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Intuitionistic Level Subgroups in the Dihedral Group D3

S. DIVYA MARY DAISE 1, S. DEEPTHI MARY TRESA 1 and SHERY FERNANDEZ 2∗

ABSTRACT. A well known result in fuzzy group theory states that “level subgroups of any fuzzy subgroup
of a finite group form a chain”. We check the validity of this statement in the intuitionistic fuzzy perspective. We
do this using Dihedral Group D3, which is a non-cyclic group. We prove that D3 has 100 distinct intuitionistic
fuzzy subgroups (IFSGs) upto isomorphism. The intuitionistic level subgroups (ILSGs) of exactly 76 among
them make chains, and hence it can be concluded that the result is not true in the intuitionistic fuzzy perspective.
We also enlist all the 100 distinct intuitionistic fuzzy subgroups of D3 upto isomorphism.

1. INTRODUCTION

The introduction of the concept of fuzzy sets as a generalisation of the classical notion
of set by Lotfi A. Zadeh [16] in 1965 revolutionized the concept of an element’s belong-
ingness to a set by permitting partial belongingness. Following its introduction, because
of the wide range of applications for fuzzy sets and relations in areas such as linguistics
[5], decision-making [12], clustering [2], etc., scholars all over the globe have been encour-
aged to fuzzify most of the mathematical ideas and conduct careful study on them. As a
part of this progress, many abstract algebraic ideas were fuzzified, because of their critical
importance in fields like computer sciences, information sciences, cryptography, coding
theory, and so on. The development of a fuzzy approach in group theory was the first step
in this direction which was initiated by Rosenfeld [14] by introducing fuzzy subgroups of
a group. Following this, several studies on various fuzzy algebraic structures emerged in
the literature. Later, in 1983, K. T. Atanassov [1] came up with the concept of intuitionistic
fuzzy sets as an abstraction of the theory of the fuzzy set. In 1989, Atanassov’s definition
of intuitionistic fuzzy sets was applied to group theory by Biswas [3], thereby developing
the theory of intuitionistic fuzzy subgroups of a group. Many fresh findings are still being
published in this field.
In 1981, P. S. Das [4] conducted research about the level subgroups of fuzzy subgroups
of a finite group and proved that they form a chain. In our previous works [7, 8, 9] we
have made an attempt to check whether the level subgroups in a group form a chain in
the intuitionistic fuzzy context also and arrived at the following conclusions: (1) ILSGs
in all IFSGs of Zpn form chains (p is a prime and n ∈ N), (2) among the 36 distinct (non-
isomorphic) IFSGs of Zpq (p and q are distinct primes) ILSGs in exactly 8 IFSGs form chains
and (3) among the 64 distinct (non-isomorphic) IFSGs of the Klein-4 Group ILSGs in ex-
actly 24 IFSGs form chains. Here, we try to study the validity of the findings of P. S. Das
[4] in intuitionistic fuzzy subgroups of Dihedral group D3.
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2. BASIC CONCEPTS

Throughout this paper we use G to denote a multiplicative group (G, .) unless other-
wise stated.

Definition 2.1. [16] A Fuzzy Subset A of a non-empty set X is defined to be a function
A : X → I = [0, 1] which assigns a membership degree in [0, 1] to each element of X .

Definition 2.2. [4] For a fuzzy subset A of a non-empty set X and for any γ ∈ I , the γ-cut
of A (or Level Subset of A at γ) is the crisp set Aγ = {x ∈ X : A(x) ≥ γ}.

Definition 2.3. [14] A fuzzy subset A of a group G is called a Fuzzy Subgroup (FSG) of
G if the following axioms are satisfied:
(1) A(xy) ≥ min[A(x), A(y)], for all x, y ∈ G
(2) A(x−1) = A(x), for all x ∈ G.

Proposition 2.1. [14] If A is FSG of a group G and e is the identity element in G, then A(e) ≥
A(x),∀x ∈ G.

Proposition 2.2. [4] Let G be a group and A be a fuzzy subset of G. Then A is a FSG of G if and
only if Aγ is a crisp subgroup of G for 0 ≤ γ ≤ A(e).

Definition 2.4. [4] If A is a FSG of a group G, then Aγ is a crisp subgroup of G for all γ with
0 ≤ γ ≤ A(e) and is called the Level Subgroup of A at γ.

Proposition 2.3. [4] Let A be a FSG of a finite group G with Im(A) = {ti : i = 1, 2, 3, ..., n}.
Then the collection {Ati : i = 1, 2, 3, ..., n} contains all level subgroups of A.
Moreover, if t1 > t2 > t3 > ... > tn, then all these level subgroups will form a chain GA = At1 ⊂
At2 ⊂ At3 ⊂ ... ⊂ Atn = G, where GA = {x ∈ G : A(x) = A(e)}.

Definition 2.5. [1] An Intuitionistic Fuzzy Subset (IFS) of a set X is denoted by
A = {⟨x,M (x),N (x)⟩ : x ∈ X} where M and N are functions from X → I such that
M (x) and N (x) represent the degree of membership and degree of non membership of any
element x ∈ X and satisfy the condition 0 ≤ M (x) + N (x) ≤ 1.

Definition 2.6. [15] If A = {⟨x,M (x),N (x)⟩ : x ∈ G} is an IFS of a set X and α, β ∈ I ,
then the crisp subset of X given by Aα,β = {x ∈ X : M (x) ≥ α and N (x) ≤ β} is called
the Intuitionistic Level Subset (ILS) of A at (α, β) (or (α, β)–cut of IFS A).

Definition 2.7. [13] An IFS A = {⟨x,M (x),N (x)⟩ : x ∈ G} of a group G is called an
Intuitionistic Fuzzy Subgroup (IFSG) of G if the following axioms are satisfied:
(1) M (xy) ≥ ∧[M (x),M (y)]
(2) M (x−1) = M (x)
(3) N (xy) ≤ ∨[N (x),N (y)], and
(4) N (x−1) = N (x).

Proposition 2.4. [13] If A = {⟨x,M (x),N (x)⟩ : x ∈ G} is an IFSG of a group G and e is the
identity element in G, then M (e) ≥ M (x) and N (e) ≤ N (x), for all x ∈ G.

Proposition 2.5. [15] Let G be a group and A = {⟨x,M (x),N (x)⟩ : x ∈ G} be an IFS of G.
Then A is an IFSG of G if and only if Aα,β is a crisp subgroup of G for 0 ≤ α ≤ M (e) and
N (e) ≤ β ≤ 1.

Definition 2.8. [6] If A = {⟨x,M (x),N (x)⟩ : x ∈ G} is an IFSG of a group G, then Aα,β

is a crisp subgroup of G for all α, β with 0 ≤ α ≤ M (e) and N (e) ≤ β ≤ 1) and is called
the Intuitionistic Level Subgroup (ILSG) of A at (α, β).

Proposition 2.6. [6] Let A = {⟨x,M (x),N (x)⟩ : x ∈ G} be an IFSG of a finite group G,
Im(M ) = {ti : i = 1, 2, 3, ..., n} and Im(N ) = {sj : j = 1, 2, 3, ...,m}. Then the collection
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Ati,sj : i = 1, 2, 3, ..., n; j = 1, 2, 3, ...,m

}
contains all ILSGs of G.

Remark 2.1. Proposition 2.6 states that the intuitionistic fuzzy analogue of the first part
of proposition 2.3 holds true. Also, the results obtained in section 4 prove that the intu-
itionistic fuzzy analogue of the second part need not be true always.

Definition 2.9. [10] Let A = {⟨x,M (x),N (x)⟩ : x ∈ X} be an IFS of a non-empty set X
with Im(M ) = {ti : i = 1, 2, 3, ..., n} and Im(N ) = {sj : j = 1, 2, 3, ...,m} where 1 ≥ t1 >
t2 > ... > tn ≥ 0 and 0 ≤ s1 < s2 < ... < sm ≤ 1. The finite sequence consisting of all
intuitionistic level subsets of A, given by Ł̃(A) = {At1,s1 , At1,s2 , ..., At1,sm , At2,s1 , At2,s2 ,
..., At2,sm , ..., Atn,s1 , Atn,s2 , ..., Atn,sm}, is called the Intuitionistic Level Representation
(ILR) of A.

Definition 2.10 (Isomorphic Intuitionistic Fuzzy Subsets). [10]
Two IFSs A = {⟨x,MA(x),NA(x)⟩ : x ∈ X} and B = {⟨x,MB(x),NB(x)⟩ : x ∈ X} of a
non-empty set X are isomorphic, denoted by A ∼= B, if for all x, y ∈ X
(I1) MA(x) < MA(y) ⇔ MB(x) < MB(y)
(I2) MA(x) = MA(y) ⇔ MB(x) = MB(y)
(I3) NA(x) < NA(y) ⇔ NB(x) < NB(y)
(I4) NA(x) = NA(y) ⇔ NB(x) = NB(y)
where MA(x),MB(x) denote the membership degrees and NA(x),NB(x) denote the non-
membership degrees of x in A and B respectively.

Definition 2.11. [11] The Dihedral Group D3, also known as the group of symmetries of
an equilateral triangle, consists of elements k0, k1, k2,m1,m2 and m3, where k0, k1, k2 cor-
respond to rotations of an equilateral triangle through 0◦, 120◦ and 240◦ and m1,m2,m3

correspond to the reflections of the triangle along its altitutes. The multiplication table for
D3 is shown in Table 1.

* k0 k1 k2 m1 m2 m3

k0 k0 k1 k2 m1 m2 m3

k1 k1 k2 k0 m2 m3 m1

k2 k2 k0 k1 m3 m1 m2

m1 m1 m3 m2 k0 k2 k1
m2 m2 m1 m3 k1 k0 k2
m3 m3 m2 m1 k2 k1 k0

TABLE 1. Multiplication table for D3.

3. IFSGS OF DIHEDRAL GROUP

Throughout this section we consider A = {⟨x,M (x),N (x)⟩ : x ∈ D3} to be an arbitrary
IFSG of D3.

Remark 3.2. By proposition 2.4, the identity element in a group should have the great-
est membership degree and least non-membership degree. Hence M (k0) ≥ M (x) and
N (k0) ≤ N (x), ∀ x ∈ D3.

In the following proposition we prove that the two non-identity rotations in D3 have the same
membership degrees and same non-membership degrees.

Proposition 3.7. M (k1) = M (k2) and N (k1) = N (k2).
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Proof. From the multiplication table 1 it can be seen that k1 = k22 . Then by first axiom
of IFSG we get M (k1) ≥ ∧[M (k2),M (k2)] = M (k2). Similarly, since k2 = k21 , we get
M (k2) ≥ M (k1). Hence M (k1) = M (k2).
Proceeding similarly with non-membership function N and using third axiom of IFSG
we get N (k1) = N (k2). □

In the following proposition we prove that the membership degree of the two non-identity
rotations is greater than or equal to the minimum among the membership degrees of any two
reflections. Similarly, the non-membership degree of the two non-identity rotations is less than or
equal to the maximum among the non-membership degrees of any two reflections.

Proposition 3.8. For any i, j = 1, 2, 3 with i ̸= j, M (k1) = M (k2) ≥ ∧[M (mi),M (mj)]
and N (k1) = N (k2) ≤ ∨[N (mi),N (mj)].

Proof. From the multiplication table 1 it can be seen that mimj = k1 or k2 for any i, j =
1, 2, 3 with i ̸= j. Then the required results follow directly from the first and third axioms
of IFSG. □

In the next two propositions we prove that the membership degree of any one reflection will
be greater than or equal to the minimum among the membership degrees of any one non-identity
rotation and any other reflection. Similarly, the non-membership degree of any one reflection will
be less than or equal to the maximum among the membership degrees of any one non-identity
rotation and any other reflection.

Proposition 3.9. For any i, j, k = 1, 2, 3 with i ̸= j ̸= k ̸= i,

M (mi) ≥


∧[M (k1),M (mj)]
∧[M (k1),M (mk)]
∧[M (k2),M (mj)]
∧[M (k2),M (mk)]

Proof. From the multiplication table 1 it can be seen that mi = k1mj = k1mk = k2mj =
k2mk for any i, j, k = 1, 2, 3 with i ̸= j ̸= k ̸= i. Then the required result follows directly
from first axiom of IFSG. □

Proposition 3.10. For any i, j, k = 1, 2, 3 with i ̸= j ̸= k ̸= i,

N (mi) ≤


∨[N (k1),M (mj)]
∨[N (k1),M (mk)]
∨[N (k2),M (mj)]
∨[N (k2),M (mk)]

Proof. From the multiplication table 1 it can be seen that mi = k1mj = k1mk = k2mj =
k2mk for any i, j, k = 1, 2, 3 with i ̸= j ̸= k ̸= i. Then the required result follows directly
from third axiom of IFSG. □

Proposition 3.11. For any i, j, k = 1, 2, 3 with i ̸= j ̸= k ̸= i, either M (k0) ≥ M (k1) =
M (k2) ≥ M (mi) = M (mj) = M (mk) or M (k0) ≥ M (mk) ≥ M (mi) = M (mj) =
M (k1) = M (k2).

Proof. From remark 3.2 and propositions 3.7 and 3.8 we have

M (k0) ≥ M (k1) = M (k2) ≥ ∧[M (mp),M (mq)] (3.1)

for any p, q = 1, 2, 3 with p ̸= q. Without loss of generality, now suppose M (mi) ≤
M (mj) ≤ M (mk) where i, j, k ∈ {1, 2, 3} with i ̸= j ̸= k ̸= i. Then equation 3.1
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implies M (k1) = M (k2) ≥ ∧[M (mi),M (mk)] = M (mi) and M (k1) = M (k2) ≥
∧[M (mj),M (mk)] = M (mj). Thus,

M (k1) = M (k2) ≥ M (mi),M (mj) (3.2)

Equation 3.2 and proposition 3.9 together implies M (mi) ≥ M (mj). Hence our assump-
tion becomes

M (mi) = M (mj) ≤ M (mk) (3.3)
Now it is enough to get the relation between M (mk) and M (k1) = M (k2).
Case (i): Suppose M (mk) ≤ M (k1) = M (k2). Then proposition 3.9 implies M (mi) ≥
M (mk) and hence by equation 3.3 we get M (mi) = M (mk). As a result, the hierarchy of
membership degrees in this case becomes:

M (k0) ≥ M (k1) = M (k2) ≥ M (mi) = M (mj) = M (mk)

Case (ii): Next suppose M (mk) ≥ M (k1) = M (k2). Then proposition 3.9 implies M (mi) ≥
M (k1),M (k2) and hence by equation 3.2 we get M (mi) = M (k1),M (k2). Then equa-
tions 3.2 and 3.3 imply M (mk) ≥ M (k1) = M (k2) = M (mi) = M (mj). As a result, the
hierarchy of membership degrees in this case becomes:

M (k0) ≥ M (mk) ≥ M (mi) = M (mj) = M (k1) = M (k2)

This completes the proof. □

Proposition 3.12. For any i, j, k = 1, 2, 3 with i ̸= j ̸= k ̸= i, either N (k0) ≤ N (k1) =
N (k2) ≤ N (mi) = N (mj) = N (mk) and N (k0) ≤ N (mk) ≤ N (mi) = N (mj) =
N (k1) = N (k2).

Proof. Similar to proof of proposition 3.11. □

Remark 3.3. Proposition 3.11 implies that the hierarchy of membership degrees in any
IFSG of D3 should be as follows:

M (k0) ≥ M (k1) = M (k2) ≥ M (mi) = M (mj) = M (mk)

M (k0) ≥ M (mk) ≥ M (mi) = M (mj) = M (k1) = M (k2)
(3.4)

for any i, j, k = 1, 2, 3 where i ̸= j ̸= k ̸= i.
The possibilities that arise from inequalities in (3.4) are listed in Table 2.

1 M (k0) > M (k1) = M (k2) > M (m1) = M (m2) = M (m3)
2 M (k0) = M (k1) = M (k2) > M (m1) = M (m2) = M (m3)
3 M (k0) > M (k1) = M (k2) = M (m1) = M (m2) = M (m3)
4 M (k0) = M (k1) = M (k2) = M (m1) = M (m2) = M (m3)
5 M (k0) > M (m1) > M (m2) = M (m3) = M (k1) = M (k2)
6 M (k0) = M (m1) > M (m2) = M (m3) = M (k1) = M (k2)
7 M (k0) > M (m1) = M (m2) = M (m3) = M (k1) = M (k2)
8 M (k0) = M (m1) = M (m2) = M (m3) = M (k1) = M (k2)
9 M (k0) > M (m2) > M (m1) = M (m3) = M (k1) = M (k2)
10 M (k0) = M (m2) > M (m1) = M (m3) = M (k1) = M (k2)
11 M (k0) > M (m2) = M (m1) = M (m3) = M (k1) = M (k2)
12 M (k0) = M (m2) = M (m1) = M (m3) = M (k1) = M (k2)
13 M (k0) > M (m3) > M (m1) = M (m2) = M (k1) = M (k2)
14 M (k0) = M (m3) > M (m1) = M (m2) = M (k1) = M (k2)
15 M (k0) > M (m3) = M (m1) = M (m2) = M (k1) = M (k2)
16 M (k0) = M (m3) = M (m1) = M (m2) = M (k1) = M (k2)

TABLE 2. The possible inequalities obtained from inequalities in (3.4).
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It can be noted that, in the Table 2, the inequalities numbered as 7, 8, 11, 12, 15, 16 are
same as those numbered as 3, 4 and hence can be omitted. As a result, there are exactly 10
possible hierarchies of membership degrees in any IFSG A in D3, which are listed in the
Table 3.
Similarly, by proposition 3.12 the hierarchy of non-membership degrees in any IFSG of
D3 should be:

N (k0) ≤ N (k1) = N (k2) ≤ N (mi) = N (mj) = N (mk)

N (k0) ≤ N (mk) ≤ N (mj) = N (mj) = N (k1) = N (k2)
(3.5)

for any i, j, k = 1, 2, 3 where i ̸= j ̸= k ̸= i. As in the case of membership degrees,
it can be obtained from inequality (3.5) that, there are exactly 10 possible hierarchies of
non-membership degrees in any IFSG A in D3, which are listed in the Table 4.

Membership degrees
1 M (k0) > M (k1) = M (k2) > M (m1) = M (m2) = M (m3)
2 M (k0) = M (k1) = M (k2) > M (m1) = M (m2) = M (m3)
3 M (k0) > M (m1) > M (m2) = M (m3) = M (k1) = M (k2)
4 M (k0) = M (m1) > M (m2) = M (m3) = M (k1) = M (k2)
5 M (k0) > M (m2) > M (m1) = M (m3) = M (k1) = M (k2)
6 M (k0) = M (m2) > M (m1) = M (m3) = M (k1) = M (k2)
7 M (k0) > M (m3) > M (m1) = M (m2) = M (k1) = M (k2)
8 M (k0) = M (m3) > M (m1) = M (m2) = M (k1) = M (k2)
9 M (k0) > M (k1) = M (k2) = M (m1) = M (m2) = M (m3)

10 M (k0) = M (k1) = M (k2) = M (m1) = M (m2) = M (m3)

TABLE 3. The possible hierarchies of membership degrees in any IFSG A
in D3

Non-membership degrees
1 N (k0) < N (k1) = N (k2) < N (m1) = N (m2) = N (m3)
2 N (k0) = N (k1) = N (k2) < N (m1) = N (m2) = N (m3)
3 N (k0) < N (m1) < N (m2) = N (m3) = N (k1) = N (k2)
4 N (k0) = N (m1) < N (m2) = N (m3) = N (k1) = N (k2)
5 N (k0) < N (m2) < N (m1) = N (m3) = N (k1) = N (k2)
6 N (k0) = N (m2) < N (m1) = N (m3) = N (k1) = N (k2)
7 N (k0) < N (m3) < N (m1) = N (m2) = N (k1) = N (k2)
8 N (k0) = N (m3) < N (m1) = N (m3) = N (k1) = N (k2)
9 N (k0) < N (k1) = N (k2) = N (m1) = N (m2) = N (m3)

10 N (k0) = N (k1) = N (k2) = N (m1) = N (m2) = N (m3)

TABLE 4. The possible hierarchies of non-membership degrees in any
IFSG A in D3

Proposition 3.13. Given t1, t2, t3, s1, s2, s3 ∈ I with 1 ≥ t1 > t2 > t3 ≥ 0 and 0 ≤ s1 < s2 <
s3 ≤ 1, there exist exactly 100 non-isomorphic IFSGs of D3 with membership degrees t1, t2, t3
and non-membership degrees s1, s2, s3.

Proof. It is clear from tables 4 and 3 that, there are 10 possible hierarchies of membership
degrees and 10 possible hierarchies of non-membership degrees in any IFSG of D3. This
means, membership degrees can be assigned in 10 different ways, following which non-
membership degrees can also be assigned in 10 different ways. Hence, by the fundamental
principle of counting, exactly 10×10 = 100 distinct (non-isomorphic) IFSGs can be defined
in D3 using the given set of membership and non-membership degrees. □
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4. ILSGS IN DIHEDRAL GROUP

Proposition 4.14. If M (k1) = M (k2) ≥ M (mk) and N (k1) = N (k2) ≤ N (mk) for all
k = 1, 2, 3, then the ILSGs of A form a chain.

Proof. From equations 3.4 and 3.5 we have

M (k0) ≥ M (k1) = M (k2) ≥ M (mi) = M (mj) = M (mk)

N (k0) ≤ N (k1) = N (k2) ≤ N (mi) = N (mj) = N (mk)

for i, j, k ∈ {1, 2, 3} with i ̸= j ̸= k ̸= i. Hence there exist non-negative real numbers
t1 ≥ t2 ≥ t3 and s1 ≤ s2 ≤ s3 in I , such that M (k0) = t1,M (k1) = M (k2) = t2,M (mi) =
M (mj) = M (mk) = t3 and N (k0) = s1,N (k1) = N (k2) = s2,N (mi) = N (mj) =
N (mk) = s3. Then ILR of A is:

Ł̃(A) = {At1,s1 , At1,s2 , At1,s3 , At2,s1 , At2,s2 , At2,s3 , At3,s1 , At3,s2 , At3,s3}
= {{k0}, {k0}, {k0}, {k0}, {k0, k1, k2}, {k0, k1, k2}, {k0}, {k0, k1, k2}, D3}

Hence, the distinct ILSGs of A are: {k0}, {k0, k1, k2}, D3 which form the chain At1,s1 ⊂
At2,s2 ⊂ At3,s3 as shown in figure 1. □

FIGURE 1. ILSGs in proof of proposition 4.14

Proposition 4.15. If M (k1) = M (k2) ≤ M (mk) and N (k1) = N (k2) ≥ N (mk) for all
k = 1, 2, 3, then the ILSGs of A form a chain.

Proof. Similar to proof of proposition 4.14. □

Proposition 4.16. If M (k1) = M (k2) > M (mk) and N (k1) = N (k2) > N (mk) for some
k = 1, 2, 3, then the ILSGs of A will not form a chain.

Proof. From equations (3.4) and (3.5) we have

M (k0) ≥ M (k1) = M (k2) > M (mk) = M (mi) = M (mj)

N (k0) ≤ N (mk) < N (k1) = N (k2) = N (mi) = N (mj)

for i, j, k ∈ {1, 2, 3} with i ̸= j ̸= k ̸= i. Hence there exist non-negative real numbers
t1 ≥ t2 ≥ t3 and s1 ≤ s2 ≤ s3 in I , such that M (k0) = t1,M (k1) = M (k2) = t2,M (mi) =



192 Divya Mary Daise S., Deepthi Mary Tresa S., Shery Fernandez

M (mj) = M (mk) = t3 and N (k0) = s1,N (mk) = s2,N (k1) = N (k2) = N (mi) =
N (mj) = s3. Then ILR of A is:

Ł̃(A) = {At1,s1 , At1,s2 , At1,s3 , At2,s1 , At2,s2 , At2,s3 , At3,s1 , At3,s2 , At3,s3}
= {{k0}, {k0}, {k0}, {k0}, {k0}, {k0, k1, k2}, {k0}, {k0,mk}, D3}

Hence, the distinct ILSGs of A are: {k0}, {k0, k1, k2}, {k0,mk}, D3 which does not form a
chain as shown in figure 2. □

FIGURE 2. ILSGs in proof of proposition 4.16

Proposition 4.17. If M (k1) = M (k2) < M (mk) and N (k1) = N (k2) < N (mk) for some
k = 1, 2, 3, then the ILSGs of A will not form a chain.

Proof. Similar to proof of proposition 4.16. □

Remark 4.4. Propositions 4.14 and 4.16 say that, the only possibilities where the ILSGs
do not form a chain are when the membership and non-membership degrees of any two
elements follow the same hierarchical ordering (other than equality).

Combining the above two propositions we get the following result.

Theorem 4.1. The ILSGs of A form a chain if, and only if, M (k1) = M (k2) ≥ M (mk) and
N (k1) = N (k2) ≤ N (mk) for all k = 1, 2, 3.

Remark 4.5. We may denote the IFSGs of D3 by A(i, j), i, j = 1, 2, 3, ..., 10, where the
membership degrees in A(i, j) are chosen as per the ith row of Table 3 and the non-
membership degrees are chosen as per the jth row of Table 4.

Remark 4.6. According to theorem 4.1, corresponding to each of the hierarchies of mem-
bership levels in rows 1 and 2 of Table 3, exactly six hierarchies of non-membership levels
in rows 3,4,5,6,7,8 of Table 4 will form IFSGs of D3 whose ILSGs do not form a chain and
corresponding to each of the hierarchies of non-membership levels in rows 1 and 2 of Ta-
ble 4, exactly six hierarchies of membership levels in rows 3,4,5,6,7,8 of Table 3 will form
IFSGs of D3 whose ILSGs do not form a chain. Hence the total number of IFSGs of D3

(upto isomorphism) whose ILSGs do not form a chain is 2 × 6 + 2 × 6 = 24, which are
given in Table 5.
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A(1, 3) A(1, 4) A(1, 5) A(1, 6) A(1, 7) A(1, 8)
A(2, 3) A(2, 4) A(2, 5) A(2, 6) A(2, 7) A(2, 8)
A(3, 1) A(4, 1) A(5, 1) A(6, 1) A(7, 1) A(8, 1)
A(3, 2) A(4, 2) A(5, 2) A(6, 2) A(7, 2) A(8, 2)

TABLE 5. IFSGs of D3 whose ILSGs do not form a chain.

Proposition 4.18. The probability that the ILSGs of a randomly defined IFSG of D3 forms a chain
is 19/25.

Proof. As stated in proposition 3.13, 100 distinct IFSGs can be defined on D3 (upto isomor-
phism). By theorem 4.1 and remark 4.6, ILSGs corresponding to exactly 24 among them
will not form a chain. Hence the proportion of IFSGs of which the ILSGs form a chain is
76
100 = 19

25 . □

Remark 4.7. We know that every non-cyclic group of order 6 is isomorphic to Dihedral group
D3. Hence it can be concluded that, 100 non-isomorphic IFSGs can be defined on any
non-cyclic group of order 6, among which 76 IFSGs have the property that the ILSGs form
a chain.

5. CONCLUSION

The aim of our research is to check whether the intuitionistic level subgroups of an
intuitionistic fuzzy subgroup of any group form a chain a chain or not. In this paper, this
investigation is carried out in the Dihedral group D3. We have proved that, any IFSG of
the Dihedral group D3 can have at most three membership and non-membership levels.
We have also proved that, D3 has 100 distinct IFSGs upto isomorphism and that for only
76 among them the ILSGs form chains. We have also provided an enlisting of all the
100 distinct IFSGs of D3 upto isomorphism. We are trying to generalize these and get an
estimate of IFSGs of Dn whose ILSGs form chains.
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