1, λ2.

Tables 4, 5 and 6 provide time dependent probabilities of number of customers in the
orbit at time t for different values of λ1, λ2. It is observed that as t increases, PLn(t) →
PLn

where PLn is the Steady state probability that there are n customers in the orbit. These
results coincides with Single server retrial queueing system with system breakdown and
repair under non-preemptive priority services.

The sequence {PLn(t)} → 0 as n → ∞ for all values of t.

Tables 7, 8 and 9 provide time dependent probabilities of number of customers in the high
priority queue in front of the service station at time t. It is observed that as the value of t
increases, the Transient Probabilities

PHn(t) → PHn

where PHn is the Steady state probability that there are n customers in the high prior-
ity queue. These results coincides with Single server retrial queueing system with non-
preemptive priority services.

Tables 10, 11 and 12 provide the time dependent probabilities that, the server is idle, busy
with low priority customer, busy with high priority customer, MNCO and MPQL for
different rate of arrivals times at time t. It is observed that

as the value of t increases and for various values of λ1, λ2,µ1, µ2, and σ

P0(t) → P0, P1(t) → P1, MNCO(t) → MNCO, MPQL(t) → MPQL

where MNCO is the mean number of low priority customers in the Orbit and MPQL is
the mean number of high priority customers in the steady state. Moreover it is observed
from the tables that

(1) P0(t) decreases as arrival rates λ1, λ2 increases for all values of t.
(2) P1(t) increases as primary arrival rate λ1increases for all values t.
(3) P2(t) increases as arrival rate λ2 increases for all valuest.
(4) MNCO (t) increases as arrival rate λ1increases for all values of t.
(5) MPQL(t) increases as arrival rate λ2 increases for all values of t.

7. CONCLUSION

The transient solution of Single server Retrial Queue model with catastrophe under
non-preemptive priority is found out using matrix exponential method. The time de-
pendent probabilities and system performance measures are estimated. The scope of the
paper is catastrophe can be combined with other restrictions such as reliability, balking
and reneging etc. The solution can also be extended to preemptive priority.
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TABLE 4. Time dependent Probability distribution of number of cus-
tomers in the orbit for λ1 = 1 and λ2 = 4.

t PL0(t) PL1(t) PL2(t) PL3(t) PL4(t) PL5(t) PL6(t)
11 0.628121 0.238119 0.086820 0.030750 0.010677 0.003654 0.001237
12 0.628111 0.238119 0.086822 0.030753 0.010679 0.003656 0.001238
13 0.628106 0.238119 0.086823 0.030754 0.010680 0.003656 0.001238
14 0.628104 0.238119 0.086824 0.030755 0.010680 0.003656 0.001238
15 0.628103 0.238119 0.086824 0.030755 0.010680 0.003657 0.001239
16 0.628102 0.238119 0.086824 0.030755 0.010680 0.003657 0.001239
17 0.628102 0.238119 0.086824 0.030755 0.010681 0.003657 0.001239
18 0.628102 0.238119 0.086825 0.030755 0.010681 0.003657 0.001239
19 0.628102 0.238119 0.086825 0.030755 0.010681 0.003657 0.001239
20 0.628102 0.238119 0.086825 0.030755 0.010681 0.003657 0.001239

TABLE 5. Time dependent Probability distribution of number of cus-
tomers in the orbit for λ1 = 3 and λ2 = 4.

t PL0(t) PL1(t) PL2(t) PL3(t) PL4(t) PL5(t) PL6(t)
41 0.126224 0.136642 0.129101 0.114513 0.097819 0.081478 0.066649
42 0.126210 0.136627 0.129089 0.114504 0.097812 0.081474 0.066647
43 0.126197 0.136615 0.129078 0.114495 0.097806 0.081471 0.066645
44 0.126186 0.136604 0.129068 0.114488 0.097801 0.081468 0.066644
45 0.126177 0.136594 0.129060 0.114481 0.097796 0.081465 0.066643
46 0.126169 0.136585 0.129053 0.114475 0.097792 0.081462 0.066642
47 0.126161 0.136578 0.129046 0.114470 0.097789 0.081460 0.066641
48 0.126155 0.136571 0.129040 0.114466 0.097785 0.081458 0.066640
49 0.126149 0.136566 0.129035 0.114462 0.097783 0.081457 0.066639
50 0.126144 0.136560 0.129031 0.114458 0.097780 0.081455 0.066639

TABLE 6. Time dependent Probability distribution of number of cus-
tomers in the orbit for λ1 = 5 and λ2 = 4.

t PL0(t) PL1(t) PL2(t) PL3(t) PL4(t) PL5(t) PL6(t)
111 0.000170 0.000307 0.000451 0.000603 0.000766 0.000938 0.001120
112 0.000167 0.000302 0.000443 0.000592 0.000752 0.000921 0.001100
113 0.000164 0.000296 0.000435 0.000582 0.000738 0.000905 0.001080
114 0.000161 0.000291 0.000427 0.000571 0.000725 0.000888 0.001061
115 0.000159 0.000286 0.000419 0.000561 0.000712 0.000873 0.001042
116 0.000156 0.000281 0.000412 0.000551 0.000700 0.000858 0.001024
117 0.000153 0.000276 0.000405 0.000542 0.000688 0.000843 0.001006
118 0.000150 0.000271 0.000398 0.000532 0.000676 0.000828 0.000989
119 0.000148 0.000266 0.000391 0.000523 0.000664 0.000814 0.000972
120 0.000145 0.000262 0.000384 0.000514 0.000653 0.000800 0.000955
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TABLE 7. Time dependent Probability distribution of number of cus-
tomers in the orbit for λ1 = 1 and λ2 = 4.

t PH0(t) PH1(t) PH2(t) PH3(t) PH4(t)
11 0.571719 0.158846 0.067837 0.028718 0.012284
12 0.571718 0.158846 0.067838 0.028718 0.012284
13 0.571718 0.158847 0.067838 0.028718 0.012284
14 0.571717 0.158847 0.067838 0.028718 0.012285
15 0.571717 0.158847 0.067838 0.028718 0.012285
16 0.571717 0.158847 0.067838 0.028718 0.012285
17 0.571717 0.158847 0.067838 0.028718 0.012285
18 0.571717 0.158847 0.067838 0.028718 0.012285
19 0.571717 0.158847 0.067838 0.028718 0.012285
20 0.571717 0.158847 0.067838 0.028718 0.012285

TABLE 8. Time dependent Probability distribution of number of cus-
tomers in the orbit for λ1 = 3 and λ2 = 4.

t PH0(t) PH1(t) PH2(t) PH3(t) PH4(t)
41 0.519331 0.200879 0.083718 0.035164 0.015029
42 0.519327 0.200882 0.083719 0.035164 0.015029
43 0.519325 0.200884 0.083720 0.035165 0.015029
44 0.519322 0.200886 0.083721 0.035165 0.015029
45 0.519320 0.200888 0.083721 0.035165 0.015029
46 0.519318 0.200890 0.083722 0.035166 0.015029
47 0.519316 0.200891 0.083722 0.035166 0.015029
48 0.519315 0.200892 0.083723 0.035166 0.015029
49 0.519313 0.200893 0.083723 0.035166 0.015029
50 0.519312 0.200894 0.083724 0.035166 0.015030

TABLE 9. Time dependent Probability distribution of number of cus-
tomers in the orbit for λ1 = 5 and λ2 = 4.

t PH0(t) PH1(t) PH2(t) PH3(t) PH4(t)
111 0.477782 0.234246 0.096323 0.040280 0.017206
112 0.477761 0.234265 0.096330 0.040283 0.017208
113 0.477740 0.234283 0.096337 0.040286 0.017209
114 0.477720 0.234301 0.096344 0.040289 0.017210
115 0.477700 0.234319 0.096351 0.040291 0.017211
116 0.477680 0.234337 0.096358 0.040294 0.017212
117 0.477661 0.234355 0.096364 0.040297 0.017214
118 0.477642 0.234372 0.096371 0.040299 0.017215
119 0.477624 0.234389 0.096377 0.040302 0.017216
120 0.477605 0.234406 0.096384 0.040305 0.017217
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TABLE 10. Time dependent System Performance Measures for λ1 = 5
and λ2 = 4.

t P0(t) P1(t) P2(t) P3(t) MNCO(t) MPQL(t)
11 0.370724 0.099994 0.195949 0.333333 0.577072 0.429813
12 0.370721 0.099997 0.195949 0.333333 0.577111 0.429815
13 0.370719 0.099999 0.195949 0.333333 0.577129 0.429816
14 0.370718 0.099999 0.195949 0.333333 0.577138 0.429816
15 0.370718 0.100000 0.195949 0.333333 0.577142 0.429816
16 0.370718 0.100000 0.195949 0.333333 0.577144 0.429817
17 0.370718 0.100000 0.195949 0.333333 0.577145 0.429817
18 0.370718 0.100000 0.195949 0.333333 0.577146 0.429817
19 0.370718 0.100000 0.195949 0.333333 0.577146 0.429817
20 0.370718 0.100000 0.195949 0.333333 0.577146 0.429817

TABLE 11. Time dependent System Performance Measures for λ1 = 5
and λ2 = 4.

t P0(t) P1(t) P2(t) P3(t) MNCO(t) MPQL(t)
41 0.171701 0.299898 0.195068 0.333333 4.511876 0.533922
42 0.171689 0.299910 0.195068 0.333333 4.512823 0.533928
43 0.171678 0.299921 0.195068 0.333333 4.513659 0.533934
44 0.171669 0.299930 0.195068 0.333333 4.514396 0.533939
45 0.171661 0.299938 0.195068 0.333333 4.515046 0.533943
46 0.171653 0.299945 0.195068 0.333333 4.515620 0.533947
47 0.171647 0.299952 0.195068 0.333333 4.516128 0.533950
48 0.171641 0.299957 0.195068 0.333333 4.516576 0.533953
49 0.171637 0.299962 0.195068 0.333333 4.516972 0.533956
50 0.171632 0.299967 0.195068 0.333333 4.517323 0.533958

TABLE 12. Time dependent System Performance Measures for λ1 = 5
and λ2 = 4.

t P0(t) P1(t) P2(t) P3(t) MNCO(t) MPQL(t)
111 0.013713 0.458668 0.194367 0.333251 66.84400 0.616558
112 0.013624 0.458763 0.194367 0.333247 67.24963 0.616605
113 0.013536 0.458856 0.194367 0.333242 67.65390 0.616651
114 0.013450 0.458947 0.194366 0.333236 68.05681 0.616696
115 0.013365 0.459038 0.194366 0.333231 68.45837 0.616741
116 0.013281 0.459128 0.194366 0.333225 68.85857 0.616785
117 0.013198 0.459217 0.194365 0.333220 69.25739 0.616828
118 0.013117 0.459305 0.194365 0.333214 69.65484 0.616871
119 0.013036 0.459392 0.194365 0.333208 70.05090 0.616913
120 0.012957 0.459478 0.194364 0.333201 70.44558 0.616955
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