CREAT. MATH. INFORM. Volume **31** (2022), No. 2, Pages 147 - 153 Online version at https://semnul.com/creative-mathematics/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2022.02.01

Some fixed point results for almost contraction on orthogonal metric space

ÖZLEM ACAR and EŞREF ERDOĞAN

ABSTRACT. In this paper, we consider almost type *F*-contraction on orthogonal metric space and we establish the existence and uniqueness of fixed point of such mapping. At the end, we give an illustrative example.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory has been studied by three different aspects: topological, metrical and discrete fixed point theory. Generally, the boundary lines between the three areas were defined by the discovery of three major theorems: Brouwer, Banach and Tarski's fixed point theorems. In 1922, Banach proved a remarkable result called Banach contraction principle. Because of its application, this result has been generalized in many ways. For instance see [1, 4, 5, 6, 7, 9, 10, 12, 14, 18, 19, 22, 24]. One of these generalizations is done using F-contraction presented by Wardowski [23].

Let \mathcal{F} be the set of all functions $F : (0, \infty) \to \mathbb{R}$. For the sake of completeness, we will consider the following conditions:

(F1) *F* is strictly increasing, i.e., for all $a, b \in (0, \infty)$ such that a < b, F(a) < F(b),

(F2) For each sequence $\{\alpha_n\}$ of positive numbers $\lim_{n\to\infty} \alpha_n = 0$ if and only if $\lim_{n\to\infty} F(\alpha_n) = -\infty$,

(F3) There exists $s \in (0, 1)$ such that $\lim_{a\to 0^+} a^s F(a) = 0$.

Definition 1.1 ([23]). Let (X, d) be a metric space and $f : X \to X$ be a mapping. Given $F \in \mathcal{F}$, we say that f is F-contraction, if there exists $\tau > 0$ such that

(1.1)
$$x, y \in X, \ d(fx, fy) > 0 \Rightarrow \tau + F(d(fx, fy)) \le F(d(x, y)).$$

In the following, you can see some examples of such functions.

Example 1.1 ([23]). Let $F_a : (0, \infty) \to \mathbb{R}$ be given by $F_a(a) = \ln a$. It is clear that $F_a \in \mathcal{F}$. **Example 1.2** ([23]). Let $F_b : (0, \infty) \to \mathbb{R}$ be given $F_b(b) = b + \ln b$. It is clear that $F_b \in \mathcal{F}$. **Example 1.3** ([23]). Let $F_c : (0, \infty) \to \mathbb{R}$ be given $F_c(c) = -\frac{1}{\sqrt{c}}$. It is clear that $F_c \in \mathcal{F}$.

Theorem 1.1 ([23]). Let (X, d) be a complete metric space and let $f : X \to X$ be an *F*-contraction. Then *f* has an unique fixed point in *X*.

Also, many articles on F-contraction are available in the literature ([2, 16, 20, 21]).

Motivated by the mentioned works, we modify the concept of F-contraction mappings to orthogonal sets and prove some fixed point theorems for almost F-contraction in orthogonally complete metric spaces. But first of all, let's remember some information about orthogonal metric spaces.

Received: 31.10.2021. In revised form: 13.04.2022. Accepted: 20.04.2022

²⁰²⁰ Mathematics Subject Classification. 54H25, 47H10.

Key words and phrases. Fixed point, F-contraction, orthogonal metric space.

Corresponding author: Özlem Acar; acarozlem@ymail.com

Definition 1.2 ([8]). Let *X* be a non-empty set and \perp be a binary relation defined on *X*. If binary relation \perp fulfills the following criteria:

$$\exists x_0 (\forall y \in X, y \perp x_0) \text{ or } (\forall y \in X, x_0 \perp y),$$

then pair, (X, \bot) known as an orthogonal set. The element x_0 is called an orthogonal element. We denote this *O*-set or orthogonal set by (X, \bot) .

Example 1.4 ([8]). Let *X* be the set of all peoples in the word. Define the binary relation \perp on *X* by $x \perp y$ if *x* can give blood to *y*. According to the following table, if x_0 is a person such that his (her) blood type is O-, then we have $x_0 \perp y$ for all $y \in X$. This means that (X, \perp) is an *O*-set. In this *O*-set, x_0 (in definition) is not unique.

type	$you\ can\ give\ blood\ to$	$you\ can\ receive\ bood\ from$
$\overline{A+}$	$\overline{A + AB +}$	$\overline{A + A - O + O -}$
O+	O + A + B + AB +	O + O -
B+	B + AB +	B + B - O + O -
AB+	AB +	Everyone
A-	A + A - AB + AB -	A - O -
O-	Everyone	<i>O</i> –
B-	B + B - AB + AB -	B - O -
AB-	AB + AB -	O - A - B - AB -

Example 1.5 ([8]). Let $X = \mathbb{Z}$. Define the binary relation \bot on X by $x \bot y$ if there exists $k \in \mathbb{Z}$ such that x = ky. It is easy to see that $0 \bot y$ for all $y \in \mathbb{Z}$. Hence, (X, \bot) is an *O*-set.

Definition 1.3 ([8]). Let (X, \bot) be an orthogonal set (*O*-set). Any two elements $x, y \in X$ such that $x \perp y$, then $x, y \in X$ are said to be orthogonally related.

Definition 1.4 ([8]). A sequence $\{x_n\}$ is called an orthogonal sequence (briefly *O*-sequence) if

$$(\forall n \in \mathbb{N}, x_n \perp x_{n+1}) \text{ or } (\forall n \in \mathbb{N}, x_{n+1} \perp x_n).$$

Definition 1.5 ([8]). Let (X, \bot) be an orthogonal set and *d* be a metric on *X*. Then (X, \bot, d) is called an orthogonal metric space (shortly *O*-metric space).

Definition 1.6 ([8]). Let (X, \bot, d) be an orthogonal metric space. Then X is said to be a *O*-complete if every Cauchy *O*-sequence is converges in X.

Remark 1.1 ([8]). Every complete metric space is O-complete and the converse is not true.

Definition 1.7 ([8]). Let (X, \bot, d) be an orthogonal metric space. A function $f : X \to X$ is said to be orthogonally continuous (\bot -continuous) at x if for each O-sequence $\{x_n\}$ converging to x implies $f(x_n) \to f(x)$ as $n \to \infty$. Also f is \bot -continuous on X if f is \bot -continuous at every $x \in X$.

It is easy to see that every continuous mapping is \perp -continuous. You can see it in [8] Example 3.3.

Definition 1.8 ([8]). Let a pair (X, \bot) be an *O*-set, where $X \neq \emptyset$ be a non-empty set and \bot be a binary relation on set *X*. A mapping $f : X \to X$ is said to be \bot -preserving if $f(x) \perp f(y)$ whenever $x \perp y$ and weakly \bot -preserving if $f(x) \perp f(y)$ or $f(y) \perp f(x)$ whenever $x \perp y$.

Remark 1.2 ([8]). It is easy to see that every \perp -preserving mapping is weakly \perp -preserving. But the converse is not true.

2. MAIN RESULTS

In this section, we give a definition of generalized orthogonal almost type F-contraction and we aim to obtain some results on O-complete orthogonal metric space (X, \bot, d) .

Definition 2.9. Let (X, \bot, d) be an orthogonal metric space. A mapping $f : X \to X$ is called generalized orthogonal almost *F*-contraction if there are $F \in \mathcal{F}$, L > 0 and $\tau > 0$ such that the following condition holds: $\forall x, y \in X$ with $x \bot y$

$$[d(fx, fy) > 0 \Rightarrow \tau + F(d(fx, fy)) \le F(M(x, y) + LN(x, y)],$$

where

$$M(x,y) = \max\left\{ d(x,y), d(x,fx), d(y,fy), \frac{d(x,fy) + d(y,fx)}{2} \right\}$$

and

$$N(x,y) = \min \left\{ d(x,fy), d(y,fx) \right\}$$

Theorem 2.2. Let (X, \bot, d) be an O-complete orthogonal metric space with an orthogonal elements x_0 and f be a self mapping on X satisfying the following conditions:

- (*i*) f is \perp -preserving,
- (ii) f is a generalized orthogonal almost type F-contraction,
- (*iii*) f is \perp -continuous.

Then, f has a fixed point in X.

Proof. From the definition of the orthogonality, it follows that $x_0 \perp f(x_0)$ or $f(x_0) \perp x_0$. Let

$$x_1 := fx_0, x_2 := fx_1 = f^2 x_0, \cdots, x_n := fx_{n-1} = f^n x_0$$

for all $n \in \mathbb{N} \cup \{0\}$. If $x_{n^*} = x_{n^*+1}$ then for some $n^* \in \mathbb{N} \cup \{0\}$, then x_{n^*} is a fixed point of f and so the proof is completed. So, we assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Thus, we have $d(x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Since f is \bot –preserving, we have

 $x_n \perp x_{n+1}$ or $x_{n+1} \perp x_n$.

This implies that $\{x_n\}$ is an *O*-sequence. Since *f* is a generalized orthogonal almost type *F*-contraction, we have

$$F(d(x_{n}, x_{n+1}))$$

$$= F(d(fx_{n-1}, fx_{n}))$$

$$\leq F(M(x_{n-1}, x_{n}) + LN(x_{n-1}, x_{n})) - \tau$$

$$= F\left(\max\left\{\frac{d(x_{n-1}, x_{n}), d(x_{n-1}, fx_{n-1}), d(x_{n}, fx_{n}), \\ \frac{d(x_{n-1}, fx_{n+1}) + d(x_{n}, fx_{n-1})}{2} \\ +L\min\left\{d(x_{n-1}, fx_{n+1}), d(x_{n}, fx_{n-1})\right\}\right\}\right) - \tau$$

$$\leq F(\max\left\{d(x_{n-1}, x_{n}), d(x_{n}, x_{n+1})\right\}) - \tau$$

$$(2.3) \qquad \leq \quad F(d(x_{n-1}, x_n)) - \tau$$

for all $n \in \mathbb{N}$. Taking $a_n := d(x_n, x_{n+1})$ for all $n \in \mathbb{N}$ and using (2.3) we have

(2.4)
$$F(a_n) \le F(a_{n-1}) - \tau \le F(a_{n-2}) - 2\tau \le \dots \le F(a_0) - n\tau.$$

From (2.4), we get $\lim_{n\to\infty} F(a_n) = -\infty$. Thus, from (F2), we have

$$\lim_{n \to \infty} a_n = 0.$$

By the property (F3), there exists $s \in (0, 1)$ such that

(2.6)
$$\lim_{n \to \infty} a_n^s F(a_n) = 0$$

By (2.4), the following holds for all $n \in \mathbb{N}$

(2.7)
$$a_n^s F(a_n) - a_n^s F(a_0) \le -a_n^s n\tau \le 0.$$

Letting $n \to \infty$ in (2.7) and using (2.5) and (2.6) we obtain that

$$\lim_{n \to \infty} n a_n^s = 0.$$

From (2.8), there exits $n_1 \in \mathbb{N}$ such that $na_n^s \leq 1$ for all $n \geq n_1$. So, we have

$$a_n \le \frac{1}{n^{1/s}}.$$

for all $n \ge n_1$. In order to show that $\{x_n\}$ is a Cauchy *O*-sequence, consider $m, n \in \mathbb{N}$ such that $m > n \ge n_1$. Using the triangular inequality for the metric and from (2.9), we have

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$= a_n + a_{n+1} + \dots + a_{m-1}$$
$$= \sum_{i=n}^{m-1} a_i$$
$$\leq \sum_{i=n}^{m-1} \frac{1}{i^{1/s}}.$$

By the convergence of the series $\sum_{i=1}^{\infty} \frac{1}{i^{1/s}}$, it follows that $\{x_n\}$ is a Cauchy *O*-sequence in *X*. Since *X* is *O*-complete, there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. Since *f* is \bot -continuous, we have

$$fx^* = f(\lim_{n \to \infty} fx_n) = \lim_{n \to \infty} x_{n+1} = x^*$$

and so x^* is a fixed point of f.

Theorem 2.3. Let (X, \perp, d) be an O-complete orthogonal metric space with an orthogonal elements x_0 and f be a self mapping on X satisfying the following conditions:

- (i) f is \perp -preserving,
- (*ii*) f is a generalized orthogonal almost type F-contraction,
- (*iii*) f is \perp -continuous.

Also f satisfies the following condition: there exist $F_1 \in \mathcal{F}$, $L_1 \ge 0$ and $\tau_1 > 0$ such that $\forall x, y \in X$ with $x \perp y$

$$[d(fx, fy) > 0 \Rightarrow \tau_1 + F_1(d(fx, fy)) \le F_1(M(x, y) + L_1d(y, fy))]$$

Then, f has an unique fixed point in X.

Proof. Suppose that, there exist two distinct fixed points x^* and y^* . If $x_n \to y^*$ as $n \to \infty$, we have $x^* = y^*$. If x_n does not convergence to y^* as $n \to \infty$, there is a subsequence $\{x_{n_k}\}$ such that $fx_{n_k} \neq y^*$ for all $k \in \mathbb{N}$. By the choice of x_0 in the first of the proof, we have

$$(x_0 \perp y^*)$$
 or $(y^* \perp x_0)$.

Since *f* is \bot –preserving and $f^n y^* = y^*$ for all $n \in \mathbb{N}$, we have

$$(f^{n}x_{0} \perp y^{*})$$
 or $(y^{*} \perp f^{n}x_{0})$

for all $n \in \mathbb{N}$. From (2.2), we get

$$F(d(f^{n_k}x_0, y^*)) = F(d(f^{n_k}x_0, f^{n_k}y^*))$$

$$\leq F(M(f^{n_{k-1}}x_0, f^{n_{k-1}}y^*) + Ld(f^{n_{k-1}}y^*, ff^{n_{k-1}}y^*)) - \tau$$

$$= F(M(f^{n_{k-1}}x_0, f^{n_{k-1}}y^*)) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} d(f^{n_{k-1}}x_0, f^{n_{k-1}}y^*), d(f^{n_{k-1}}x_0, ff^{n_{k-1}}x_0), \\ d(f^{n_{k-1}}y^*, ff^{n_{k-1}}y^*), \\ \frac{d(f^{n_{k-1}}x_0, ff^{n_{k-1}}y^*) + d(f^{n_{k-1}}x_0, ff^{n_k}x_0), \\ \frac{d(f^{n_{k-1}}x_0, f^{n_{k-1}}y^*) + d(f^{n_{k-1}}x_0, f^{n_k}x_0), \\ \frac{d(f^{n_{k-1}}x_0, f^{n_k}y^*) + d(f^{n_{k-1}}y^*, ff^{n_k}x_0), \\ \frac{d(f^{n_{k-1}}x_0, f^{n_{k-1}}y^*)) - \tau \\ \leq F(d(f^{n_{k-1}}x_0, f^{n_{k-1}}y^*)) - \tau$$

$$\vdots$$

$$\leq F(d(x_0, y^*)) - n_k\tau$$

for all $n \in \mathbb{N}$. Thus $F(d(f^{n_k}x_0, y^*)) \to -\infty$ as $k \to \infty$ and so $d(f^{n_k}x_0, y^*) \to 0$ as $k \to \infty$. This yields that $x_n \to y^*$ as $n \to \infty$, which is a contradiction. Hence f has an unique fixed point.

Example 2.6. Let $X = [0, \infty)$ and $d : X \times X \to [0, \infty)$ be a mapping defined by

$$d(x,y) = |x-y|$$

for all $x, y \in X$. Consider the sequence $\{S_k\}_{k \in \mathbb{N}}$ defined as

$$S_k = \frac{k(k+1)}{2}, \forall k \in \mathbb{N} \cup \{0\}.$$

Define a relation \perp on *X* by

$$x \perp y \iff xy \in \{x, y\} \subseteq \{S_k\}.$$

Thus (X, \bot, d) is an O-complete metric space. Now, we will define a mapping $f : X \to X$ by

$$fx = \begin{cases} S_0 & if \qquad S_0 \le x \le S_1 \\ \\ S_{k-1} & if \qquad S_k \le x \le S_{k+1}, \forall k \ge 1 \end{cases}$$

Then f is \perp -continuous and X is \perp -preserving. Let $F \in \mathcal{F}$ be a function defined by $F(\alpha) = \alpha + \ln \alpha$ for al $\alpha > 0$. We claim that f is a generalized orthogonal almost type F-contraction with $\tau = 1$ and L = 1. To see this, we consider the following cases. First, observe that, let $x, y \in X$ with $x \perp y$ and d(fx, fy) > 0. Without loss of generality, we may assume that x < y. So, $x \in \{S_0, S_1\}$ and $y = S_k$ for some $k \ge 2$. Then, Case 1. $x = S_0$, $y = S_k$, $k \ge 2$, we have

$$\frac{d\left(fx, fy\right)}{M\left(x, y\right) + LN\left(x, y\right)} e^{d\left(fx, fy\right) - \left(M\left(x, y\right) + LN\left(x, y\right)\right)}$$

$$= \frac{\frac{k^2 - k}{2}}{\frac{k^2 - k}{2} + \frac{k^2 - k}{2}} e^{\frac{k^2 - k}{2} - \left(\frac{k^2 + k}{2} + \frac{k^2 - k}{2}\right)} < e^{-\left(\frac{k^2 + k}{2}\right)} < e^{-1}.$$

Case 2. $x = S_1, y = S_k, k \ge 2$, we have

$$\begin{aligned} & \frac{d\left(fx, fy\right)}{M\left(x, y\right) + LN\left(x, y\right)} e^{d\left(fx, fy\right) - \left(M\left(x, y\right) + LN\left(x, y\right)\right)} \\ &= \frac{\frac{k^2 - k}{2}}{\frac{k^2 + k - 2}{2} + \frac{k^2 - k - 2}{2}} e^{\frac{k^2 - k}{2} - \left(\frac{k^2 + k - 2}{2} + \frac{k^2 - k - 2}{2}\right)} \\ &= \frac{k^2 - k}{2k^2 - 4} e^{\frac{-k^2 - k + 4}{2}} < e^{-1}. \end{aligned}$$

Hence, all the conditions of Theorem 2.2 are satisfied and so f has a fixed point. Also, all the contidions of Theorem 2.3 are satisfied with $F_1(\alpha) = \alpha + \ln \alpha$ for al $\alpha > 0$, $\tau_1 = 1$ and $L_1 = 1$, then f has an unique fixed point.

Corollary 2.1. Let (X, \bot, d) be an O-complete orthogonal metric space with an orthogonal elements x_0 and f be a self mapping on X satisfying the following conditions:

- (*i*) f is \perp -preserving,
- (*ii*) f is an orthogonal almost F-contraction such that

 $\forall x, y \in X \text{ with } x \perp y \left[d(fx, fy) > 0 \Rightarrow \tau + F(d(fx, fy)) \le F(d(x, y) + LN(x, y)) \right]$

(*iii*) f is \perp –continuous. Then, f has a fixed point in X.

Corollary 2.2. Let (X, d) be a complete metric space and $f : X \to X$ be a mapping such that, for some $\alpha \in (0, 1]$,

$$d(fx, fy) \le \alpha d(x, y)$$

for all $x, y \in X$. Then f has an unique fixed point in X.

REFERENCES

- Agarwal, R. P.; O'Regan, D.; Shahzad, N. Fixed point theory for generalized contractive maps of Meir-Keeler type. *Math. Nachr.* 276 (2004), 3–12.
- [2] Acar, O.; Durmaz, G.; Mınak, G. Generalized multivalued *F*-contractions on complete metric spaces. Bulletin of the Iranian Mathematical Society 40 (2014), no. 6, 1469–1478.

152

- [3] Banach, S. Sur les op'erations dans les ensembles abstraits et leurs applicationsaux 'equations int'egrales. Fund. Math. 3 (1992), 133–181.
- [4] Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. *Nonlinear Anal. Forum* **9** (2004), no. 1, 43–53.
- [5] Berinde, V. On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 19 (2003), no. 1, 7–22.
- [6] Berinde, V. Iterative Approximation of Fixed Points. Springer-Verlag, Berlin Heidelberg, 2007.
- [7] Boyd, D. W.; Wong, J. S. W. On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [8] Kanokwan, S.; Sintunavarat, W.; Cho, Y. J. Fixed point theorems for orthogonal F-contraction mappings on O-complete metric space. J. Fixed Point Theory Appl. (2020), 22:10.
- [9] Ćirić, Lj. B. A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273.
- [10] Du, W.-S. Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73 (2010), no. 5, 1439–1446.
- [11] Gordji, M. E.; Rameani, M.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. *Fixed Point Theory* 18 (2017) 569–578.
- [12] Hardy, G. E.; Rogers, T. D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 16 (1973), 201–206.
- [13] Kamran, T.; Kiran, Q. Fixed point theorems for multi-valued mappings obtained by altering distances. *Math. Comput. Modelling* 54 (2011), 2772–2777.
- [14] Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. *Proc. Amer. Math. Soc.* **62** (1977), 344–348.
- [15] Nieto, J. J.; Rodriguez-Lopez, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223–239.
- [16] Piri, H.; Kumam, P. Some fixed point theorem concerning F-contractions in complete metric spaces. Fixed Point Theory Appl. 2014:210, 2014.
- [17] Ran, A. C. M.; Reuring, M. C. B. A fixed point theorem in partially ordered sets and some appllications to matrix equations. Proc. Am. Math. Soc. 132 (2004), 1435–1443.
- [18] Reich, S. Kannan's fixed point theorem. Boll. Un. Mat. Ital. 4 (1971), no. 4, 1-11.
- [19] Rhoades, B. E. Some theorems on weakly contractive maps. Nonlinear Analysis 47 (2001), no. 4, 2683–2693.
- [20] Sgroi, M.; Vetro, C. Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 27 (2013), no. 7, 1259–1268.
- [21] Shukla, S.; Radenović, S. Some common fixed point theorems for F-contraction type mappings in 0complete partial metric spaces. Journal of Mathematics, 2013 Article ID 878730, 7 pages.
- [22] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Amer. Math. Soc. 136 (2008), no. 5, 1861–1869.
- [23] Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012 (2012), 94, 6 pp.
- [24] Zamfirescu, T. Fix point theorems in metric spaces. Arch. Math. (Basel) 23 (1972), 292–298.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SELÇUK UNIVERSITY, 42003, KONYA, TURKEY Email address: acarozlem@ymail.com Email address: esreferdogan@yahoo.com