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Generalized convergence and generalized sequential spaces

V. RENUKADEVI and P. VIJAYASHANTHI

ABSTRACT. We continue the study of g-convergence given in 2005 [Caldas, M.; Jafari, S. On g-US spaces.
Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău 14 (2004), 13–19 (2005).] by introducing the sequential g-closure
operator and we prove that the product of g-sequential spaces is not g-sequential by giving an example. We
further investigate sequential g-continuity in topological spaces and present interesting theorems which are also
new for the real case. It is shown that in a topological space the property of being g-sequential implies sequential,
g-Fréchet implies Fréchet and g-Fréchet implies g-sequential. However, the inverse conclusions are not true and
some counter examples are given. Also, we show that strongly g-continuous image of a g-sequential space is
g-sequential, if the map is quotient. Finally, we obtain a necessary and sufficient condition for a topological
space to be g-sequential in terms of a sequentially g-quotient map.

1. INTRODUCTION AND PRELIMINARIES

Fast [6] and Schoenberg [9] independently introduced the concept of statistical con-
vergence by extending the convergence of real sequences. Any convergent sequence is
statistically convergent but the converse is not true [8]. In 2005, Caldas and Jafari [4]
introduced a new type of convergence in terms of g-open sets. Also, they studied sequen-
tially g-closed set and sequential g-continuity by utilizing g-open sets. In this paper, we
continue the study of g-convergence sequences. In Section 2, we introduce the sequential
g-closure operator using g-convergence and derive some of their properties. In Section
3, we further investigate sequential g-continuity in topological spaces and present inter-
esting theorems which are also new for the real case. In Section 4, we introduce general-
ized Fréchet spaces and provide relations between sequential, g-sequential, Fréchet and
g-Fréchet spaces by giving counter examples. In Section 5, we point out that the space is
g-sequential if and only if each quotient map on the space is sequentially g-quotient.

Let (X, τ) be a topological space. A subset A of X is called g-closed [4] if cl(A) ⊂
G holds whenever A ⊂ G and G is open in X.A is called a g-open subset of X if its
complement X − A is g-closed in X. Every open set is g-open [7]. A subset A of X is
called a g-neighborhood of a point x ∈ X if there exists a g-open set U with x ∈ U ⊂ A.
A topological space (X, τ) is said to be T1/2 [7] if every g-closed set in X is closed in X. A
sequence of points {xn} in X is said to converge [5] to a point x ∈ X, denoted {xn} → x
if for every open set U of x, there is a m ∈ N such that xn ∈ U for all n ≥ m. Let A ⊂ X. A
sequence {xn} converging to x ∈ X is eventually in A if {xn | n > p} ∪ {x} ⊂ A for some
p ∈ N. A is called sequentially closed [4] if for every sequence {xn} in A with {xn} → x,
then x ∈ A. A function [.]seq of the power set P(X) to itself defined by for each subset A of
X, [A]seq = {x ∈ X | {xn} → x in (X, τ) for some sequence {xn} of points in A} is called
the sequential closure operator on (X, τ) [1]. Observe that A ⊂ [A]seq [1].

A sequence {xn} in a space X g-converges to a point x ∈ X [4] if {xn} is eventually in
every g-open set containing x and is denoted by {xn}

g−→ x and x is called the g-limit of
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the sequence {xn}, denoted by glim xn. A subset A of X is called sequentially g-closed [4]
if every sequence in A g-converges to a point in A. Let S[A] denote the set of all sequences
in A and cg(X) denote the set of all g-convergent sequences in X. A sequentially g-open
subset U (which is the complement of a sequentially g-closed set) is one in which every
sequence in X which g-converges to a point in U is eventually in U.

A map f : X → Y from a topological space (X, τ) into a topological space (Y, σ) is
called g-continuous [2] if the inverse image of every closed set in Y is g-closed in X. A
map f : X → Y is said to be strongly g-continuous [2] if the inverse image of every g-
closed set in Y is closed in X. A mapping f : X → Y is said to be sequentially quotient
[3] provided that: a set A is sequentially closed in Y if and only if f−1(A) is sequentially
closed in X. f is said to be sequentially g-continuous [4] if {f(xn)}

g−→ f(x) in Y whenever
{xn}

g−→ x in X.
The following lemmas will be useful in the sequel.

Lemma 1.1. Let (X, τ) and (Y, σ) be any two topological spaces. Then every strongly g-continuous
function from (X, τ) to (Y, σ) is a continuous function.

Lemma 1.2. Let (X, τ) be a topological space and A ⊂ X. If A is sequentially closed, then
A = [A]seq.

Proof. Suppose that A is sequentially closed and x ∈ [A]seq. Then {xn} → x for some
sequence {xn} of points in A which implies that x ∈ A. Therefore, [A]seq ⊂ A. But A ⊂
[A]seq. Hence [A]s−seq = A. □

2. SEQUENTIALLY g-CLOSED SETS

In this section, we define an operator, called sequentially g-closure operator in terms of
g-convergent sequences and derive some of their properties.

The following Lemma 2.3(a) shows that every g-convergent sequence is a convergent
sequence and Example 2.1 below shows that the converse is not true.

Lemma 2.3. Let (X, τ) be a topological space. Then the following hold.
(a) Every g-convergent sequence is a convergent sequence.
(b) If (X, τ) is a T1/2 space, then the concepts convergence and g-convergence coincide.

Proof. (a) Suppose that {xn} is a sequence in X such that {xn}
g−→ x. Let U be a neighbor-

hood of x. Then U is a g-open neighborhood of x. Therefore, there exists N ∈ N such that
xn ∈ U for all n ≥ N. Thus, {xn} → x.

(b) By (a), every g-convergent sequence is a convergent sequence. Conversely, suppose
that {xn} → x. Let U be a g-open neighborhood of x. Since X is a T1/2 space, U is an
open neighborhood of x. Since {xn} → x, there exists n0 ∈ N such that xn ∈ U for all
n ≥ n0. Therefore, {xn}

g−→ x. Hence the convergence and the g-convergence of sequences
coincide in a T1/2 space. □

Example 2.1. Consider the topological space (X, τ) where X = [0, 5), τ = {∅, (0, 1), X}.
Suppose xn = 1

n for n ∈ N. Then {xn} converges to 0. If A = (0, 1], then A is g-closed and
so X \ A is g-open. That is, {0} ∪ (1, 5) is a g-open subset of X such that 1

n /∈ {0} ∪ (1, 5)
for any n. Hence {xn} does not g-converge to 0.

Lemma 2.4. Let (X, τ) be a topological space. Then the following hold.
(a) Every constant sequence (x, x, ..., ) in X g-converges to x.
(b) If a sequence {xn} g-converges to x in X, then each subsequence {xnk

} of {xn} also g-
converges to x.
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Proof. (a) Let {xn} = (x, x, ..., ) be a sequence in X and U be a g-open set containing x.

Since xn = x for all n ∈ N, xn ∈ U. Therefore, {xn}
g−→ x.

(b) Suppose A = {xn | n ∈ N}. Let {xnk
| nk ∈ N} be any subsequence of A and U

be any g-open neighbourhood of x. Then there is an m ∈ N such that xn ∈ U whenever
n ≥ m. But n ≥ nk for each k ∈ N. So nk ≥ m whenever k ≥ m. Therefore, xnk

∈ U

whenever k ≥ m. Thus, {xnk
} g−→ x. □

Definition 2.1. Let (X, τ) be a topological space, A ⊂ X and let S[A] be the set of all
sequences in A. Then the sequential g-closure of A, denoted by [A]gseq , is defined as

[A]gseq = {x ∈ X | x = glim xn and {xn} ∈ S[A] ∩ cg(X)}
where cg(X) denotes the set of all g-convergent sequences in X.

The following Theorem 2.1 gives the properties of sequential g-closure operator.

Theorem 2.1. Let A and B be subsets of a topological space (X, τ). Then the following hold.
(a) [∅]gseq = ∅.
(b) A ⊂ [A]gseq .
(c) [A]gseq ⊂ cl(A).
(d) A ⊂ B ⇒ [A]gseq ⊂ [B]gseq .
(e) [A]gseq ∪ [B]gseq = [A ∪B]gseq .
(f) [A]gseq ⊂ [[A]gseq ]gseq .

Proof. (a) is clear.
(b) Suppose that l ∈ A. Consider the sequence {xn} = (l, l, ..., ). Then {xn} ∈ S[A] ∩

cg(X). Also, glim xn = l. Therefore, l ∈ [A]gseq and hence A ⊂ [A]gseq .
(c) Suppose that x ∈ [A]gseq . Then x = glim xn where {xn} ∈ S[A] ∩ cg(X). That is,

{xn}
g−→ x and so by Lemma 2.3 (a), {xn} → x. Thus, x ∈ cl(A).

(d) Suppose that x ∈ [A]gseq . Then {xn}
g−→ x and {xn} ∈ S[A] ∩ cg(X). Since A ⊂ B,

{xn} ∈ S[B] ∩ cg(X). Therefore, x ∈ [B]gseq . Thus, [A]gseq ⊂ [B]gseq .
(e) Since A ⊂ A ∪ B and by (d), [A]gseq ⊂ [A ∪ B]gseq and also, [B]gseq ⊂ [A ∪ B]gseq .

Therefore, [A]gseq ∪ [B]gseq ⊂ [A ∪ B]gseq . Let x ∈ [A ∪ B]gseq . Then {xn}
g−→ x for some

sequence {xn} in A ∪ B. Clearly, either {n ∈ N | xn ∈ A} or {n ∈ N | xn ∈ B} is infinite.
Without loss of generality, assume that {n ∈ N | xn ∈ A} is infinite. Then, it is obvious
that there exists a subsequence {xnk

} of {xn} such that {xnk
| nk ∈ N} ⊂ A where {xnk

|
nk ∈ N} is the range of (xnk

). By Theorem 2.4(b), {xnk
} g−→ x. Hence x ∈ [A]gseq ∪ [B]gseq .

Thus, [A ∪B]gseq = [A]gseq ∪ [B]gseq .
(f) By (b), we have A ⊂ [A]gseq and so [A]gseq ⊂ [[A]gseq ]gseq , by (d). This completes the

proof. □

The following Example 2.2 shows that the sequential g-closure operator [A]gseq of a set
A does not satisfy the idempotent property.

Example 2.2. Consider X = {0} ∪
⋃
i∈N

Xi where Xi = { 1
i } ∪ { 1

i + 1
k | k ∈ N, k ≥ i2} for

each i ∈ N. Suppose that X is endowed with the following topology.
(i) Each point of the form 1

i +
1
j where j ∈ N is isolated.

(ii) Each neighbourhood of each point of the form 1
i contains a set of the form { 1

i } ∪ { 1
i +

1
k | k ∈ N, k ≥ j} where j ≥ i2.
(iii) Each neighbourhood of the point 0 contains a set obtained from X by removing a
finite number of Xi’s and finite number of points of the form 1

i + 1
j , j ≥ i2 in all the

remaining Xi’s.
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Take A = { 1
i } ∪ { 1

i +
1
k | k ∈ N, k ≥ i2}. Then [A]gseg = X \ {0} and so [[A]gseq ]gseg =

[X \ {0}]gseq = X. Therefore, [A]gseq ̸= [[A]gseq ]gseq .

Theorem 2.2. Let (X, τ) be a topological space. Then the following hold.
(a) Every sequentially closed set is a sequentially g-closed set.
(b) [A]gseq ⊂ [A]seq for A ⊂ X.

Proof. (a) Suppose A ⊂ X is sequentially closed. Then A = [A]seq, by Lemma 1.2. Let
{xn} be a sequence in A such that {xn}

g−→ x. By Lemma 2.3 (a), {xn} → x in A and so
x ∈ [A]seq. Hence x ∈ A. Thus, A is sequentially g-closed.
(b) Suppose that x ∈ [A]gseq . Then by the definition of sequential g-closure of A, there is a
sequence {xn} in A such that {xn}

g−→ x. By Lemma 2.3 (a), {xn} → x and so x ∈ [A]seq.
Therefore, [A]gseq ⊂ [A]seq. □

The following Example 2.3 shows that the converse of Theorem 2.2 (b) is not true.

Example 2.3. Consider the topological space (X, τ) where X = [0, 5), τ = {∅, (0, 1), X}.
Suppose xn = 1

n for n ∈ N. Then the sequence {xn} converges to 0. If A = (0, 1], then
A is g-closed and so X \ A is g-open. That is, {0} ∪ (1, 5) is a g-open subset of X. But
1
n /∈ {0}∪ (1, 5) for any n. Hence {xn} does not g-converge to 0. Therefore, [A]seq ⊈ [A]gseq

The following Theorem 2.3 gives the relation between closed set and sequentially g-
closed set in any topological space. The converse of Theorem 2.3 (c) is not true in general
as shown by Example 2.4 below.

Theorem 2.3. Let (X, τ) be a topological space and A ⊂ X. Then the following hold.
(a) A is sequentially g-closed if and only if [A]gseq ⊂ A.
(b) Every closed subset of X is sequentially g-closed.
(c) If A is open, then A is sequentially g-open.

Proof. (a) Suppose x ∈ [A]gseq . Then there exists {xn} ∈ S[A] ∩ cg(X) such that x =
glim xn. Since A is a sequentially g-closed subset of X, x ∈ A. Hence [A]gseq ⊂ A. Con-
versely, let {xn} be a sequence in A such that {xn}

g−→ x. Then x ∈ [A]gseq . By assumption,
[A]gseq ⊂ A and so x ∈ A. Hence A is sequentially g-closed.
(b) Suppose that A is closed. Then A = cl(A) ⊃ [A]gseq , by Theorem 2.1 (c). By (a), A is
sequentially g-closed.
(c) Let A be open. Then X \A is closed in X. By (b), X \A is sequentially g-closed. Hence
A is sequentially g-open. □

Example 2.4. Consider (R, τc) where τc is the cocountable topology on R. Here F ⊂ R
is closed if and only if F = R or F is countable. Let A be a subset of R. Suppose that a
sequence {xn} in A has a g-limit y. Then the g-neighbourhood (R \ {xn | n ∈ N}) ∪ {y} of
y must contain {xn} for large n. This is only possible when xn = y for large n. A sequence
in any set A, g-converges to an element of A. So every subset of R is sequentially g-open.
As R is uncountable, not every subset is open. Thus, a sequentially g-open set need not
be open.

Theorem 2.4. Let (X, τ) be a topological space. Then the following hold.
(a) Intersection of any collection of sequentially g-closed subsets of X is sequentially g-closed.
(b) The union of any collection of sequentially g-open subsets of X is sequentially g-open.

Proof. (a) Let {Fα | α ∈ ∆} be a collection of sequentially g-closed subsets of X where ∆
is an arbitrary index set. If ∩Fα = ∅, then there is nothing to prove. Suppose ∩Fα ̸= ∅. If
x ∈ [∩Fα]gseq , then there exists a sequence {xn} of points in

⋂
α∈∆

Fα such that {xn}
g−→ x.
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Therefore, for each α ∈ ∆, {xn} is in Fα such that {xn}
g−→ x. Therefore, x ∈ [Fα]gseq for

each α ∈ ∆. As each Fα is sequentially g-closed, x ∈ Fα for each α ∈ ∆. Thus, x ∈
⋂

α∈∆

Fα

and so [
⋂

α∈∆

Fα]gseq ⊂
⋂

α∈∆

Fα. By Theorem 2.3 (a),
⋂

α∈∆

Fα is sequentially g-closed in X.

(b) Since complement of a sequentially g-closed set is a sequentially g-open set, the proof
follows from (a). □

Theorem 2.5. Let (X, τ) be a topological space and A be a subset of X. Then x ∈ [A]gseq if and
only if for every sequentially g-open neighbourhood U of x, U ∩A ̸= ∅.

Proof. Let x ∈ [A]gseq and let U be a sequentially g-open neighbourhood of x. Suppose
U ∩ A = ∅. Then A ⊆ X \ U so that [A]gseq ⊂ [X \ U ]gseq , by Theorem 2.1 (d). Here X \ U
is a sequentially g-closed subset and hence [A]gseq ⊂ X \U, by Theorem 2.3 (a). Therefore,
x ∈ X \ U and so x /∈ U which is a contradiction. Hence A ∩ U ̸= ∅ for every sequentially
g-open neighbourhood of x.

Conversely, suppose that x /∈ [A]gseq . Then U = X \ [A]gseq is a sequentially g-open
neighbourhood of x but does not intersect A, since A ⊂ [A]gseq (Theorem 2.1 (b)). Hence
U ∩A = ∅. □

Theorem 2.6. Let (X, τ) be a topological space and A be a subset of X. Then [A]gseq =
⋂
{M |

A ⊆ M and M is sequentially g-closed }.

Proof. Let x ∈ [A]gseq and M be a sequentially g-closed subset containing A. Then there is a
sequence {xn} in A such that g limxn = x. Since {xn} is also a sequence in M, x ∈ [M ]gseq .
Since M is sequentially g-closed, x ∈ M, by Theorem 2.3 (a). Thus, [A]gseq ⊂

⋂
{M | A ⊆

M and M is sequentially g-closed }.
Conversely, let x /∈ [A]gseq . Then there is a sequentially g-open neighbourhood U of

x such that U ∩ A = ∅, by Theorem 2.5. Now U ∩ A = ∅ implies that A ⊂ (X \ U).
Since X \ U is sequentially g-closed, X \ U must be some M. As x /∈ X \ U, we have
x /∈

⋂
{M | A ⊆ M and M is sequentially g-closed }. Therefore,

⋂
{M | A ⊆ M and M

is sequentiallyg-closed} ⊂ [A]gseq . Hence [A]gseq =
⋂
{M | A ⊆ M and M is sequentially

g-closed }. □

3. SEQUENTIALLY g-CONTINUOUS MAPS

Balachandran et al. [2] already studied the relation between continuous, g-continuous
and strongly g-continuous maps. In 2004, Caldas et al. [4] introduced the concept of
sequentially g-continuous map and studied their properties. In this section, we investigate
further properties of sequential g-continuous maps in topological spaces.

Theorem 3.7. If f : (X, τ) → (Y, σ) is a sequentially g-continuous map, then the following hold.
(a) The inverse image of any sequentially g-closed subset of Y is sequentially g-closed in X.
(b) The inverse image of any sequentially g-open subset of Y is sequentially g-open in X.

Proof. (a) Let F be a sequentially g-closed subset of Y. Suppose that x ∈ [f−1(F )]gseq .

Then there is a sequence {xn} ∈ f−1(F ) such that {xn}
g−→ x. Since f is sequentially

g-continuous, {f(xn)}
g−→ f(x). Thus, f(x) ∈ F, since F is sequentially g-closed and so

x ∈ f−1(F ). Therefore, [f−1(F )]gseq ⊂ f−1(F ). Hence f−1(F ) is sequentially g-closed, by
Theorem 2.3 (a).
(b) Since complement of a sequentially g-closed set is a sequentially g-open set, the proof
follows from (a). □

Definition 3.2. Let (X, τ) and (Y, σ) be two topological spaces and f : (X, τ) → (Y, σ)
be a map. Then f is said to be sequentially g-open if the image of any sequentially g-open
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subset of X is sequentially g-open and f is said to be sequentially g-closed if the image of
any sequentially g-closed subset of X is sequentially g-closed.

Theorem 3.8. Let f, h : (X, τ) → (X, τ) be any two maps. Then the following hold.
(a) If f and h are sequentially g-continuous, then so is hf = h ◦ f.
(b) If f and h are sequentially g-closed, then so also is hf.
(c) If f is sequentially g-continuous, hf is sequentially g-closed and f is onto, then h is sequen-
tially g-closed.
(d) If hf is sequentially g-closed, h is sequentially g-continuous and h is one-to-one, then f is
sequentially g-closed.

Proof. (a) Let {xn} be a sequence in X such that {xn}
g−→ x ∈ X. Since f is sequentially

g-continuous at x, {f(xn)}
g−→ f(x) and so {h(f(xn))}

g−→ h(f(x)), since h is sequentially
g-continuous at f(x). Therefore, the map hf is sequentially g-continuous.

(b) Let A be a sequentially g-closed subset of X. Then f(A) is a sequentially g-closed
subset of X. Since h is sequentially g-closed, h(f(A)) is a sequentially g-closed subset of
X. Therefore, hf is sequentially g-closed.

(c) Let A be a sequentially g-closed subset of X. Since f is sequentially g-continuous,
f−1(A) is sequentially g-closed, by Theorem 3.7(a). Since hf is sequentially g-closed and
f is onto, hf(f−1(A)) = h(A) is sequentially g-closed.

(d) Let A be a sequentially g-closed subset of X. Since hf is sequentially g-closed, hf(A)
is sequentially g-closed. Since h is sequentially g-continuous and one-to-one, h−1h(f(A)) =
f(A) is sequentially g-closed. Therefore, f is a sequentially g-closed. □

Theorem 3.9. Let (X, τ) be a topological space. Then the following hold.
(a) If f : X → X is a sequentially g-continuous map, then so is the restriction f : A → X to a
subset A.
(b) The identity map f : X → X is sequentially g-continuous.
(c) For a subset A ⊆ X, the inclusion map f : A → X is sequentially g-continuous.
(d) The constant map f : X → X is sequentially g-continuous.

Proof. (a) Let {xn} be a sequence in A with {xn}
g−→ x. Then {xn} is a sequence in X.

Since f is sequentially g-continuous. {f(xn)}
g−→ f(x). Hence f : A → X is a sequentially

g-continuous map.
(b) Suppose {xn}

g−→ x where {xn} ∈ S[X]. Then {f(xn)}
g−→ f(x), since f(x) = x and

f(xn) = xn for all n ∈ N. Therefore, the identity map is sequentially g-continuous.
(c) Let {xn} be a sequence in A with {xn}

g−→ x ∈ A. Since {f(xn)} = {xn}, we have
{f(xn)}

g−→ x. Therefore, the inclusion map is sequentially g-continuous.
(d) Let f : X → X be a constant map with f(x) = x0 for all x ∈ X and let {xn} be

a sequence in X g-converging to x. Then {f(xn)} = (x0, x0, ..., )
g−→ x0, by Lemma 2.4(a).

Therefore, {f(xn)}
g−→ f(x). □

Theorem 3.10. Let (X, τ) be a topological group under addition + and let f, h : (X, τ) → (X, τ)
be any two maps. If f and h are sequentially g-continuous, then also is f + h.

Proof. Let {xn} be a sequence in X with {xn}
g−→ x in X. Since the maps f and h are sequen-

tially g-continuous, {f(xn)}
g−→ f(x) and {h(xn)})

g−→ h(x). Therefore, {(f + h)(xn)} =

{f(xn)}+{h(xn)}
g−→ f(x)+h(x) = (f +h)(x). That is, f +h is sequentially g-continuous.

□
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Theorem 3.11. Let (X, τ) be a topological group and let f : X → X be an additive map on
X onto itself. Then f is sequentially g-continuous at the origin if and only if f is sequentially
g-continuous at every point in X.

Proof. Let the additive map f : X → X be sequentially g-continuous everywhere. Then
{f(xn)}

g−→ f(0) whenever {xn}
g−→ 0. Hence {f(xn)}

g−→ 0, since f(0) = 0. Therefore,
f is sequentially g-continuous at 0. Conversely, let a ∈ X and {xn} be a sequence in X

with glim xn = a. Since the constant sequence g-converges, by Lemma 2.4(a), (a)
g−→ a.

Therefore, the sequence {xn − a} g−→ 0 and so by assumption, {f(xn − a)} g−→ f(0) = 0.

Since f is additive, {f(xn)− f(a)} g−→ 0. Hence {f(xn)}
g−→ f(a). □

Theorem 3.12. Let (X, τ) be a topological group and a ∈ X be fixed. The map fa : X → X,
defined by fa(x) = a + x is sequentially g-continuous, sequentially g-closed and sequentially
g-open. We denote the inverse of the map fa by f−a.

Proof. Let x be a point in X with {xn}
g−→ x. Then the sequence {a + xn} is g-convergent

to a + x, by Lemma 2.4(a). Since fa(xn) = a + xn, {fa(xn)}
g−→ a + x which implies that

{fa(xn)}
g−→ fa(x). Therefore, fa is sequentially g-continuous. Since the inverse of fa is

f−a, by Theorem 3.7 (a), the map fa is sequentially g-closed and by Theorem 3.7 (b), fa is
sequentially g-open. □

Theorem 3.13. Let (X, τ) be a topological group and A,B ⊂ X. If one of the sets A and B is
sequentially g-open, then the sum A+B is also a sequentially g-open set.

Proof. Suppose that B is a sequentially g-open subset of X and A is any subset. By Theo-
rem 3.12, a+B is sequentially g-open for any a ∈ A. Since A+B =

⋃
a∈A

a+B, by Theorem

2.4 (b), A+B is sequentially g-open. □

Theorem 3.14. Let (X, τ) be a topological group, Y be Hausdorff space and f : X → Y be a
sequentially g-continuous map. Then A = {x ∈ X | f(x) = 0}, the kernel of f is a sequentially
g-closed subset of X.

Proof. If x ∈ [A]gseq , then there exists a sequence {xn} of points in A such that g limxn = x.
Since xn ∈ A for all n ∈ N, the sequence {f(xn)} is the constant sequence with f(xn) = 0
for all n. Therefore, g lim f(xn) = 0, by Lemma 2.4(a). Since f is sequentially g-continuous,
g lim f(xn) = f(x). Since Y is Hausdorff, f(x) = 0 and so x ∈ A. By Theorem 2.3(a), A is
sequentially g-closed. □

Theorem 3.15. Let (X, τ) be a topological group, Y be Hausdorff space and f, h : X → Y be
sequentially g-continuous maps. Then A = {x ∈ X | f(x) = h(x)} is a sequentially g-closed
subset of X.

Proof. If x ∈ [A]gseq , then there exists a sequence {xn} of the points in A such that g limxn =
x. Since (h−f)(xn) = h(xn)−f(xn), {(h−f)(xn)} is a constant sequence with (h−f)(xn) =
0 for all n. Therefore, g lim(h − f)(xn) = 0. By Theorem 3.10, h − f is sequentially g-
continuous, g lim(h− f)(xn) = (h− f)(x). Thus, (h− f)(x) = 0 so that h(x) = f(x). Thus,
x ∈ A. Hence A is sequentially g-closed. □

4. g-SEQUENTIAL AND g-FRÉCHET SPACES

In this section, we define g-sequential and g-Fréchet spaces and derive some of their
properties. We prove that each g-Fréchet space is a g-sequential space and each g-Fréchet
space is a Fréchet space. However, we show that the converse implications of the above
statements are not true by giving counter examples.
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Definition 4.3. A topological space (X, τ) is said to be g-sequential if every sequentially
g-closed set in X is a closed set. A topological space (X, τ) is said to be g-Fréchet if cl(A) ⊂
[A]gseq for each A ⊂ X.

The following Theorem 4.5 shows that every quotient of a g-sequential space is a g-
sequential space. Theorem 4.16 below gives relation between sequential, Fréchet, g-sequential
and g-Fréchet spaces.

Lemma 4.5. Every quotient of a g-sequential space is g-sequential.

Proof. Let f be a quotient map of a g-sequential space X onto a space Y. Let U be se-
quentially g-open subset of Y. We prove that U is open in Y. Enough to show that f−1(U)
is sequentially g-open in X. Let {xn} be a sequence in X g-converging to x ∈ f−1(U).
Then {xn} → x ∈ X in f−1(U), by Theorem 2.3 (a). Thus, {f(xn)} → f(x) ∈ Y in U,
as f is continuous. Thus, {f(xn)} is eventually in U. Therefore, there exists n0 ∈ N such
that f(xn) ∈ U for n ≥ n0 which implies that f−1f(xn) ⊂ f−1(U) for n ≥ n0 and so
xn ∈ f−1(U) for n ≥ n0. Thus, the set {xn | n ≥ n0} is eventually in f−1(U). Therefore,
f−1(U) is sequentially g-open in X. Since X is g-sequential, f−1(U) is open in X which
implies that U is open in Y, since f is quotient. Hence Y is a g-sequential space. □

Theorem 4.16. Let (X, τ) be a topological space. Then the following hold.
(a) If X is a g-sequential space, then X is a sequential space.
(b) If X is a g-Fréchet space, then X is a Fréchet space.
(c) If X is a g-Fréchet space, then X is a g-sequential space and hence X is a sequential space.

Proof. (a) Let A be a sequentially open subset of X. Then X \ A is a sequentially closed
subset of X. By Lemma 2.2 (a), X \ A is sequentially g-closed. Hence X \ A is closed, by
our hypothesis and so A is open in X. Therefore, X is a sequential space.
(b) Let x ∈ cl(A). Since X is g-Fréchet, cl(A) ⊂ [A]gseq and so x ∈ [A]gseq . There is a
sequence {xn} in A such that {xn}

g−→ x. By Theorem 2.3 (a), {xn} → x and so x ∈ [A]seq.
Hence cl(A) ⊂ [A]seq. Thus, X is a Fréchet space.
(c) Suppose A is sequentially g-closed. By Theorem 2.3 (a), [A]gseq ⊂ A. Since X is g-
Fréchet, cl(A) ⊂ [A]gseq ⊂ A ⊂ cl(A). Hence A = cl(A). Therefore, A is closed. Thus, X is
a g-sequential space.

By (a), every g-sequential space is a sequential space. This completes the proof. □

We show that the reverse implications of Theorem 4.16 are not true by giving examples.
The following Example 4.5 gives a sequential space which is not a g-sequential space.

Example 4.5. Let S = {xn | n ∈ N} be a sequence such that xn ̸= xm if n ̸= m. Take x /∈ S
and let X = S ∪ {x}. The topology on X is defined in the following sense.

(1) Each point xn is isolated.
(2) Each open neighbourhood of the point x is a set U of the form U = {x} ∪M where

M is a subset of S.
Clearly, x is a unique non isolated point in X.
We prove that X is sequential but no subsequence of S g-converges to x.

Let Y be a sequentially closed subset of X. To prove that Y is closed in X. If x ∈ Y or
Y is a finite set, then it is obvious that Y is closed. So we assume that x /∈ Y and Y is
infinite. Let Y = {xnk

| k ∈ N}. It is enough to verify that y ∈ Y if y ∈ cl(Y ). Suppose that
y ∈ cl(Y ). Since Y is a sequentially closed subset of X, Y converges to y. Therefore, y ∈ Y.
It follows that cl(Y ) = Y. Hence X is sequential.

Next, we prove that no subsequence of S g-converge to x. Assume that {xnk
} is a sub-

sequence of S. Put U = X \ {xnk
| k ∈ N}. Then U is a g-open neighbourhood of x and
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for any k ∈ N, xnk
/∈ U which implies that {xnk

} does not g-converge to x. Since S is a
non-closed subset of X and x ∈ cl(S) = X, X is not a g-sequential space. Thus, there
exists a sequential space which is not a g-sequential space.

The following Example 4.6 gives a Fréchet space which is not a g-Fréchet space.

Example 4.6. For each n ∈ N, let Sn = {xn,m |m ∈ N} be a sequence such that xn,m ̸= xn,l

if m ̸= l. Take ∞ /∈
⋃
{Sn | n ∈ N} and let X =

⋃
{Sn | n ∈ N} ∪ {∞}. The topology on X

is defined in the following sense.
(1) Each point xn,m is isolated.
(2) Each open neighbourhood of the point ∞ is a set U of the form U = {∞}∪{Mn | n ∈

N} where Mn is a dense subsequence of Sn.
We prove that the space X is a Fréchet space.

Assume that Y is an arbitrary subset of X. Take y ∈ cl(Y ). If y ∈ ∪{Sn | n ∈ N}, then
it is obvious that y ∈ Y. For each k ∈ N, put xk = y. Then the sequence {xk} is a subset of
Y converges to y. Therefore, we assume that y = ∞ and ∞ /∈ Y. Put V = X \ Y. Then V
is an open neighbourhood of ∞ and V ∩ Y = ∅ which is a contradiction to ∞ ∈ cl(Y ). It
follows that Sn converges to ∞. Therefore, X is a Fréchet space.

Next we prove that the space X is not a g-Fréchet space. Suppose ∞ ∈ cl(S1). By
Example 4.5, we know that no subsequence of S1 g-converges to ∞. Hence the space X is
not a g-Fréchet space. Therefore, there is a Fréchet space which is not a g-Fréchet space.

The following Example 4.7 gives a g-sequential space which is not a g-Fréchet space.

Example 4.7. Let L = R \ {0} be the set of real numbers with 0 removed and let M =
{0} ∪ { 1

i | i ∈ N} and Y = (L × {0}) ∪ (M × {1}) have its usual topology as a subspace
of R2. In particular, Y is a g-sequential space. Now let f : Y → X be the projection of Y
onto its first coordinate space, the set X = {0}∪L, that is, X is the set of all real numbers.
The topology on X is generated by the usual topology with all sets of the form {0} ∪ U
where U is open in R and contains { 1

i | i ∈ N}. As a quotient of a g-sequential space, X
is g-sequential, by Lemma 4.5. Now we prove that X is not g-Fréchet. Let A = X \ M.
Then [A]gseq = R \ {0}. We show that 0 ∈ cl(A) but no sequence in A g-converges to 0.

Let N be a neighbourhood of 0. Then N contains a point 1
i for some i ∈ N. Away from

0, the topology of X is locally ’as usual’. At any rate, there exists some δ > 0 such that
( 1i − δ, 1

i + δ) ⊆ N. Now there exists some irrational x ∈ N and x being irrational, x ∈ A.
Hence A ∩ N ̸= ∅. This shows that 0 ∈ cl(A). Suppose that {xn} is any sequence in A.
For each n ∈ N, xn ̸= 0. Therefore, inf

j∈N
| xn − 1

j |> 0. Consider the sequence (αi) where

αi = inf
j∈N

| xn − 1
j |, and let W = {0} ∪

⋃
i∈N

( 1i − δi,
1
i + δi). Then W is a g-neighbourhood

of 0 that contains none of the member of the sequence {xn}. Therefore, {xn} cannot be g-
convergent to 0. It follows that no sequence in A g-converging to 0. So X is not a g-Fréchet
space. Therefore, there exists a g-sequential space which is not a g-Fréchet space.

Theorem 4.17. If the product space is g-sequential, so is each of its factors.

Proof. Let X = Πα∈ΛXα be a g-sequential space. It is enough to prove that for β ∈ Λ, if Uβ

is not open in Xβ , then Uβ is not sequentially g-open in Xβ . Suppose that Uβ is not open
in Xβ . Let U ⊂ X such that πβ(U) = Uβ and πα(U) = Uα for α ̸= β. Then U is not open
in X. Since X is g-sequential, U is not a sequentially g-open subset of X. Therefore, there
exists a sequence {xαn

} in X not in U g-converging to (xα) ∈ U. In particular, for α = β,
{xβn} g-converges to (xβ) ∈ U and {xβn} /∈ Uβ , that is, Uβ is not sequentially g-open.
Therefore, Xβ is a g-sequential space. □
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The following Example 4.8 shows that the product of g-sequential spaces need not be a
g-sequential space.

Example 4.8. Let Q′ be rationals, Q, with integers identified and let X = Q×Q′. Since Q
is a T 1

2
space, every g-open set is open and hence Q and Q′ are g-sequential. Therefore,

X is the product of two g-sequential spaces. But X contains a sequentially g-open set
W which is not open. Now we describe W as follows: Let {xn} ⊆ R be a sequence of
irrational numbers less than one, g-converging monotonically downwards to 0. For n =
0, 1, . . . , let Tn be the integer of the plane triangle determined by the points (xn, n), (1, n+
1/2)(1, n − 1/2). Let T ′

n be the reflection of Tn on the y-axis and Rn be the interior of the
rhombus determined by the points (−xn, n), (0, n + 1/2), (xn, n) and (0, n − 1/2). Then
Wn = Tn ∪ Rn ∪ T ′

n is an open subset of the plane. Considering X as a subset of the

plane with the horizontal integer lines identified, let W = X ∩
∞⋃
0
Wn. If π1 : X → Q and

π2 : X → Q′ are the canonical projections, for any neighborhoods U and U ′ of 0 in Q and
Q′, respectively, π−1

1 (U) ∩ π−1
2 (U ′) ⊈ W. Hence (0, 0) is not an interior point of W and

hence W cannot be open.
Now suppose (yn) ⊆ X \ W and {yn}

g−→ y ∈ W. If π2(y) ̸= 0, g-convergence in X

is g-convergence in Q × Q which is contradiction to {yn}
g−→ y ∈ W. Hence π2(y) = 0.

If π1(y) ̸= 0, then W can be replaced by a scaled down version of itself with y at the
symmetric position. Hence we may assume that y = (0, 0). But {yn}

g−→ (0, 0) implies
{π2(yn)}

g−→ 0 in Q′ which can occur if and only if some subsequence g-converges in Q to
some integer k. But this restrict {yn} eventually to arbitrary small π2(k − ϵ, k + ϵ). Since
{yn}

g−→ (0, 0) in X, eventually put {yn} in W. Hence W is sequentially g-open. Therefore,
Q×Q′ is not g-sequential.

Proposition 4.1. In a topological space, the following statements hold.
(a) The disjoint topological sum of any family of g-sequential spaces is g-sequential.
(b) The disjoint topological sum of any family of g-Fréchet spaces is g-Fréchet.

Proof. (a) Let X be the disjoint sum of the family {Xi}i∈Λ of g-sequential spaces. Suppose
U is not open in X. Then for some i ∈ Λ, U ∩ Xi is not open in Xi, so U ∩ Xi is not
sequentially g-open in Xi for some i ∈ Λ. Thus, there is a point x ∈ U ∩Xi and a sequence
{xn} ⊂ Xi \ U g-converges to x in Xi and also in X. Therefore, U is not sequentially g-
open. Hence X is a g-sequential space.
(b) Let X be the disjoint sum of the family of g-Fréchet spaces {Xi | i ∈ Λ}. Suppose U
is closed in X. Then for some i ∈ Λ, U ∩Xi is closed in Xi and so U ∩Xi is sequentially
g-closed in Xi, since each Xi is g-Fréchet. So U ∩ Xi is closed for some i ∈ Λ, since
[A]gseq ⊂ cl(A). Thus, there is a point x ∈ U ∩Xi and a sequence {xn} in Xi g-converges
to x in Xi and also in X. Hence U is sequentially g-closed. □

Theorem 4.18. Let (X, τ) be a g-sequential space, (Y, σ) be a topological space and let f : X → Y
be a map. Then f is strongly g-continuous if and only if f is sequentially g-continuous.

Proof. Suppose f is strongly g-continuous and {xn}
g−→ x in X. Let V be a g-open set con-

taining f(x). Then f−1(V ) is an open set containing x, by hypothesis. Therefore, f−1(V )

is a g-open set containing x. Since {xn}
g−→ x, {xn} is eventually in f−1(V ). That is, there

exists n0 ∈ N such that xn ∈ f−1(V ) for all n ≥ n0 and so f(xn) ∈ ff−1(V ) ⊂ V. Thus,
{f(xn)} is eventually in V, by Lemma 1.1. Therefore, {f(xn)}

g−→ f(x).
Suppose that f is not strongly g-continuous. Then there is a g-open set U ⊂ Y such

that f−1(U) is not open in X. Thus, f−1(U) is also not sequentially g-open, since X is a
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g-sequential space. Therefore, there is a sequence {xn} in X \ f−1(U) that g-converges
to a point y ∈ f−1(U). But {f(xn)} is a sequence in Y \ U, a closed set and so f(x) can
not be a g-limit of {f(xn)}. Hence f does not preserve g-convergence. Therefore, f is not
sequentially g-continuous. □

Proposition 4.2. The strongly g-continuous open (or closed) image of a g-sequential space is a
g-sequential space.

Proof. Let f : (X, τ) → (Y, σ) be an open and a strongly g-continuous map. Let X be
a g-sequential space. Suppose f(X) is not a g-sequential space. Then there exists a se-
quentially g-open subset U of f(X) which is not open. Since f is an open map, f−1(U)
is not open. Now X is a g-sequential space and f−1(U) is not open implies that f−1(U)
is not sequentially g-open. Therefore, there exists a point x ∈ f−1(U) and a sequence
{xn} /∈ f−1(U) such that {xn} g-converges to x. By Theorem 4.18, {f(xn)}

g−→ f(x) and
f(x) ∈ U. But f(xn) /∈ U which is a contradiction to the fact that U is sequentially g-
open. □

Theorem 4.19. Each sequentially g-open (sequentially g-closed) subspace of a g-sequential space
is g-sequential.

Proof. Let (X, τ) be a g-sequential space. Suppose that Y is a sequentially g-open subspace
of X. Then Y is open in X, since X is g-sequential. Let U be an arbitrary sequentially g-
open subset of Y. We prove that U is sequentially g-open in X. Let {xn} be a sequence in
X which g-converges to x ∈ U. Then x ∈ Y and since Y is a sequentially g-open subset of
X, {xn} is eventually in Y. That is, there exists k1 ∈ N such that {xn | n > k1} ⊂ Y. Since
U is a sequentially g-open subset of Y, there exists k2 ∈ N such that {xn | n > k2} ⊂ U.
Then {xn | n > k} ⊂ U where k = max{k1, k2}. Therefore, U is sequentially g-open in X
and hence open in X implies that U is open in Y, since Y is open in X. Therefore, Y is a
g-sequential space.

If Y is a sequentially g-closed subset of X, then Y is closed in X, since X is a g-
sequential space. Let A be a sequentially g-closed subset of Y and {xn} be a sequence
in A g-converging to x ∈ X. Since Y is closed, x ∈ Y. Hence x ∈ A. Therefore, A is a
sequentially g-closed set in X and so A is closed in X, as X is a g-sequential space. Since
Y is closed in X, A is closed in Y. □

The following Corollary 4.1 shows that strongly g-continuous image of a g-sequential
space is g-sequential, if the map is quotient.

Corollary 4.1. Let f : (X, τ) → (Y, σ) be a quotient map from X onto a space Y and f be
strongly g-continuous. If X is a g-sequential space, then Y is a g-sequential space.

Proof. Suppose that X is a g-sequential space. Let G be any sequentially g-open set in Y.
We prove that f−1(G) is sequentially g-open in X. Let {xn} be a sequence in X which
g-converges to a point x in f−1(G). Then {f(xn)}

g−→ f(x), by Theorem 4.18. Since f(x) ∈
G, there exists k ∈ N such that {f(xn) | n > k} is eventually in G. Since f is onto,
x = f−1(f(x)) ∈ f−1(G). Hence {f−1(f(xn)) | n > k} is eventually in f−1(G) which
implies that {xn | n > k} is eventually in f−1(G) and so f−1(G) is sequentially g-open in
X. Since X is g-sequential, f−1(G) is open X. Therefore, G is an open subset of Y, by the
definition of quotient map. □

5. SEQUENTIALLY g-QUOTIENT MAP

In this section, we introduce the concept of sequentially g-quotient map and study their
properties. Also,we give a characterization for a sequentially g-quotient map. Finally, we
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obtain a necessary and sufficient condition for a topological space to be g-sequential in
terms of a sequentially g-quotient map.

Definition 5.4. A map f : (X, τ) → (Y, σ) is said to be sequentially g-quotient if it satisfies
the following: A is sequentially g-closed in Y if and only if f−1(A) is sequentially g-closed
in X.

The following Example 5.9 shows the existence of sequentially g-quotient map and
Theorem 5.20 provides an equivalent condition for a sequentially g-quotient map.

Example 5.9. Let X be the topological sum of the collection {I, Sα | α ∈ I} where I = [0, 1]
and each Sα is a g-convergent sequence with its g-limit xα for each α ∈ I and let Y be the
space obtained from X by identifying the g-limit point of Sα with α. Let f : X → Y be
the natural map. Let {yn} be a g-converging sequence in Y. Then there is a subsequence
of {yn} which is either contained in Sα or in I. Therefore, the sequence {f−1(yn)} ∩ Sα

or {f−1(yn)} ∩ I must g-converges whose image is a subsequence of {yn}. Therefore, f is
sequentially g-quotient.

Theorem 5.20. Let (X, τ) and (Y, σ) be two topological spaces and let f : X → Y be a strongly
g-continuous map. Then the following are equivalent.
(a) f is a sequentially g-quotient map.
(b) If {xn} is a sequence in Y g-converging to x, then {f−1(xn)}

g−→ f−1(x).

Proof. (a)⇒(b) Suppose f is a sequentially g-quotient map. Let {xn}
g−→ x in Y. If A =

{xn | n ∈ N} ∪ {x}, then A is a sequentially g-closed set in Y. Since f is a sequentially
g-quotient map, f−1(A) is a sequentially g-closed set in X. That is, {f−1(xn)}

g−→ f−1(x)
and f−1(x) ∈ f−1(A).
(b)⇒(a) Let B be sequentially g-closed in Y. We prove that f−1(B) is sequentially g-closed
in X. Let {xn} be a sequence in f−1(B) g-converging to x. Then there is some yn ∈ B
such that f(xn) = yn. Let V be a g-open neighbourhood of f(x). Since f is strongly g-
continuous, f−1(V ) is a g-open neighbourhood of x. Therefore, there exists n0 ∈ N such
that xn ∈ f−1(V ) for all n ≥ n0 and so f(xn) ∈ V. Thus, yn ∈ V for all n ≥ n0. Hence
{yn}

g−→ f(x) and so x ∈ f−1(B). Therefore, f−1(B) is sequentially g-closed in X. □

Theorem 5.21. Let (X, τ) be a T1/2 space and f : (X, τ) → (Y, σ) be a sequentially g-quotient
map. If f is a sequentially g-closed map, then f is a sequentially closed map.

Proof. Suppose A is a sequentially closed set in X. By Theorem 2.2 (a), A is sequentially
g-closed set in X. By hypothesis, f(A) is sequentially g-closed in Y. To prove that f(A)
is sequentially closed in Y. Let {yn} be a sequence in f(A) such that {yn} → y. Since f

is sequentially g-quotient, {f−1(yn)}
g−→ f−1(y), by Theorem 5.20. That is, {f−1(yn)} is

a sequence in A g-converging to f−1(y). Since X is T1/2, {f−1(yn)} → f−1(y) in A, by
Lemma 2.3 (a). Hence f−1(y) ∈ A so that y ∈ f(A). Hence f(A) is sequentially closed in
Y. Therefore, f is a sequentially closed map. □

Theorem 5.22. Let (X, τ) be a topological space. Then X is g-sequential if and only if each
quotient map on X is sequentially g-quotient.

Proof. Let X be a g-sequential space and let f : X → Y be any quotient map. Then Y
is a g-sequential space, by Lemma 4.5. Let U be any non sequentially g-closed subset of
Y. Then U is not closed and f−1(U) is not closed. Since X is g-sequential, f−1(U) is not
sequentially g-closed in X.

Conversely, suppose that X is not g-sequential. Let A be a sequentially g-closed subset
of X which is not closed. Consider the map f : X → Y where Y = {0, 1} defined by
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f(x) =

{
0, if x ∈ A
1, if x ∈ X −A

Let Y has the quotient topology induced by f. Since f−1({1}) = X − A is not open in X,

{1} is not open in Y and also, not g-open in Y. Thus, the constant sequence (0, 0, ..., )
g−→ 1.

The set {0} is not sequentially g-closed, but f−1({0}) is sequentially g-closed. Hence f is
a quotient map on X and f is not sequentially g-quotient. □

Recall that a class of map is said to be hereditary [1] if whenever f : X → Y is in the
class, then for each subspace L of Y, the restriction of f to f−1(L) is in the class. The
following Theorem 5.23 shows that every sequentially g-quotient map is a hereditarily
sequentially g-quotient map.

Theorem 5.23. Sequentially g-quotient maps are hereditarily sequentially g-quotient.

Proof. Let f : (X, τ) → (Y, σ) be a sequentially g-quotient map and L be a subspace
of Y. Take h = f |f−1(L) such that h : f−1(L) → L be a map. Given a sequence {xn}
g-convergence to y in L, there exists a sequence {xn} ∈ f−1(yn) ⊂ f−1(L) such that
{xn}

g−→ x ∈ f−1(y) ⊂ f−1(L), since f is a sequentially g-quotient map. Hence {yn}
g−→ y

in Y. Therefore, h is a sequentially g-quotient map. □

Proposition 5.3. Finite product of sequentially g-quotient maps is sequentially g-quotient.

Proof. Let ΠN
i=1fi : Π

N
i=1Xi → ΠN

i=1Yi be a map where each fi : Xi → Yi is a sequentially
g-quotient map for i = 1, 2, ...N. Let {(yi,n)} be a sequence g-converges to (yi) in ΠN

i=1Yi.
Since each fi is a sequentially g-quotient map, there exists a sequence {xi,n} in Xi such
that {xi,n}

g−→ xi and fi(xi,n) = yi,n. Let (xi) ∈ ΠN
i=1Xi and U be a g-open set containing

(xi). Then (xi,n) ∈ U implies that {(xi,n)}n∈N
g−→ (xi). Therefore, ΠN

i=1fi is a sequentially
g-quotient map. □

Proposition 5.4. Let f : X → Y and g : Y → Z be two strongly g-continuous maps. Then the
following hold.

(a) If f and g are sequentially g-quotient, then g ◦ f is sequentially g-quotient.
(b) If X is a g-sequential space and g ◦ f is sequentially g-quotient, then g is sequentially

g-quotient.

Proof. (a) Let A be a g-converging sequence in Z with its g-limit point z. Since g is se-
quentially g-quotient, there exists a g-converging sequence B in Y with its g-limit point
y ∈ g−1(z) such that g(B) = A, by Theorem 5.20. Also, f is a sequentially g-quotient map
implies that there exists a g-converging sequence C in X with its g-limit point x ∈ f−1(y)
and f(C) = B. That is, there exists a g-converging sequence C in X with its g-limit point
x ∈ (g ◦ f)−1(z) such that (g ◦ f)(C) = A. Hence g ◦ f is sequentially g-quotient.
(b) Let A be a g-convergent sequence in Z with its g-limit z. Since g ◦ f is sequentially g-
quotient, there exists a g-convergent sequence C in X with its g-limit point x ∈ (g◦f)−1(z)
such that (g ◦ f)(C) = A. By Theorem 4.18, f(C) is a g-convergent sequence in Y with its
g-limit f(x) = y ∈ g−1(z) such that g(f(C)) = A. Therefore, g is a sequentially g-quotient
map. □

Theorem 5.24. If (Y, σ) is a g-sequential space, then every sequentially g-quotient map onto Y is
quotient.

Proof. Let Y be a g-sequential space and f : (X, τ) → (Y, σ) be a sequentially g-quotient
map onto Y. Suppose that f−1(U) is open in X and U is not open in Y. Then Y \ U is
not closed in Y. Therefore, by hypothesis, there exists y ∈ U such that {yn}

g−→ y and
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{yn} ∈ Y \ U. Since f is sequentially g-quotient, there exists a sequence {xn}
g−→ x such

that x ∈ f−1(y) ⊂ f−1(U) and {xn} ∈ f−1(yn) ⊂ f−1(Y \ U) = X \ f−1(U). Therefore,
X \ f−1(U) is not a sequentially g-closed set, since x /∈ X \ f−1(U). Therefore, f−1(U)
is not a sequentially g-open set which is a contradiction to f−1(U) is open. Hence f is a
quotient map. □
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