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Upper bounds of Toeplitz determinants for a subclass of
alpha-close-to-convex functions

ANAND KUMAR JHA and PRAVATI SAHOO

ABSTRACT. Let A be the class of analytic functions in the unit disc U which are of the form f(z) = z +∑∞
n=2 anz

n. For 0 ≤ α < 1, let Cα, be the class of all functions f ∈ A satisfying the condition Re{f′(z) +
αzf′′(z)} > 0. We consider the Toeplitz matrices whose elements are the coefficients an of the function f in the
class Cα. In this paper we obtain upper bounds for the Toeplitz determinants.

1. INTRODUCTION

Let A denote the class of all analytic functions defined on the unit disc U = {z : |z| < 1}
with the normalization condition f(0) = 0 = f ′(0)− 1. Thus f ∈ A has the form

f(z) = z +

∞∑
n=2

anz
n, z ∈ U. (1.1)

Let S be the class of functions f ∈ A, which are univalent in U. Let P denote the class of
functions p(z), has the form

p(z) = 1 +

∞∑
n=1

cnz
n, (1.2)

which are regular in the open unit disc U and satisfy Re p(z) > 0, for z ∈ U. Here p(z) is
called the Caratheodory function [5].
Let S∗ denote the class of functions f ∈ A which maps U onto a starlike domain with
respect to origin. It is well known that f ∈ S∗ if and only if zf ′(z)

f(z) ∈ P , z ∈ U. Let C be
the class of functions in A, which maps U onto a convex domain. So f ∈ C if and only if
1 + zf ′′(z)

f ′(z) ∈ P , z ∈ U.

Definition 1.1. ([4]) For α ≥ 0, a function f ∈ A with f(z)f ′(z)
z ̸= 0 is said to be an alpha-

close-to-convex function if for a starlike function ϕ(z), it satisfies the condition

Re

{
(1− α)

zf ′(z)

ϕ(z)
+ α

(zf ′(z))′

ϕ′(z)

}
> 0, z ∈ U.

We denote Cα by the class of all alpha-close-to-convex functions. This class was intro-
duced and studied by Chichra [4].
For α = 0, Cα ≡ K, the class of close-to-convex functions. We denote the subclass of Cα by
R̃α for which ϕ(z) = z.
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Definition 1.2. ([4]) Let R̃α be the class of all functions f ∈ A which satisfy

Re(f ′(z) + αzf ′′(z)) > 0, for all z ∈ U.

For α = 0, R̃α ≡ R0 ≡ R = {f(z) ∈ A : Re(f ′(z)) > 0, for all z ∈ U}. These classes have
been studied by many authors [4, 9, 10, 12, 13] in various viewpoints.

Remark 1.1. Bieberbach’s conjecture, which is also known as de Branges Theorem after
its proof, has been one of the most popular problems in the theory of univalent func-
tions. From the introduction of the Bieberbach conjecture in 1916, until its proof given by
de Branges in 1985, a lot of methods and concepts have been developed. For instance,
the problem of estimating bounds for successive coefficients was studied with an idea to
solve the Bieberbach conjecture. The successive coefficient problem is still open for the
whole class of univalent analytic functions as well as its many subclasses. Such investi-
gations more often lead to new techniques and ideas to deal the main open problem or
related problems. In the line of such investigation, later various types of coefficient prob-
lems appeared in function theory while considering various transformation of univalent
functions such as the Fekete-Szegö coefficient problem which appears from the inversion
transformation. Hankel and Toeplitz determinants of Taylor coefficients of analytic func-
tions are also attracted to many researchers in the field of geometric function theory in the
sense that those are somehow related to the above coefficient problems. In fact, Toeplitz
determinants have many applications in operator theory, linear algebra, physics, etc. (see
for instance [16] and references therein).

The estimates of the first four Toeplitz determinants are obtained for the class R in
[15]. In [13], Sahoo considered the class R̃α and obtained the bounds of first four Hankel
determinants. We here consider the Toeplitz determinant for the class R̃α with an aim to
provide generalizations with sharpness of the upper bounds of the results studied in [15]
by Radhika et al.

Here we recall Toeplitz symmetric matrices, that have constant entries along the diag-
onal.

Definition 1.3. The q-th Toeplitz determinant of f(z) for q ≥ 1 and n ≥ 1 is defined as

Tq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an . . . . . .
...

...
...

...
an+q−1 . . . · · · an

∣∣∣∣∣∣∣∣∣ . (1.3)

So

T2(2) =

∣∣∣∣ a2 a3
a3 a2

∣∣∣∣ ; T2(3) =

∣∣∣∣ a3 a4
a4 a3

∣∣∣∣ ; T3(1) =

∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣ , T3(2) =

∣∣∣∣∣∣
a2 a3 a4
a3 a2 a3
a4 a3 a2

∣∣∣∣∣∣ .
To prove our main results we need the following lemma.

Lemma 1.1. Let p(z) = 1+
∑∞

n=1 cnz
n ∈ P with c1 ≥ 0. Then for some complex valued x with

|x| ≤ 1 and some complex valued z with |z| ≤ 1, we have

2c2 = c21 + x(4− c21),

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z.
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2. MAIN RESULTS

In our first theorem we obtain an upper bound for T2(2).

Theorem 2.1. Let f given by (1.1) be in the class R̃α. Then we have the bound

|T2(2)| ≤
5(1 + α)2 + 9α(2 + 3α)

9(1 + α)2(1 + 2α)2
. (2.4)

The bound is sharp.

Proof. First note that by equating the corresponding coefficient of f ′(z) + αzf ′′(z) = p(z),
we have

a2 =
c1

2(1 + α)
; a3 =

c2
3(1 + 2α)

, a4 =
c3

4(1 + 3α)
. (2.5)

Then expanding the determinant T2(2) and writing a2, a3 in terms of c1, c2 with the help
of (2.5), we get

|T2(2)| = |a23 − a22| =
∣∣∣∣ c22
9(1 + 2α)2

− c21
4(1 + α)2

∣∣∣∣ .
By substituting the value c2 in terms of c1 defined in Lemma 1.1, it follows that

|a23 − a22| =
(4− c21)x

2

36(1 + 2α)2
+

2c21(4− c21)x

36(1 + 2α)2
− [(1 + α)2(9− c21) + 9α(2 + 3α)]c21

36(1 + α)2(1 + 2α)2
.

The class P is invariant under rotations, so we may assume that, c := c1 ∈ [0, 2] ([3], see
also [[6], Vol.I, page 80, Theorem 3]). By applying triangle inequality, we get

|a23 − a22| ≤
(4− c2)2|x|2

36(1 + 2α)2
+

2c2(4− c2)|x|
36(1 + 2α)2

+
[(1 + α)2(9− c2) + 9α(2 + 3α)]c2

36(1 + α)2(1 + 2α)2
.

Let |x| = µ, then

|a23−a22| ≤
(4− c2)2µ2

36(1 + 2α)2
+
2c2(4− c2)µ

36(1 + 2α)2
+
[(1 + α)2(9− c2) + 9α(2 + 3α)]c2

36(1 + α)2(1 + 2α)
= F1(c, µ). (let)

Differentiating F1(c, µ) with respect to µ, we have

∂F1(c, µ)

∂µ
=

(4− c2)[µ(4− c2) + c2]

18(1 + 2α)2
> 0.

So
max

(0≤µ≤1)
F1(c, µ) = F1(c, 1) = G1(c) (say),

where

G1(c) =
(4− c2)2 + 2c2(4− c2)

36(1 + 2α)2
+

[(1 + α)2(9− c2) + 9α(2 + 3α)]c2

36(1 + α)2(1 + 2α)2
.

Differentiating G1(c) with respect to c, we have

∂G1

∂c
=

c[9(1 + 2α)2 − 4(1 + α)2c2]

18(1 + α)2(1 + 2α)2
,

which implies that the critical point c0 = 9(1+2α)2

4(1+α)2 . As the critical point c0 is not in the
interval [0, 2] hence

max
(0≤c≤2)

G1(c) = max

{
4

9(1 + 2α)2
,
5(1 + α)2 + 9α(2 + 3α)

9(1 + α)2(1 + 2α)2

}
=

5(1 + α)2 + 9α(2 + 3α)

9(1 + α)2(1 + 2α)2
.
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Equality in (2.4) holds for the function gα that satisfies f ′(z)+αzf ′′(z) =
1 + z

1− z
. This gives

gα(z) = z +
1

1 + α
z2 +

2

3(1 + 2α)
z3 +

1

2(1 + 3α)
z4 + · · · . (2.6)

This completes the proof of the Theorem 2.1. □

Remark 2.2. Theorem 2.1 for α = 0 gives the bound |a22 − a23| ≤ 5/9 for the class of
functions with bounded boundary rotation R derived by Radhika et.al [15] and in [14] for
β = 1.

Theorem 2.2. Let f given by (1.1) be in the class R̃α. Then we have the bound

|T2(3)| ≤
4

9(1 + 2α)2
. (2.7)

The bound is sharp.

Proof. Expanding the determinant T2(3) and writing a3, a4 in terms of c2, c3 with the help
of (2.5), we get

|T2(3)| = |a24 − a23| =
∣∣∣∣ c23
16(1 + 3α)2

− c22
9(1 + 2α)2

∣∣∣∣.
From Lemma 1.1, we get

c2 =
1

2

[
c21 + (4− c21)x

]
, c3 =

1

4

[
c31 + 2c1(4− c21)x− c1(4− c21)x

2 + 2(4− c21)(1− |x|2)z
]
.

The class P is invariant under rotations, so we may assume that, c := c1 ∈ [0, 2] ([3], see
also [[6], Vol. I, page 80, Theorem 3]. By using triangle inequality with M = 4− c2, we get

|a24 − a23| ≤
(
M2c2

256
+

M2

64
+

M2c

64

)
|x|4

(1 + 3α)2
+

(
M2c2

64
+

M2c

32

)
|x|3

(1 + 3α)2

+

(
M2c2

64
− M2(1− 12α− 36α2)

288(1 + 2α)2
+

Mc4

128
+

Mc3

64
+

M2c

64

)
|x|2

(1 + 3α)2

+

(
Mc4

64(1 + 3α)2
+

M2c

32(1 + 3α)2
+

Mc2

18(1 + 2α)2

)
|x|

+

∣∣∣∣ Mc3

64(1 + 3α)2
+

M2

64(1 + 3α)2
+

c4

36(1 + 2α)2
− c6

256(1 + 3α)2

∣∣∣∣.
Let |x| = µ, then

|a24 − a23| ≤
(
M2c2

256
+

M2

64
+

M2c

64

)
µ4

(1 + 3α)2
+

(
M2c2

64
+

M2c

32

)
µ3

(1 + 3α)2

+

(
M2c2

64
− M2(1− 12α− 36α2)

288(1 + 2α)2
+

Mc4

128
+

Mc3

64
+

M2c

64

)
µ2

(1 + 3α)2

+

(
Mc4

64(1 + 3α)2
+

M2c

32(1 + 3α)2
+

Mc2

18(1 + 2α)2

)
µ

+

∣∣∣∣ Mc3

64(1 + 3α)2
+

M2

64(1 + 3α)2
+

c4

36(1 + 2α)2
− c6

256(1 + 3α)2

∣∣∣∣
= F2(c, µ).
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First we consider the modulus term in F2(c, µ) is positive. Then on differentiating F2(c, µ)
with respect to µ, we get

∂F2

∂µ
=

(
M2c2

256
+

M2

64
+

M2c

64

)
4µ3

(1 + 3α)2

+

(
M2c2

64
+

M2c

32

)
3µ2

(1 + 3α)2
+

(
M2c2

64
− M2(1− 12α− 36α2)

288(1 + 2α)2
+

Mc4

128

+
Mc3

64
+

M2c

64

)
2µ

(1 + 3α)2
+

(
Mc4

64(1 + 3α)2
+

M2c

32(1 + 3α)2
+

Mc2

18(1 + 2α)2

)
.

We need to find the maximum value of F2(c, µ) in [0, 2] × [0, 1]. First assume that there is

a maximum of F2(c, µ) attains at an interior point of [0, 2]× [0, 1]. But
∂F2

∂µ
= 0 gives that

M = 4− c2 = 0 which implies that c = 2, which is a contradiction. Thus for the maximum
of F2(c, µ), we need to consider the boundary points of [0, 2]× [0, 1].
For c = 0, c = 2 and 0 ≤ µ ≤ 1, a simple calculation shows that

F2(c, µ) ≤
4

9(1 + 2α)2
. (2.8)

If we consider the modulus term in F2(c, µ) is negative, then we have

F2(c, µ) =

(
M2c2

256
+

M2

64
+

M2c

64

)
µ4

(1 + 3α)2
+

(
M2c2

64
+

M2c

32

)
µ3

(1 + 3α)2

+

(
M2c2

64
− M2(1− 12α− 36α2)

288(1 + 2α)2
+

Mc4

128
+

Mc3

64
+

M2c

64

)
µ2

(1 + 3α)2

+

(
Mc4

64(1 + 3α)2
+

M2c

32(1 + 3α)2
+

Mc2

18(1 + 2α)2

)
µ

−
[

Mc3

64(1 + 3α)2
+

M2

64(1 + 3α)2
+

c4

36(1 + 2α)2
− c6

256(1 + 3α)2

]
.

Following the steps as in the above case and a simple calculation shows

max
(c,µ)∈[0,2]×[0,1]

F2(c, µ) =
−1 + 12α+ 36α2

18(1 + 2α)2(1 + 3α)2
, (2.9)

Thus the result follows from (2.8), (2.9). Equality in (2.7) holds for the function fα, that

satisfies f ′(z) + αzf ′′(z) =
1 + z2

1− z2
.

This completes the proof of Theorem 2.2. □

Remark 2.3. Theorem 2.2 for α = 0 gives the bound |T2(3)| ≤ 4/9 for the class of functions
with bounded boundary rotation R derived by Radhika et.al [15] and in [14] for β = 1.

Theorem 2.3. Let f given by (1.1) be in the class R̃α. Then we have the bound

|T3(1)| ≤
13 + 36α+ 36α2

9(1 + 2α)2
. (2.10)

The bound is sharp.
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Proof. From the expansion the determinant T3(1) and (2.5) with M = 4− c2, we get

|T3(1)| =
∣∣1 + 2a22(a3 − 1)− a23

∣∣
=

∣∣∣∣1 + c21
2(1 + α)2

(
c2

3(1 + 2α)
− 1)− c22

9(1 + 2α)2

∣∣∣∣
=

∣∣∣∣1 + c41(2 + 4α− α2)

36(1 + α)2(1 + 2α)2
− c21

2(1 + α)2
+

c21xM(1 + 2α− 2α2)

36(1 + α)2(1 + 2α)2
− x2M2

36(1 + 2α)2

∣∣∣∣ .
The class P is invariant under rotations, so we may assume that, c := c1 ∈ [0, 2] ([3], see
also [[6], Vol.I, page 80, Theorem 3]). By using the triangle inequality and the fact that
|x| ≤ 1, we obtain

T3(1) ≤
∣∣∣∣1 + c4(2 + 4α− α2)

36(1 + α)2(1 + 2α)2
− c2

2(1 + α)2

∣∣∣∣+ c2(1 + 2α− 2α2)(4− c2)

36(1 + α)2(1 + 2α)2
+

(4− c2)2

36(1 + 2α)2

= G2(c). (2.11)

First we consider the modulus term of G2(c) in (2.11) positive. Then we write G2(c) as
G3(c), where

G3(c) =

[
(1 + α)2c4 − c2(11 + 40α+ 44α2) + 2(1 + α)2(13 + 36α+ 36α2)

]
18(1 + α)2(1 + 2α)2

.

Differentiating G3(c) with respect to c we get

G′
3(c) = −

c
[
2((1 + α)2(4− c2) + 3(1 + 8α+ 12α2

]
)

9(1 + α)2(1 + 2α)2
< 0 for c ∈ [0, 2].

So
T3(1) ≤ max

0≤c≤2
G3(c) = G3(0) = M1(α),

where

M1(α) =
13 + 36α+ 36α2

9(1 + 2α)2
. (2.12)

Similarly, considering the modulus term of G2(c) in (2.11) as negative, writting G2(c) as
G4(c), where

G4(c) =

−
[
c4(1 + 2α− 2α2)− (7 + 32α+ 28α2)c2 + 2(1 + α)2(5 + 36α+ 36α2)

]
18(1 + α)2(1 + 2α)2

.

Differentiating G4(c) with respect to c we get

G′
4(c) =

−2c

[
2c2(1 + 2α− 2α2)− (7 + 32α+ 28α2)

]
18(1 + α)2(1 + 2α)2

.

The critical points of G′
4(c) are c = 0 and c0, where c20 =

7 + 32α+ 28α2

2(1 + 2α− 2α2)
.

A simple calculation shows that maxc∈[0,2] G4(c) = G4(c0) when α > β, where β = 3
√
3−4
22 .

Thus for α > β,
|T3(1)| ≤ G4(c0) = M2(α),
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where

M2(α) =
9− 144α2 − 144α3 + 576α4 + 1152α5 + 576α6

72(1 + α)2(1 + 2α)2(1 + 2α− 2α2)
. (2.13)

For

|T3(1)| ≤
{

M1(α), 0 < α < β
max{M1(α), M2(α)} = M1(α), β ≤ α < 1.

Hence |T3(1)| ≤ M1(α) for all α, M1(α) defined by (2.12). Equality in (2.10) holds for

the function fα, that satisfies f ′(z) + αzf ′′(z) =
1 + iz2

1− iz2
. This completes the proof of

Theorem 2.3. □

Remark 2.4. Theorem 2.3 for α = 0 gives the bound |T3(1)| ≤ 13/9 for the class of func-
tions with bounded boundary rotation R derived by Radhika et.al [15] and in [14] for
β = 1.

Theorem 2.4. Let f given by (1.1) be in the class R̃α. Then we have the bound

|T3(2)| ≤


4(1 + 5α)

9(1 + α)(1 + 2α)2(1 + 3α)
for α ≤ α0

(1 + 5α)(11 + 91α+ 248α2 + 204α3)

36(1 + α)3(1 + 2α)2(1 + 3α)2
for α > α0,

(2.14)

where α0 ≈ 0.146157 is the positive root of the equation 156α3 + 136α2 + 11α − 5 = 0. For
α > α0, equality attained by the function gα ∈ R̃α defined by (2.6).

Proof. Expanding the determinant T3(2), we get

|T3(2)| = |(a2 − a4)(a
2
2 − 2a23 + a2a4)|.

Following the same techniques as in Theorem 2.1 and with the help of (2.5), we get

|a2 − a4| ≤
1 + 5α

2(1 + α)(1 + 3α)
. (2.15)

Writing a2, a3 and a4 in terms of c1, c2 and c3 with the help of (2.5), we obtain

a22 − 2a23 + a2a4 =
c21

4(1 + α)2
− 2c22

9(1 + 2α)2
+

c1c3
8(1 + α)(1 + 3α)

.

Expressing c2 and c3 in terms of c1 by using Lemma 1.1, we get

a22 − 2a23 + a2a4 =
c21

4(1 + α)2
− c41

18(1 + 2α)2
− (4− c21)

2x2

18(1 + 2α)2

− (7 + 28α+ 12α2)c21(4− c21)x

144(1 + α)(1 + 2α)2(1 + 3α)
+

c41
32(1 + α)(1 + 3α)

− c21(4− c21)x
2

32(1 + α)(1 + 3α)
+

c1(4− c21)(1− |x|2)z
16(1 + α)(1 + 3α)

.
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The class P is invariant under rotations, so we may assume that, c := c1 ∈ [0, 2] ([3], see
also [[6], Vol. I, page 80, Theorem 3]). Then by using the triangle inequality, we have

|a22 − 2a23 + a2a4| ≤
∣∣∣∣ c2

4(1 + α)2
− (7 + 28α+ 12α2)c4

288(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣
+

(4− c2)2|x|2

18(1 + 2α)2
+

(7 + 28α+ 12α2)c2(4− c2)|x|
144(1 + α)(1 + 2α)2(1 + 3α)

+
c2(4− c2)|x|2

32(1 + α)(1 + 3α)
+

c(4− c2)(1− |x|2)
16(1 + α)(1 + 3α)

.

Let |x| = µ, then

|a22 − 2a23 + a2a4| ≤
∣∣∣∣ c2

4(1 + α)2
− (7 + 28α+ 12α2)c4

288(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣
+

(4− c2)2µ2

18(1 + 2α)2
+

(7 + 28α+ 12α2)c2(4− c2)µ

144(1 + α)(1 + 2α)2(1 + 3α)

+
c2(4− c2)µ2

32(1 + α)(1 + 3α)
+

c(4− c2)(1− µ2)

16(1 + α)(1 + 3α)
= F3(c, µ).(let)

Differentiating F3(c, µ) with respect to µ, we have

∂F3

∂µ
=

(4− c2)2µ

9(1 + 2α)2
+

(7 + 28α+ 12α2)c2(4− c2)

144(1 + α)(1 + 2α)2(1 + 3α)
+

c2(4− c2)µ

16(1 + α)(1 + 3α)
− c(4− c2)µ

8(1 + α)(1 + 3α)
.

We need to find the maximum value of F3(c, µ) on [0, 2]× [0, 1]. First assume that there is
a maximum at an interior point of [0, 2] × [0, 1]. Then ∂F3

∂µ = 0 implies that c = 2, which
is a contradiction. Thus for the maximum of F3(c, µ), we need only to consider the end
points of [0, 2]× [0, 1].

When c = 0, F2(0, µ) ≤
8

9(1 + 2α)2
.

When c = 2, F3(2, µ) ≤
11 + 91α+ 248α2 + 204α3

18(1 + α)2(1 + 2α)2(1 + 3α)
.

When µ = 0, F3(c, 0) =
c2

4(1 + α)2
− (7 + 28α+ 12α2)c4

288(1 + α)(1 + 2α)2(1 + 3α)
+

c(4− c2)

16(1 + α)(1 + 3α)
,

which has maximum value
11 + 91α+ 248α2 + 204α3

18(1 + α)2(1 + 2α)2(1 + 3α)
on [0, 2].

When µ = 1,

F3(c, 1) =
c2

4(1 + α)2
− (7 + 28α+ 12α2)c4

288(1 + α)(1 + 2α)2(1 + 3α)
+

(4− c2)2

18(1 + 2α)2

+
(7 + 28α+ 12α2)c2(4− c2)

144(1 + α)(1 + 2α)2(1 + 3α)
+

c2(4− c2)

32(1 + α)(1 + 3α)
.
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which has maximum value
8

9(1 + 2α)2
on [0, 2].

Thus

|a22 − 2a23 + a2a4| ≤ max

{
8

9(1 + 2α)2
,
11 + 91α+ 248α2 + 204α3

18(1 + α)2(1 + 2α)2(1 + 3α)

}

=


8

9(1 + 2α)2
, for α ≤ α0

11 + 91α+ 248α2 + 204α3

18(1 + α)2(1 + 2α)2(1 + 3α)
, for α > α0,

(2.16)

where α0 ≈ 0.146157 is the positive root of the equation 156α3 + 136α2 + 11α− 5 = 0.
Now from (2.15) and (2.16) we get the required bound of |T3(2)| given in (2.14).
Equality holds for the function gα(z), defined by(2.6) when α > α0.
This completes the Theorem 2.4. □

Remark 2.5. Theorem 2.4 for α = 0 gives the bound |T3(2)| ≤ 4/9 for the class of functions
with bounded boundary rotation R derived by Radhika et.al [15] and in [14] for β = 1. It
would be interesting to know the function fα ∈ R̃α so that the equality holds in Theorem
2.4 for α ≤ α0.

3. CONCLUSIONS

1) In this article we found bounds of Toeplitz determinants Tq(n) for q = 2, 3 : n =

1, 2, 3 whose entries are the coefficients of functions in the class R̃α.
2) Our bounds are sharp and generalizes the results in [15] and in [14].
3) Further, one can obtain the sharp bounds of the fourth Toeplitz determinants T4(1)

for this class.
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