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Some fixed point results for almost contraction on
orthogonal metric space

ÖZLEM ACAR and EŞREF ERDOĞAN

ABSTRACT. In this paper, we consider almost type F -contraction on orthogonal metric space and we estab-
lish the existence and uniqueness of fixed point of such mapping. At the end, we give an illustrative example.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory has been studied by three different aspects: topological, metrical
and discrete fixed point theory. Generally, the boundary lines between the three areas
were defined by the discovery of three major theorems: Brouwer, Banach and Tarski’s
fixed point theorems. In 1922, Banach proved a remarkable result called Banach contrac-
tion principle. Because of its application, this result has been generalized in many ways.
For instance see [1, 4, 5, 6, 7, 9, 10, 12, 14, 18, 19, 22, 24]. One of these generalizations is
done using F−contraction presented by Wardowski [23].

Let F be the set of all functions F : (0,∞) → R. For the sake of completeness, we will
consider the following conditions:

(F1) F is strictly increasing, i.e., for all a, b ∈ (0,∞) such that a < b, F (a) < F (b),
(F2) For each sequence {αn} of positive numbers limn→∞ αn = 0 if and only if

limn→∞ F (αn) = −∞,
(F3) There exists s ∈ (0, 1) such that lima→0+ asF (a) = 0.

Definition 1.1 ([23]). Let (X, d) be a metric space and f : X → X be a mapping. Given
F ∈ F , we say that f is F -contraction, if there exists τ > 0 such that

(1.1) x, y ∈ X, d(fx, fy) > 0 ⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)).

In the following, you can see some examples of such functions.

Example 1.1 ([23]). Let Fa : (0,∞) → R be given by Fa(a) = ln a. It is clear that Fa ∈ F .

Example 1.2 ([23]). Let Fb : (0,∞) → R be given Fb(b) = b+ ln b. It is clear that Fb ∈ F .

Example 1.3 ([23]). Let Fc : (0,∞) → R be given Fc(c) = − 1√
c
. It is clear that Fc ∈ F .

Theorem 1.1 ([23]). Let (X, d) be a complete metric space and let f : X → X be an F -
contraction. Then f has an unique fixed point in X.

Also, many articles on F−contraction are available in the literature ([2, 16, 20, 21]).
Motivated by the mentioned works, we modify the concept of F−contraction map-

pings to orthogonal sets and prove some fixed point theorems for almost F−contraction
in orthogonally complete metric spaces. But first of all, let’s remember some information
about orthogonal metric spaces.
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Definition 1.2 ([8]). Let X be a non-empty set and ⊥ be a binary relation defined on X . If
binary relation ⊥ fulfills the following criteria:

∃x0(∀y∈ X,y⊥ x0) or (∀y ∈ X,x0 ⊥ y),

then pair, (X,⊥) known as an orthogonal set. The element x0 is called an orthogonal ele-
ment. We denote this O-set or orthogonal set by (X,⊥).

Example 1.4 ([8]). Let X be the set of all peoples in the word. Define the binary relation ⊥
on X by x ⊥ y if x can give blood to y. According to the following table, if x0 is a person
such that his (her) blood type is O−, then we have x0 ⊥ y for all y ∈ X . This means that
(X,⊥) is an O-set. In this O-set, x0 (in definition) is not unique.

type you can give blood to you can receive bood from
A+ A+AB + A+A−O +O−
O+ O +A+B +AB+ O +O −
B+ B +AB + B +B −O +O −
AB+ AB + Everyone
A− A+A−AB +AB− A−O −
O− Everyone O −
B− B +B −AB +AB− B −O −
AB− AB +AB− O −A−B −AB −

Example 1.5 ([8]). Let X = Z. Define the binary relation ⊥ on X by x ⊥ y if there exists
k ∈ Z such that x = ky. It is easy to see that 0 ⊥ y for all y ∈ Z. Hence, (X,⊥) is an O-set.

Definition 1.3 ([8]). Let (X,⊥) be an orthogonal set (O-set). Any two elements x, y ∈ X
such that x ⊥ y, then x, y ∈ X are said to be orthogonally related.

Definition 1.4 ([8]). A sequence {xn} is called an orthogonal sequence (briefly O-sequence)
if

(∀n ∈ N, xn ⊥ xn+1) or (∀n ∈ N, xn+1 ⊥ xn).

Definition 1.5 ([8]). Let (X,⊥) be an orthogonal set and d be a metric on X . Then (X,⊥, d)
is called an orthogonal metric space (shortly O-metric space).

Definition 1.6 ([8]). Let (X,⊥, d) be an orthogonal metric space. Then X is said to be a
O-complete if every Cauchy O-sequence is converges in X .

Remark 1.1 ([8]). Every complete metric space is O-complete and the converse is not true.

Definition 1.7 ([8]). Let (X,⊥, d) be an orthogonal metric space. A function f : X → X
is said to be orthogonally continuous ( ⊥-continuous ) at x if for each O-sequence {xn}
converging to x implies f(xn) → f(x) as n → ∞. Also f is ⊥-continuous on X if f is
⊥-continuous at every x ∈ X .

It is easy to see that every continuous mapping is ⊥-continuous. You can see it in [8]
Example 3.3.

Definition 1.8 ([8]). Let a pair (X,⊥) be an O-set, where X( ̸= ∅) be a non-empty set and
⊥ be a binary relation on set X . A mapping f : X → X is said to be ⊥-preserving if
f(x) ⊥ f(y) whenever x ⊥ y and weakly ⊥-preserving if f(x) ⊥ f(y) or f(y) ⊥ f(x)
whenever x ⊥ y.
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Remark 1.2 ([8]). It is easy to see that every ⊥-preserving mapping is weakly ⊥-preserving.
But the converse is not true.

2. MAIN RESULTS

In this section, we give a definition of generalized orthogonal almost type F−contraction
and we aim to obtain some results on O-complete orthogonal metric space (X,⊥, d).

Definition 2.9. Let (X,⊥, d) be an orthogonal metric space. A mapping f : X → X is
called generalized orthogonal almost F−contraction if there are F ∈ F , L > 0 and τ > 0
such that the following condition holds: ∀x, y ∈ X with x ⊥ y

(2.2) [d(fx, fy) > 0 ⇒ τ + F (d(fx, fy)) ≤ F (M(x, y) + LN(x, y)] ,

where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
and

N(x, y) = min {d(x, fy), d(y, fx)} .

Theorem 2.2. Let (X,⊥, d) be an O-complete orthogonal metric space with an orthogonal ele-
ments x0 and f be a self mapping on X satisfying the following conditions:

(i) f is ⊥-preserving,
(ii) f is a generalized orthogonal almost type F−contraction,
(iii) f is ⊥-continuous.
Then, f has a fixed point in X .

Proof. From the definition of the orthogonality, it follows that x0 ⊥ f(x0) or f(x0) ⊥ x0.
Let

x1 := fx0, x2 := fx1 = f2x0, · · · , xn := fxn−1 = fnx0

for all n ∈ N ∪ {0}. If xn∗ = xn∗+1 then for some n∗ ∈ N ∪ {0}, then xn∗ is a fixed point of
f and so the proof is completed. So, we assume that xn ̸= xn+1 for all n ∈ N ∪ {0}. Thus,
we have d(xn, xn+1) > 0 for all n ∈ N ∪ {0}. Since f is ⊥ −preserving, we have

xn ⊥ xn+1 or xn+1 ⊥ xn.

This implies that {xn} is an O-sequence. Since f is a generalized orthogonal almost type
F−contraction, we have

F (d(xn, xn+1))

= F (d(fxn−1, fxn))

≤ F (M(xn−1, xn) + LN(xn−1, xn))− τ

= F

 max

{
d(xn−1, xn), d(xn−1, fxn−1), d(xn, fxn),
d(xn−1,fxn+1)+d(xn,fxn−1)

2

}
+Lmin {d(xn−1, fxn+1), d(xn, fxn−1)}

− τ

≤ F (max {d(xn−1, xn), d(xn, xn+1)})− τ

≤ F (d(xn−1, xn))− τ(2.3)



150 Özlem Acar and Eşref Erdoğan

for all n ∈ N. Taking an := d(xn, xn+1) for all n ∈ N and using (2.3) we have

(2.4) F (an) ≤ F (an−1)− τ ≤ F (an−2)− 2τ ≤ · · · ≤ F (a0)− nτ.

From (2.4), we get limn→∞ F (an) = −∞. Thus, from (F2), we have

(2.5) lim
n→∞

an = 0.

By the property (F3), there exists s ∈ (0, 1) such that

(2.6) lim
n→∞

asnF (an) = 0.

By (2.4), the following holds for all n ∈ N

(2.7) asnF (an)− asnF (a0) ≤ −asnnτ ≤ 0.

Letting n → ∞ in (2.7) and using (2.5) and (2.6) we obtain that

(2.8) lim
n→∞

nasn = 0.

From (2.8), there exits n1 ∈ N such that nasn ≤ 1 for all n ≥ n1. So, we have

(2.9) an ≤ 1

n1/s
.

for all n ≥ n1. In order to show that {xn} is a Cauchy O-sequence, consider m,n ∈ N such
that m > n ≥ n1. Using the triangular inequality for the metric and from (2.9), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= an + an+1 + · · ·+ am−1

=

m−1∑
i=n

ai

≤
m−1∑
i=n

1

i1/s
.

By the convergence of the series
∞∑
i=1

1
i1/s

, it follows that {xn} is a Cauchy O-sequence in

X. Since X is O-complete, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Since f is
⊥ −continuous, we have

fx∗ = f( lim
n→∞

fxn) = lim
n→∞

xn+1 = x∗

and so x∗ is a fixed point of f. □

Theorem 2.3. Let (X,⊥, d) be an O-complete orthogonal metric space with an orthogonal ele-
ments x0 and f be a self mapping on X satisfying the following conditions:

(i) f is ⊥ −preserving,
(ii) f is a generalized orthogonal almost type F−contraction,
(iii) f is ⊥ −continuous.
Also f satisfies the following condition: there exist F1 ∈ F , L1 ≥ 0 and τ1 > 0 such that

∀x, y ∈ X with x ⊥ y

[d(fx, fy) > 0 ⇒ τ1 + F1(d(fx, fy)) ≤ F1(M(x, y) + L1d(y, fy)]

Then, f has an unique fixed point in X .



Some fixed point results for almost contraction 151

Proof. Suppose that, there exist two distinct fixed points x∗ and y∗. If xn → y∗ as n → ∞ ,
we have x∗ = y∗. If xn does not convergence to y∗ as n → ∞, there is a subsequence {xnk

}
such that fxnk

̸= y∗ for all k ∈ N. By the choice of x0 in the first of the proof, we have

(x0 ⊥ y∗) or (y∗ ⊥ x0) .

Since f is ⊥ −preserving and fny∗ = y∗ for all n ∈ N, we have

(fnx0 ⊥ y∗) or (y∗ ⊥ fnx0)

for all n ∈ N. From (2.2), we get

F (d(fnkx0, y
∗))

= F (d(fnkx0, f
nky∗))

≤ F (M(fnk−1x0, f
nk−1y∗) + Ld(fnk−1y∗, ffnk−1y∗))− τ

= F (M(fnk−1x0, f
nk−1y∗))− τ

= F

max


d(fnk−1x0, f

nk−1y∗), d(fnk−1x0, ff
nk−1x0),

d(fnk−1y∗, ffnk−1y∗),
d(fnk−1x0,ff

nk−1y∗)+d(fnk−1y∗,ffnk−1x0)
2


− τ

= F

(
max

{
d(fnk−1x0, f

nk−1y∗), d(fnk−1x0, f
nkx0),

d(fnk−1x0,f
nky∗)+d(fnk−1y∗,fnkx0)

2

})
− τ

≤ F (d(fnk−1x0, f
nk−1y∗))− τ

...
≤ F (d(x0, y

∗))− nkτ

for all n ∈ N. Thus F (d(fnkx0, y
∗)) → −∞ as k → ∞ and so d(fnkx0, y

∗) → 0 as k → ∞.
This yields that xn → y∗as n → ∞, which is a contradiction. Hence f has an unique fixed
point. □

Example 2.6. Let X = [0,∞) and d : X ×X → [0,∞) be a mapping defined by

d(x, y) = |x− y|

for all x, y ∈ X . Consider the sequence {Sk}k∈N defined as

Sk =
k(k + 1)

2
,∀k ∈ N ∪ {0}.

Define a relation ⊥ on X by

x ⊥ y ⇐⇒ xy ∈ {x, y} ⊆ {Sk}.



152 Özlem Acar and Eşref Erdoğan

Thus (X,⊥, d) is an O-complete metric space. Now, we will define a mapping f : X → X
by

fx =

 S0 if S0 ≤ x ≤ S1

Sk−1 if Sk ≤ x ≤ Sk+1,∀k ≥ 1
.

Then f is ⊥ −continuous and X is ⊥ −preserving. Let F ∈ F be a function defined by
F (α) = α + lnα for al α > 0. We claim that f is a generalized orthogonal almost type
F−contraction with τ = 1 and L = 1. To see this, we consider the following cases. First,
observe that, let x, y ∈ X with x ⊥ y and d(fx, fy) > 0. Without loss of generality, we
may assume that x < y. So, x ∈ {S0, S1} and y = Sk for some k ≥ 2. Then,
Case 1. x = S0, y = Sk, k ≥ 2, we have

d (fx, fy)

M (x, y) + LN (x, y)
ed(fx,fy)−(M(x,y)+LN(x,y))

=
k2−k

2
k2+k

2 + k2−k
2

e
k2−k

2 −
(

k2+k
2 + k2−k

2

)
< e

−
(

k2+k
2

)
< e−1.

Case 2. x = S1, y = Sk, k ≥ 2, we have
d (fx, fy)

M (x, y) + LN (x, y)
ed(fx,fy)−(M(x,y)+LN(x,y))

=
k2−k

2
k2+k−2

2 + k2−k−2
2

e
k2−k

2 −
(

k2+k−2
2 + k2−k−2

2

)

=
k2 − k

2k2 − 4
e

−k2−k+4
2 < e−1.

Hence, all the conditions of Theorem 2.2 are satisfied and so f has a fixed point. Also, all
the contidions of Theorem 2.3 are satisfied with F1(α) = α + lnα for al α > 0, τ1 = 1 and
L1 = 1, then f has an unique fixed point.

Corollary 2.1. Let (X,⊥, d) be an O-complete orthogonal metric space with an orthogonal ele-
ments x0 and f be a self mapping on X satisfying the following conditions:
(i) f is ⊥ −preserving,
(ii) f is an orthogonal almost F−contraction such that

∀x, y ∈ X with x ⊥ y [d(fx, fy) > 0 ⇒ τ + F (d(fx, fy)) ≤ F (d(x, y) + LN(x, y))]

(iii) f is ⊥ −continuous.
Then, f has a fixed point in X .

Corollary 2.2. Let (X, d) be a complete metric space and f : X → X be a mapping such that, for
some α ∈ (0, 1],

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X . Then f has an unique fixed point in X .
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