CREAT. MATH. INFORM. Volume **31** (2022), No. 2, Pages 201 - 214 Online version at https://semnul.com/creative-mathematics/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2022.02.06

Generalized convergence and generalized sequential spaces

V. RENUKADEVI and P. VIJAYASHANTHI

ABSTRACT. We continue the study of g-convergence given in 2005 [Caldas, M.; Jafari, S. On g-US spaces. *Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău* 14 (2004), 13–19 (2005).] by introducing the sequential g-closure operator and we prove that the product of g-sequential spaces is not g-sequential by giving an example. We further investigate sequential g-continuity in topological spaces and present interesting theorems which are also new for the real case. It is shown that in a topological space the property of being g-sequential implies sequential, g-Fréchet implies Fréchet and g-Fréchet implies g-sequential. However, the inverse conclusions are not true and some counter examples are given. Also, we show that strongly g-continuous image of a g-sequential space is g-sequential, if the map is quotient. Finally, we obtain a necessary and sufficient condition for a topological space to be g-sequential in terms of a sequentially g-quotient map.

1. INTRODUCTION AND PRELIMINARIES

Fast [6] and Schoenberg [9] independently introduced the concept of statistical convergence by extending the convergence of real sequences. Any convergent sequence is statistically convergent but the converse is not true [8]. In 2005, Caldas and Jafari [4] introduced a new type of convergence in terms of *g*-open sets. Also, they studied sequentially *g*-closed set and sequential *g*-continuity by utilizing *g*-open sets. In this paper, we continue the study of *g*-convergence sequences. In Section 2, we introduce the sequential *g*-closure operator using *g*-convergence and derive some of their properties. In Section 3, we further investigate sequential *g*-continuity in topological spaces and present interesting theorems which are also new for the real case. In Section 4, we introduce generalized Fréchet spaces and provide relations between sequential, *g*-sequential, Fréchet and *g*-Fréchet spaces by giving counter examples. In Section 5, we point out that the space is *g*-sequential if and only if each quotient map on the space is sequentially *g*-quotient.

Let (X, τ) be a topological space. A subset A of X is called g-closed [4] if $cl(A) \subset G$ holds whenever $A \subset G$ and G is open in X. A is called a g-open subset of X if its complement X - A is g-closed in X. Every open set is g-open [7]. A subset A of X is called a g-neighborhood of a point $x \in X$ if there exists a g-open set U with $x \in U \subset A$. A topological space (X, τ) is said to be $T_{1/2}$ [7] if every g-closed set in X is closed in X. A sequence of points $\{x_n\}$ in X is said to converge [5] to a point $x \in X$, denoted $\{x_n\} \to x$ if for every open set U of x, there is a $m \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq m$. Let $A \subset X$. A sequence $\{x_n\}$ converging to $x \in X$ is eventually in A if $\{x_n \mid n > p\} \cup \{x\} \subset A$ for some $p \in \mathbb{N}$. A is called sequentially closed [4] if for every sequence $\{x_n\}$ in A with $\{x_n\} \to x$, then $x \in A$. A function $[.]_{seq}$ of the power set $\mathbb{P}(X)$ to itself defined by for each subset A of X, $[A]_{seq} = \{x \in X \mid \{x_n\} \to x \text{ in } (X, \tau)$ for some sequence $\{x_n\}$ of points in $A\}$ is called the sequential closure operator on (X, τ) [1]. Observe that $A \subset [A]_{seq}$ [1].

A sequence $\{x_n\}$ in a space X *g*-converges to a point $x \in X$ [4] if $\{x_n\}$ is eventually in every *g*-open set containing x and is denoted by $\{x_n\} \xrightarrow{g} x$ and x is called the *g*-limit of

2010 Mathematics Subject Classification. 54A20, 54C08, 54D55.

Received: 25.12.2020. In revised form: 13.04.2022. Accepted: 21.04.2022

Key words and phrases. *g-closed set, sequential g-closure, sequentially closed set, sequential space, Fréchet space.* Corresponding author: V. Renukadevi; renukadevi@cutn.ac.in, renu_siva2003@yahoo.com

the sequence $\{x_n\}$, denoted by $glim x_n$. A subset A of X is called sequentially g-closed [4] if every sequence in A g-converges to a point in A. Let S[A] denote the set of all sequences in A and $c_g(X)$ denote the set of all g-convergent sequences in X. A sequentially g-open subset U (which is the complement of a sequentially g-closed set) is one in which every sequence in X which g-converges to a point in U is eventually in U.

A map $f : X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is called *g*-continuous [2] if the inverse image of every closed set in *Y* is *g*-closed in *X*. A map $f : X \to Y$ is said to be strongly *g*-continuous [2] if the inverse image of every *g*closed set in *Y* is closed in *X*. A mapping $f : X \to Y$ is said to be sequentially quotient [3] provided that: a set *A* is sequentially closed in *Y* if and only if $f^{-1}(A)$ is sequentially closed in *X*. *f* is said to be *sequentially g*-continuous [4] if $\{f(x_n)\} \xrightarrow{g} f(x)$ in *Y* whenever $\{x_n\} \xrightarrow{g} x$ in *X*.

The following lemmas will be useful in the sequel.

Lemma 1.1. Let (X, τ) and (Y, σ) be any two topological spaces. Then every strongly *g*-continuous function from (X, τ) to (Y, σ) is a continuous function.

Lemma 1.2. Let (X, τ) be a topological space and $A \subset X$. If A is sequentially closed, then $A = [A]_{seq}$.

Proof. Suppose that *A* is sequentially closed and $x \in [A]_{seq}$. Then $\{x_n\} \to x$ for some sequence $\{x_n\}$ of points in *A* which implies that $x \in A$. Therefore, $[A]_{seq} \subset A$. But $A \subset [A]_{seq}$. Hence $[A]_{s-seq} = A$.

2. SEQUENTIALLY *g*-CLOSED SETS

In this section, we define an operator, called sequentially *g*-closure operator in terms of *g*-convergent sequences and derive some of their properties.

The following Lemma 2.3(a) shows that every *g*-convergent sequence is a convergent sequence and Example 2.1 below shows that the converse is not true.

Lemma 2.3. Let (X, τ) be a topological space. Then the following hold.

- (a) Every *g*-convergent sequence is a convergent sequence.
- (b) If (X, τ) is a $T_{1/2}$ space, then the concepts convergence and g-convergence coincide.

Proof. (a) Suppose that $\{x_n\}$ is a sequence in X such that $\{x_n\} \xrightarrow{g} x$. Let U be a neighborhood of x. Then U is a g-open neighborhood of x. Therefore, there exists $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \ge N$. Thus, $\{x_n\} \to x$.

(b) By (a), every *g*-convergent sequence is a convergent sequence. Conversely, suppose that $\{x_n\} \to x$. Let *U* be a *g*-open neighborhood of *x*. Since *X* is a $T_{1/2}$ space, *U* is an open neighborhood of *x*. Since $\{x_n\} \to x$, there exists $n_0 \in \mathbb{N}$ such that $x_n \in U$ for all $n \ge n_0$. Therefore, $\{x_n\} \xrightarrow{g} x$. Hence the convergence and the *g*-convergence of sequences coincide in a $T_{1/2}$ space.

Example 2.1. Consider the topological space (X, τ) where $X = [0, 5), \tau = \{\emptyset, (0, 1), X\}$. Suppose $x_n = \frac{1}{n}$ for $n \in \mathbb{N}$. Then $\{x_n\}$ converges to 0. If A = (0, 1], then A is g-closed and so $X \setminus A$ is g-open. That is, $\{0\} \cup (1, 5)$ is a g-open subset of X such that $\frac{1}{n} \notin \{0\} \cup (1, 5)$ for any n. Hence $\{x_n\}$ does not g-converge to 0.

Lemma 2.4. Let (X, τ) be a topological space. Then the following hold.

(a) Every constant sequence (x, x, ...,) in X g-converges to x.

(b) If a sequence $\{x_n\}$ g-converges to x in X, then each subsequence $\{x_{n_k}\}$ of $\{x_n\}$ also g-converges to x.

Proof. (a) Let $\{x_n\} = (x, x, ...,)$ be a sequence in X and U be a g-open set containing x. Since $x_n = x$ for all $n \in \mathbb{N}, x_n \in U$. Therefore, $\{x_n\} \xrightarrow{g} x$.

(b) Suppose $A = \{x_n \mid n \in \mathbb{N}\}$. Let $\{x_{n_k} \mid n_k \in \mathbb{N}\}$ be any subsequence of A and U be any g-open neighbourhood of x. Then there is an $m \in \mathbb{N}$ such that $x_n \in U$ whenever $n \geq m$. But $n \geq n_k$ for each $k \in \mathbb{N}$. So $n_k \geq m$ whenever $k \geq m$. Therefore, $x_{n_k} \in U$ whenever $k \geq m$. Thus, $\{x_{n_k}\} \xrightarrow{g} x$.

Definition 2.1. Let (X, τ) be a topological space, $A \subset X$ and let S[A] be the set of all sequences in A. Then the sequential *g*-closure of A, denoted by $[A]_{q_{seg}}$, is defined as

$$[A]_{g_{seq}} = \{ x \in X \mid x = glim \ x_n \text{ and } \{x_n\} \in S[A] \cap c_g(X) \}$$

where $c_q(X)$ denotes the set of all *g*-convergent sequences in *X*.

The following Theorem 2.1 gives the properties of sequential *g*-closure operator.

Theorem 2.1. Let A and B be subsets of a topological space (X, τ) . Then the following hold.

- (a) $[\emptyset]_{g_{seg}} = \emptyset.$
- (b) $A \subset [A]_{q_{seq}}$.
- (c) $[A]_{g_{seg}} \subset cl(A)$.
- (d) $A \subset B \Rightarrow [A]_{g_{seq}} \subset [B]_{g_{seq}}$.
- (e) $[A]_{g_{seg}} \cup [B]_{g_{seg}} = [A \cup B]_{g_{seg}}.$
- (f) $[A]_{g_{seq}} \subset [[A]_{g_{seq}}]_{g_{seq}}$.

Proof. (a) is clear.

(b) Suppose that $l \in A$. Consider the sequence $\{x_n\} = (l, l, ...,)$. Then $\{x_n\} \in S[A] \cap c_g(X)$. Also, $glim \ x_n = l$. Therefore, $l \in [A]_{g_{seq}}$ and hence $A \subset [A]_{g_{seq}}$. (c) Suppose that $x \in [A]_{g_{seq}}$. Then $x = glim \ x_n$ where $\{x_n\} \in S[A] \cap c_g(X)$. That is,

(c) Suppose that $x \in [A]_{g_{seq}}$. Then $x = glim x_n$ where $\{x_n\} \in S[A] \cap c_g(X)$. That is, $\{x_n\} \xrightarrow{g} x$ and so by Lemma 2.3 (a), $\{x_n\} \to x$. Thus, $x \in cl(A)$.

(d) Suppose that $x \in [A]_{g_{seq}}$. Then $\{x_n\} \xrightarrow{g} x$ and $\{x_n\} \in S[A] \cap c_g(X)$. Since $A \subset B$, $\{x_n\} \in S[B] \cap c_g(X)$. Therefore, $x \in [B]_{g_{seq}}$. Thus, $[A]_{g_{seq}} \subset [B]_{g_{seq}}$.

(e) Since $A \subset A \cup B$ and by (d), $[A]_{g_{seq}} \subset [A \cup B]_{g_{seq}}$ and also, $[B]_{g_{seq}} \subset [A \cup B]_{g_{seq}}$. Therefore, $[A]_{g_{seq}} \cup [B]_{g_{seq}} \subset [A \cup B]_{g_{seq}}$. Let $x \in [A \cup B]_{g_{seq}}$. Then $\{x_n\} \xrightarrow{g} x$ for some sequence $\{x_n\}$ in $A \cup B$. Clearly, either $\{n \in \mathbb{N} \mid x_n \in A\}$ or $\{n \in \mathbb{N} \mid x_n \in B\}$ is infinite. Without loss of generality, assume that $\{n \in \mathbb{N} \mid x_n \in A\}$ is infinite. Then, it is obvious that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k} \mid n_k \in \mathbb{N}\} \subset A$ where $\{x_{n_k} \mid n_k \in \mathbb{N}\}$ is the range of (x_{n_k}) . By Theorem 2.4(b), $\{x_{n_k}\} \xrightarrow{g} x$. Hence $x \in [A]_{g_{seq}} \cup [B]_{g_{seq}}$.

(f) By (b), we have $A \subset [A]_{g_{seq}}$ and so $[A]_{g_{seq}} \subset [[A]_{g_{seq}}]_{g_{seq}}$, by (d). This completes the proof.

The following Example 2.2 shows that the sequential *g*-closure operator $[A]_{g_{seq}}$ of a set *A* does not satisfy the idempotent property.

Example 2.2. Consider $X = \{0\} \cup \bigcup_{i \in \mathbb{N}} X_i$ where $X_i = \{\frac{1}{i}\} \cup \{\frac{1}{i} + \frac{1}{k} \mid k \in \mathbb{N}, k \ge i^2\}$ for each $i \in \mathbb{N}$. Suppose that X is endowed with the following topology.

(i) Each point of the form $\frac{1}{i} + \frac{1}{i}$ where $j \in \mathbb{N}$ is isolated.

(ii) Each neighbourhood of each point of the form $\frac{1}{i}$ contains a set of the form $\{\frac{1}{i}\} \cup \{\frac{1}{i} + \frac{1}{k} \mid k \in \mathbb{N}, k \ge j\}$ where $j \ge i^2$.

(iii) Each neighbourhood of the point 0 contains a set obtained from X by removing a finite number of X_i 's and finite number of points of the form $\frac{1}{i} + \frac{1}{j}$, $j \ge i^2$ in all the remaining X_i 's.

Take $A = \{\frac{1}{i}\} \cup \{\frac{1}{i} + \frac{1}{k} \mid k \in \mathbb{N}, k \ge i^2\}$. Then $[A]_{g_{seg}} = X \setminus \{0\}$ and so $[[A]_{g_{seg}}]_{g_{seg}} = [X \setminus \{0\}]_{g_{seq}} = X$. Therefore, $[A]_{g_{seq}} \ne [[A]_{g_{seq}}]_{g_{seq}}$.

Theorem 2.2. Let (X, τ) be a topological space. Then the following hold.

- (a) Every sequentially closed set is a sequentially g-closed set.
- (b) $[A]_{g_{seq}} \subset [A]_{seq}$ for $A \subset X$.

Proof. (a) Suppose $A \subset X$ is sequentially closed. Then $A = [A]_{seq}$, by Lemma 1.2. Let $\{x_n\}$ be a sequence in A such that $\{x_n\} \xrightarrow{g} x$. By Lemma 2.3 (a), $\{x_n\} \to x$ in A and so $x \in [A]_{seq}$. Hence $x \in A$. Thus, A is sequentially *g*-closed.

(b) Suppose that $x \in [A]_{g_{seq}}$. Then by the definition of sequential *g*-closure of *A*, there is a sequence $\{x_n\}$ in *A* such that $\{x_n\} \xrightarrow{g} x$. By Lemma 2.3 (a), $\{x_n\} \to x$ and so $x \in [A]_{seq}$. Therefore, $[A]_{g_{seq}} \subset [A]_{seq}$.

The following Example 2.3 shows that the converse of Theorem 2.2 (b) is not true.

Example 2.3. Consider the topological space (X, τ) where $X = [0, 5), \tau = \{\emptyset, (0, 1), X\}$. Suppose $x_n = \frac{1}{n}$ for $n \in \mathbb{N}$. Then the sequence $\{x_n\}$ converges to 0. If A = (0, 1], then A is g-closed and so $X \setminus A$ is g-open. That is, $\{0\} \cup (1, 5)$ is a g-open subset of X. But $\frac{1}{n} \notin \{0\} \cup (1, 5)$ for any n. Hence $\{x_n\}$ does not g-converge to 0. Therefore, $[A]_{seq} \nsubseteq [A]_{gseq}$

The following Theorem 2.3 gives the relation between closed set and sequentially *g*-closed set in any topological space. The converse of Theorem 2.3 (c) is not true in general as shown by Example 2.4 below.

Theorem 2.3. Let (X, τ) be a topological space and $A \subset X$. Then the following hold.

- (a) A is sequentially g-closed if and only if $[A]_{q_{seg}} \subset A$.
- (b) Every closed subset of X is sequentially g-closed.
- (c) If A is open, then A is sequentially g-open.

Proof. (a) Suppose $x \in [A]_{g_{seq}}$. Then there exists $\{x_n\} \in S[A] \cap c_g(X)$ such that $x = glim \ x_n$. Since A is a sequentially g-closed subset of $X, x \in A$. Hence $[A]_{g_{seq}} \subset A$. Conversely, let $\{x_n\}$ be a sequence in A such that $\{x_n\} \xrightarrow{g} x$. Then $x \in [A]_{g_{seq}}$. By assumption, $[A]_{g_{seq}} \subset A$ and so $x \in A$. Hence A is sequentially g-closed.

(b) Suppose that A is closed. Then $A = cl(A) \supset [A]_{g_{seq}}$, by Theorem 2.1 (c). By (a), A is sequentially g-closed.

(c) Let *A* be open. Then $X \setminus A$ is closed in *X*. By (b), $X \setminus A$ is sequentially *g*-closed. Hence *A* is sequentially *g*-open.

Example 2.4. Consider (\mathbb{R}, τ_c) where τ_c is the cocountable topology on \mathbb{R} . Here $F \subset \mathbb{R}$ is closed if and only if $F = \mathbb{R}$ or F is countable. Let A be a subset of \mathbb{R} . Suppose that a sequence $\{x_n\}$ in A has a g-limit y. Then the g-neighbourhood $(\mathbb{R} \setminus \{x_n \mid n \in \mathbb{N}\}) \cup \{y\}$ of y must contain $\{x_n\}$ for large n. This is only possible when $x_n = y$ for large n. A sequence in any set A, g-converges to an element of A. So every subset of \mathbb{R} is sequentially g-open. As \mathbb{R} is uncountable, not every subset is open. Thus, a sequentially g-open set need not be open.

Theorem 2.4. Let (X, τ) be a topological space. Then the following hold.

(a) Intersection of any collection of sequentially g-closed subsets of X is sequentially g-closed.

(b) The union of any collection of sequentially g-open subsets of X is sequentially g-open.

Proof. (a) Let $\{F_{\alpha} \mid \alpha \in \Delta\}$ be a collection of sequentially *g*-closed subsets of *X* where Δ is an arbitrary index set. If $\cap F_{\alpha} = \emptyset$, then there is nothing to prove. Suppose $\cap F_{\alpha} \neq \emptyset$. If $x \in [\cap F_{\alpha}]_{g_{seq}}$, then there exists a sequence $\{x_n\}$ of points in $\bigcap_{\alpha \in \Delta} F_{\alpha}$ such that $\{x_n\} \xrightarrow{g} x$.

Therefore, for each $\alpha \in \Delta$, $\{x_n\}$ is in F_{α} such that $\{x_n\} \xrightarrow{g} x$. Therefore, $x \in [F_{\alpha}]_{g_{seq}}$ for each $\alpha \in \Delta$. As each F_{α} is sequentially *g*-closed, $x \in F_{\alpha}$ for each $\alpha \in \Delta$. Thus, $x \in \bigcap_{\alpha \in \Delta} F_{\alpha}$

and so $[\bigcap_{\alpha \in \Delta} F_{\alpha}]_{g_{seq}} \subset \bigcap_{\alpha \in \Delta} F_{\alpha}$. By Theorem 2.3 (a), $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is sequentially *g*-closed in *X*. (b) Since complement of a sequentially *g*-closed set is a sequentially *g*-open set, the proof follows from (a).

Theorem 2.5. Let (X, τ) be a topological space and A be a subset of X. Then $x \in [A]_{g_{seq}}$ if and only if for every sequentially g-open neighbourhood U of $x, U \cap A \neq \emptyset$.

Proof. Let $x \in [A]_{g_{seq}}$ and let U be a sequentially g-open neighbourhood of x. Suppose $U \cap A = \emptyset$. Then $A \subseteq X \setminus U$ so that $[A]_{g_{seq}} \subset [X \setminus U]_{g_{seq}}$, by Theorem 2.1 (d). Here $X \setminus U$ is a sequentially g-closed subset and hence $[A]_{g_{seq}} \subset X \setminus U$, by Theorem 2.3 (a). Therefore, $x \in X \setminus U$ and so $x \notin U$ which is a contradiction. Hence $A \cap U \neq \emptyset$ for every sequentially g-open neighbourhood of x.

Conversely, suppose that $x \notin [A]_{g_{seq}}$. Then $U = X \setminus [A]_{g_{seq}}$ is a sequentially *g*-open neighbourhood of *x* but does not intersect *A*, since $A \subset [A]_{g_{seq}}$ (Theorem 2.1 (b)). Hence $U \cap A = \emptyset$.

Theorem 2.6. Let (X, τ) be a topological space and A be a subset of X. Then $[A]_{g_{seq}} = \bigcap \{M \mid A \subseteq M \text{ and } M \text{ is sequentially } g\text{-closed } \}.$

Proof. Let $x \in [A]_{g_{seq}}$ and M be a sequentially g-closed subset containing A. Then there is a sequence $\{x_n\}$ in A such that $g \lim x_n = x$. Since $\{x_n\}$ is also a sequence in $M, x \in [M]_{g_{seq}}$. Since M is sequentially g-closed, $x \in M$, by Theorem 2.3 (a). Thus, $[A]_{g_{seq}} \subset \bigcap \{M \mid A \subseteq M \text{ and } M \text{ is sequentially } g$ -closed $\}$.

Conversely, let $x \notin [A]_{g_{seq}}$. Then there is a sequentially *g*-open neighbourhood *U* of x such that $U \cap A = \emptyset$, by Theorem 2.5. Now $U \cap A = \emptyset$ implies that $A \subset (X \setminus U)$. Since $X \setminus U$ is sequentially *g*-closed, $X \setminus U$ must be some *M*. As $x \notin X \setminus U$, we have $x \notin \bigcap \{M \mid A \subseteq M \text{ and } M \text{ is sequentially } g\text{-closed} \}$. Therefore, $\bigcap \{M \mid A \subseteq M \text{ and } M \text{ is sequentially } g\text{-closed} \} \subset [A]_{g_{seq}}$. Hence $[A]_{g_{seq}} = \bigcap \{M \mid A \subseteq M \text{ and } M \text{ is sequentially } g\text{-closed} \}$.

3. SEQUENTIALLY g-CONTINUOUS MAPS

Balachandran et al. [2] already studied the relation between continuous, *g*-continuous and strongly *g*-continuous maps. In 2004, Caldas et al. [4] introduced the concept of sequentially *g*-continuous map and studied their properties. In this section, we investigate further properties of sequential g-continuous maps in topological spaces.

Theorem 3.7. If $f : (X, \tau) \to (Y, \sigma)$ is a sequentially *g*-continuous map, then the following hold. (a) The inverse image of any sequentially *g*-closed subset of *Y* is sequentially *g*-closed in *X*. (b) The inverse image of any sequentially *g*-open subset of *Y* is sequentially *g*-open in *X*.

Proof. (a) Let F be a sequentially g-closed subset of Y. Suppose that $x \in [f^{-1}(F)]_{g_{seq}}$. Then there is a sequence $\{x_n\} \in f^{-1}(F)$ such that $\{x_n\} \xrightarrow{g} x$. Since f is sequentially g-continuous, $\{f(x_n)\} \xrightarrow{g} f(x)$. Thus, $f(x) \in F$, since F is sequentially g-closed and so $x \in f^{-1}(F)$. Therefore, $[f^{-1}(F)]_{g_{seq}} \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is sequentially g-closed, by Theorem 2.3 (a).

(b) Since complement of a sequentially *g*-closed set is a sequentially *g*-open set, the proof follows from (a). \Box

Definition 3.2. Let (X, τ) and (Y, σ) be two topological spaces and $f : (X, \tau) \to (Y, \sigma)$ be a map. Then *f* is said to be *sequentially g-open* if the image of any sequentially *g*-open

subset of X is sequentially g-open and f is said to be *sequentially* g-closed if the image of any sequentially g-closed subset of X is sequentially g-closed.

Theorem 3.8. Let $f, h: (X, \tau) \to (X, \tau)$ be any two maps. Then the following hold.

(a) If f and h are sequentially g-continuous, then so is $hf = h \circ f$.

(b) If f and h are sequentially g-closed, then so also is hf.

(c) If f is sequentially g-continuous, hf is sequentially g-closed and f is onto, then h is sequentially g-closed.

(d) If hf is sequentially g-closed, h is sequentially g-continuous and h is one-to-one, then f is sequentially g-closed.

Proof. (a) Let $\{x_n\}$ be a sequence in X such that $\{x_n\} \xrightarrow{g} x \in X$. Since f is sequentially g-continuous at x, $\{f(x_n)\} \xrightarrow{g} f(x)$ and so $\{h(f(x_n))\} \xrightarrow{g} h(f(x))$, since h is sequentially g-continuous at f(x). Therefore, the map hf is sequentially g-continuous.

(b) Let *A* be a sequentially *g*-closed subset of *X*. Then f(A) is a sequentially *g*-closed subset of *X*. Since *h* is sequentially *g*-closed, h(f(A)) is a sequentially *g*-closed subset of *X*. Therefore, *hf* is sequentially *g*-closed.

(c) Let A be a sequentially g-closed subset of X. Since f is sequentially g-continuous, $f^{-1}(A)$ is sequentially g-closed, by Theorem 3.7(a). Since hf is sequentially g-closed and f is onto, $hf(f^{-1}(A)) = h(A)$ is sequentially g-closed.

(d) Let *A* be a sequentially *g*-closed subset of *X*. Since *hf* is sequentially *g*-closed, *hf*(*A*) is sequentially *g*-closed. Since *h* is sequentially *g*-continuous and one-to-one, $h^{-1}h(f(A)) = f(A)$ is sequentially *g*-closed. Therefore, *f* is a sequentially *g*-closed. \Box

Theorem 3.9. Let (X, τ) be a topological space. Then the following hold.

(a) If $f : X \to X$ is a sequentially *g*-continuous map, then so is the restriction $f : A \to X$ to a subset *A*.

(b) The identity map $f: X \to X$ is sequentially g-continuous.

(c) For a subset $A \subseteq X$, the inclusion map $f : A \to X$ is sequentially g-continuous.

(d) The constant map $f : X \to X$ is sequentially g-continuous.

Proof. (a) Let $\{x_n\}$ be a sequence in A with $\{x_n\} \xrightarrow{g} x$. Then $\{x_n\}$ is a sequence in X. Since f is sequentially g-continuous. $\{f(x_n)\} \xrightarrow{g} f(x)$. Hence $f : A \to X$ is a sequentially g-continuous map.

(b) Suppose $\{x_n\} \xrightarrow{g} x$ where $\{x_n\} \in S[X]$. Then $\{f(x_n)\} \xrightarrow{g} f(x)$, since f(x) = x and $f(x_n) = x_n$ for all $n \in \mathbb{N}$. Therefore, the identity map is sequentially *g*-continuous.

(c) Let $\{x_n\}$ be a sequence in A with $\{x_n\} \xrightarrow{g} x \in A$. Since $\{f(x_n)\} = \{x_n\}$, we have $\{f(x_n)\} \xrightarrow{g} x$. Therefore, the inclusion map is sequentially *g*-continuous.

(d) Let $f : X \to X$ be a constant map with $f(x) = x_0$ for all $x \in X$ and let $\{x_n\}$ be a sequence in X *g*-converging to x. Then $\{f(x_n)\} = (x_0, x_0, ...,) \xrightarrow{g} x_0$, by Lemma 2.4(a). Therefore, $\{f(x_n)\} \xrightarrow{g} f(x)$.

Theorem 3.10. Let (X, τ) be a topological group under addition + and let $f, h : (X, \tau) \to (X, \tau)$ be any two maps. If f and h are sequentially g-continuous, then also is f + h.

Proof. Let $\{x_n\}$ be a sequence in X with $\{x_n\} \xrightarrow{g} x$ in X. Since the maps f and h are sequentially g-continuous, $\{f(x_n)\} \xrightarrow{g} f(x)$ and $\{h(x_n)\}) \xrightarrow{g} h(x)$. Therefore, $\{(f+h)(x_n)\} = \{f(x_n)\} + \{h(x_n)\} \xrightarrow{g} f(x) + h(x) = (f+h)(x)$. That is, f+h is sequentially g-continuous.

Theorem 3.11. Let (X, τ) be a topological group and let $f : X \to X$ be an additive map on X onto itself. Then f is sequentially g-continuous at the origin if and only if f is sequentially g-continuous at every point in X.

Proof. Let the additive map $f: X \to X$ be sequentially *g*-continuous everywhere. Then $\{f(x_n)\} \xrightarrow{g} f(0)$ whenever $\{x_n\} \xrightarrow{g} 0$. Hence $\{f(x_n)\} \xrightarrow{g} 0$, since f(0) = 0. Therefore, *f* is sequentially *g*-continuous at 0. Conversely, let $a \in X$ and $\{x_n\}$ be a sequence in *X* with *glim* $x_n = a$. Since the constant sequence *g*-converges, by Lemma 2.4(a), $(a) \xrightarrow{g} a$. Therefore, the sequence $\{x_n - a\} \xrightarrow{g} 0$ and so by assumption, $\{f(x_n - a)\} \xrightarrow{g} f(0) = 0$. Since *f* is additive, $\{f(x_n) - f(a)\} \xrightarrow{g} 0$. Hence $\{f(x_n)\} \xrightarrow{g} f(a)$.

Theorem 3.12. Let (X, τ) be a topological group and $a \in X$ be fixed. The map $f_a : X \to X$, defined by $f_a(x) = a + x$ is sequentially g-continuous, sequentially g-closed and sequentially g-open. We denote the inverse of the map f_a by f_{-a} .

Proof. Let x be a point in X with $\{x_n\} \xrightarrow{g} x$. Then the sequence $\{a + x_n\}$ is g-convergent to a + x, by Lemma 2.4(a). Since $f_a(x_n) = a + x_n$, $\{f_a(x_n)\} \xrightarrow{g} a + x$ which implies that $\{f_a(x_n)\} \xrightarrow{g} f_a(x)$. Therefore, f_a is sequentially g-continuous. Since the inverse of f_a is f_{-a} , by Theorem 3.7 (a), the map f_a is sequentially g-closed and by Theorem 3.7 (b), f_a is sequentially g-copen.

Theorem 3.13. Let (X, τ) be a topological group and $A, B \subset X$. If one of the sets A and B is sequentially g-open, then the sum A + B is also a sequentially g-open set.

Proof. Suppose that *B* is a sequentially *g*-open subset of *X* and *A* is any subset. By Theorem 3.12, a + B is sequentially *g*-open for any $a \in A$. Since $A + B = \bigcup_{a \in A} a + B$, by Theorem

2.4 (b), A + B is sequentially g-open.

Theorem 3.14. Let (X, τ) be a topological group, Y be Hausdorff space and $f : X \to Y$ be a sequentially g-continuous map. Then $A = \{x \in X \mid f(x) = 0\}$, the kernel of f is a sequentially g-closed subset of X.

Proof. If $x \in [A]_{g_{seq}}$, then there exists a sequence $\{x_n\}$ of points in A such that $g \lim x_n = x$. Since $x_n \in A$ for all $n \in \mathbb{N}$, the sequence $\{f(x_n)\}$ is the constant sequence with $f(x_n) = 0$ for all n. Therefore, $g \lim f(x_n) = 0$, by Lemma 2.4(a). Since f is sequentially g-continuous, $g \lim f(x_n) = f(x)$. Since Y is Hausdorff, f(x) = 0 and so $x \in A$. By Theorem 2.3(a), A is sequentially g-closed.

Theorem 3.15. Let (X, τ) be a topological group, Y be Hausdorff space and $f, h : X \to Y$ be sequentially g-continuous maps. Then $A = \{x \in X \mid f(x) = h(x)\}$ is a sequentially g-closed subset of X.

Proof. If $x \in [A]_{g_{seq}}$, then there exists a sequence $\{x_n\}$ of the points in A such that $g \lim x_n = x$. Since $(h-f)(x_n) = h(x_n) - f(x_n)$, $\{(h-f)(x_n)\}$ is a constant sequence with $(h-f)(x_n) = 0$ for all n. Therefore, $g \lim(h - f)(x_n) = 0$. By Theorem 3.10, h - f is sequentially g-continuous, $g \lim(h - f)(x_n) = (h - f)(x)$. Thus, (h - f)(x) = 0 so that h(x) = f(x). Thus, $x \in A$. Hence A is sequentially g-closed.

4. g-sequential and g-Fréchet spaces

In this section, we define *g*-sequential and *g*-Fréchet spaces and derive some of their properties. We prove that each *g*-Fréchet space is a *g*-sequential space and each *g*-Fréchet space is a Fréchet space. However, we show that the converse implications of the above statements are not true by giving counter examples.

Definition 4.3. A topological space (X, τ) is said to be *g*-sequential if every sequentially *g*-closed set in *X* is a closed set. A topological space (X, τ) is said to be *g*-Fréchet if $cl(A) \subset [A]_{q_{seg}}$ for each $A \subset X$.

The following Theorem 4.5 shows that every quotient of a *g*-sequential space is a *g*-sequential space. Theorem 4.16 below gives relation between sequential, Fréchet, *g*-sequential and *g*-Fréchet spaces.

Lemma 4.5. Every quotient of a g-sequential space is g-sequential.

Proof. Let f be a quotient map of a g-sequential space X onto a space Y. Let U be sequentially g-open subset of Y. We prove that U is open in Y. Enough to show that $f^{-1}(U)$ is sequentially g-open in X. Let $\{x_n\}$ be a sequence in X g-converging to $x \in f^{-1}(U)$. Then $\{x_n\} \to x \in X$ in $f^{-1}(U)$, by Theorem 2.3 (a). Thus, $\{f(x_n)\} \to f(x) \in Y$ in U, as f is continuous. Thus, $\{f(x_n)\}$ is eventually in U. Therefore, there exists $n_0 \in \mathbb{N}$ such that $f(x_n) \in U$ for $n \ge n_0$ which implies that $f^{-1}f(x_n) \subset f^{-1}(U)$ for $n \ge n_0$ and so $x_n \in f^{-1}(U)$ for $n \ge n_0$. Thus, the set $\{x_n \mid n \ge n_0\}$ is eventually in $f^{-1}(U)$. Therefore, $f^{-1}(U)$ is sequentially g-open in X. Since X is g-sequential, $f^{-1}(U)$ is open in X which implies that U is open in Y, since f is quotient. Hence Y is a g-sequential space.

Theorem 4.16. Let (X, τ) be a topological space. Then the following hold.

(a) If X is a g-sequential space, then X is a sequential space.

(b) If *X* is a *g*-Fréchet space, then *X* is a Fréchet space.

(c) If X is a g-Fréchet space, then X is a g-sequential space and hence X is a sequential space.

Proof. (a) Let *A* be a sequentially open subset of *X*. Then $X \setminus A$ is a sequentially closed subset of *X*. By Lemma 2.2 (a), $X \setminus A$ is sequentially *g*-closed. Hence $X \setminus A$ is closed, by our hypothesis and so *A* is open in *X*. Therefore, *X* is a sequential space.

(b) Let $x \in cl(A)$. Since X is g-Fréchet, $cl(A) \subset [A]_{g_{seq}}$ and so $x \in [A]_{g_{seq}}$. There is a sequence $\{x_n\}$ in A such that $\{x_n\} \xrightarrow{g} x$. By Theorem 2.3 (a), $\{x_n\} \to x$ and so $x \in [A]_{seq}$. Hence $cl(A) \subset [A]_{seq}$. Thus, X is a Fréchet space.

(c) Suppose A is sequentially g-closed. By Theorem 2.3 (a), $[A]_{g_{seq}} \subset A$. Since X is g-Fréchet, $cl(A) \subset [A]_{g_{seq}} \subset A \subset cl(A)$. Hence A = cl(A). Therefore, A is closed. Thus, X is a g-sequential space.

By (a), every *g*-sequential space is a sequential space. This completes the proof. \Box

We show that the reverse implications of Theorem 4.16 are not true by giving examples. The following Example 4.5 gives a sequential space which is not a *g*-sequential space.

Example 4.5. Let $S = \{x_n \mid n \in \mathbb{N}\}$ be a sequence such that $x_n \neq x_m$ if $n \neq m$. Take $x \notin S$ and let $X = S \cup \{x\}$. The topology on X is defined in the following sense.

(1) Each point x_n is isolated.

(2) Each open neighbourhood of the point *x* is a set *U* of the form $U = \{x\} \cup M$ where *M* is a subset of *S*.

Clearly, *x* is a unique non isolated point in *X*.

We prove that X is sequential but no subsequence of S g-converges to x.

Let *Y* be a sequentially closed subset of \hat{X} . To prove that *Y* is closed in *X*. If $x \in Y$ or *Y* is a finite set, then it is obvious that *Y* is closed. So we assume that $x \notin Y$ and *Y* is infinite. Let $Y = \{x_{n_k} \mid k \in \mathbb{N}\}$. It is enough to verify that $y \in Y$ if $y \in cl(Y)$. Suppose that $y \in cl(Y)$. Since *Y* is a sequentially closed subset of *X*, *Y* converges to *y*. Therefore, $y \in Y$. It follows that cl(Y) = Y. Hence *X* is sequential.

Next, we prove that no subsequence of *S g*-converge to *x*. Assume that $\{x_{n_k}\}$ is a subsequence of *S*. Put $U = X \setminus \{x_{n_k} \mid k \in \mathbb{N}\}$. Then *U* is a *g*-open neighbourhood of *x* and

for any $k \in \mathbb{N}$, $x_{n_k} \notin U$ which implies that $\{x_{n_k}\}$ does not *g*-converge to *x*. Since *S* is a non-closed subset of *X* and $x \in cl(S) = X$, *X* is not a *g*-sequential space. Thus, there exists a sequential space which is not a *g*-sequential space.

The following Example 4.6 gives a Fréchet space which is not a *g*-Fréchet space.

Example 4.6. For each $n \in \mathbb{N}$, let $S_n = \{x_{n,m} \mid m \in \mathbb{N}\}$ be a sequence such that $x_{n,m} \neq x_{n,l}$ if $m \neq l$. Take $\infty \notin \bigcup \{S_n \mid n \in \mathbb{N}\}$ and let $X = \bigcup \{S_n \mid n \in \mathbb{N}\} \cup \{\infty\}$. The topology on X is defined in the following sense.

(1) Each point $x_{n,m}$ is isolated.

(2) Each open neighbourhood of the point ∞ is a set U of the form $U = \{\infty\} \cup \{M_n \mid n \in \mathbb{N}\}$ where M_n is a dense subsequence of S_n .

We prove that the space *X* is a Fréchet space.

Assume that Y is an arbitrary subset of X. Take $y \in cl(Y)$. If $y \in \bigcup \{S_n \mid n \in \mathbb{N}\}$, then it is obvious that $y \in Y$. For each $k \in \mathbb{N}$, put $x_k = y$. Then the sequence $\{x_k\}$ is a subset of Y converges to y. Therefore, we assume that $y = \infty$ and $\infty \notin Y$. Put $V = X \setminus Y$. Then V is an open neighbourhood of ∞ and $V \cap Y = \emptyset$ which is a contradiction to $\infty \in cl(Y)$. It follows that S_n converges to ∞ . Therefore, X is a Fréchet space.

Next we prove that the space X is not a g-Fréchet space. Suppose $\infty \in cl(S_1)$. By Example 4.5, we know that no subsequence of S_1 g-converges to ∞ . Hence the space X is not a g-Fréchet space. Therefore, there is a Fréchet space which is not a g-Fréchet space.

The following Example 4.7 gives a *g*-sequential space which is not a *g*-Fréchet space.

Example 4.7. Let $L = \mathbb{R} \setminus \{0\}$ be the set of real numbers with 0 removed and let $M = \{0\} \cup \{\frac{1}{i} \mid i \in \mathbb{N}\}$ and $Y = (L \times \{0\}) \cup (M \times \{1\})$ have its usual topology as a subspace of \mathbb{R}^2 . In particular, Y is a g-sequential space. Now let $f : Y \to X$ be the projection of Y onto its first coordinate space, the set $X = \{0\} \cup L$, that is, X is the set of all real numbers. The topology on X is generated by the usual topology with all sets of the form $\{0\} \cup U$ where U is open in \mathbb{R} and contains $\{\frac{1}{i} \mid i \in \mathbb{N}\}$. As a quotient of a g-sequential space, X is g-sequential, by Lemma 4.5. Now we prove that X is not g-Fréchet. Let $A = X \setminus M$. Then $[A]_{g_{seq}} = \mathbb{R} \setminus \{0\}$. We show that $0 \in cl(A)$ but no sequence in A g-converges to 0. Let N be a neighbourhood of 0. Then N contains a point $\frac{1}{i}$ for some $i \in \mathbb{N}$. Away from 0, the topology of X is locally 'as usual'. At any rate, there exists some $\delta > 0$ such that $(\frac{1}{i} - \delta, \frac{1}{i} + \delta) \subseteq N$. Now there exists some irrational $x \in N$ and x being irrational, $x \in A$. Hence $A \cap N \neq \emptyset$. This shows that $0 \in cl(A)$. Suppose that $\{x_n\}$ is any sequence in A. For each $n \in \mathbb{N}$, $x_n \neq 0$. Therefore, $\inf_{j \in \mathbb{N}} |x_n - \frac{1}{j}| > 0$. Consider the sequence (α_i) where $\alpha_i = \inf_{j \in \mathbb{N}} |x_n - \frac{1}{j}|$, and let $W = \{0\} \cup \bigcup_{i \in \mathbb{N}} (\frac{1}{i} - \delta_i, \frac{1}{i} + \delta_i)$. Then W is a g-neighbourhood of Ω .

of 0 that contains none of the member of the sequence $\{x_n\}$. Therefore, $\{x_n\}$ cannot be *g*-convergent to 0. It follows that no sequence in *A g*-converging to 0. So *X* is not a *g*-Fréchet space. Therefore, there exists a *g*-sequential space which is not a *g*-Fréchet space.

Theorem 4.17. *If the product space is g-sequential, so is each of its factors.*

Proof. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ be a *g*-sequential space. It is enough to prove that for $\beta \in \Lambda$, if U_{β} is not open in X_{β} , then U_{β} is not sequentially *g*-open in X_{β} . Suppose that U_{β} is not open in X_{β} . Let $U \subset X$ such that $\pi_{\beta}(U) = U_{\beta}$ and $\pi_{\alpha}(U) = U_{\alpha}$ for $\alpha \neq \beta$. Then *U* is not open in *X*. Since *X* is *g*-sequential, *U* is not a sequentially *g*-open subset of *X*. Therefore, there exists a sequence $\{x_{\alpha_n}\}$ in *X* not in *U g*-converging to $(x_{\alpha}) \in U$. In particular, for $\alpha = \beta$, $\{x_{\beta_n}\}$ *g*-converges to $(x_{\beta}) \in U$ and $\{x_{\beta_n}\} \notin U_{\beta}$, that is, U_{β} is not sequentially *g*-open. Therefore, X_{β} is a *g*-sequential space.

The following Example 4.8 shows that the product of *g*-sequential spaces need not be a *g*-sequential space.

Example 4.8. Let \mathbb{Q}' be rationals, \mathbb{Q} , with integers identified and let $X = \mathbb{Q} \times \mathbb{Q}'$. Since \mathbb{Q} is a $T_{\frac{1}{2}}$ space, every *g*-open set is open and hence \mathbb{Q} and \mathbb{Q}' are *g*-sequential. Therefore, *X* is the product of two *g*-sequential spaces. But *X* contains a sequentially *g*-open set *W* which is not open. Now we describe *W* as follows: Let $\{x_n\} \subseteq \mathbb{R}$ be a sequence of irrational numbers less than one, *g*-converging monotonically downwards to 0. For $n = 0, 1, \ldots$, let T_n be the integer of the plane triangle determined by the points $(x_n, n), (1, n + 1/2)(1, n - 1/2)$. Let T'_n be the reflection of T_n on the *y*-axis and R_n be the interior of the rhombus determined by the points $(-x_n, n), (0, n + 1/2), (x_n, n)$ and (0, n - 1/2). Then $W_n = T_n \cup R_n \cup T'_n$ is an open subset of the plane. Considering *X* as a subset of the plane with the horizontal integer lines identified, let $W = X \cap \bigcup_0^\infty W_n$. If $\pi_1 : X \to \mathbb{Q}$ and $\pi_2 : X \to \mathbb{Q}'$ are the canonical projections, for any neighborhoods *U* and *U'* of 0 in \mathbb{Q} and \mathbb{Q}' , respectively, $\pi_1^{-1}(U) \cap \pi_2^{-1}(U') \notin W$. Hence (0,0) is not an interior point of *W* and hence *W* cannot be open.

Now suppose $(y_n) \subseteq X \setminus W$ and $\{y_n\} \xrightarrow{g} y \in W$. If $\pi_2(y) \neq 0$, *g*-convergence in X is *g*-convergence in $\mathbb{Q} \times \mathbb{Q}$ which is contradiction to $\{y_n\} \xrightarrow{g} y \in W$. Hence $\pi_2(y) = 0$. If $\pi_1(y) \neq 0$, then W can be replaced by a scaled down version of itself with y at the symmetric position. Hence we may assume that y = (0, 0). But $\{y_n\} \xrightarrow{g} (0, 0)$ implies $\{\pi_2(y_n)\} \xrightarrow{g} 0$ in \mathbb{Q}' which can occur if and only if some subsequence *g*-converges in \mathbb{Q} to some integer k. But this restrict $\{y_n\}$ eventually to arbitrary small $\pi_2(k - \epsilon, k + \epsilon)$. Since $\{y_n\} \xrightarrow{g} (0,0)$ in X, eventually put $\{y_n\}$ in W. Hence W is sequentially *g*-open. Therefore, $\mathbb{Q} \times \mathbb{Q}'$ is not *g*-sequential.

Proposition 4.1. *In a topological space, the following statements hold.*

(a) The disjoint topological sum of any family of g-sequential spaces is g-sequential.

(b) The disjoint topological sum of any family of g-Fréchet spaces is g-Fréchet.

Proof. (a) Let *X* be the disjoint sum of the family $\{X_i\}_{i \in \Lambda}$ of *g*-sequential spaces. Suppose *U* is not open in *X*. Then for some $i \in \Lambda$, $U \cap X_i$ is not open in X_i , so $U \cap X_i$ is not sequentially *g*-open in X_i for some $i \in \Lambda$. Thus, there is a point $x \in U \cap X_i$ and a sequence $\{x_n\} \subset X_i \setminus U$ *g*-converges to *x* in X_i and also in *X*. Therefore, *U* is not sequentially *g*-open. Hence *X* is a *g*-sequential space.

(b) Let *X* be the disjoint sum of the family of *g*-Fréchet spaces $\{X_i \mid i \in \Lambda\}$. Suppose *U* is closed in *X*. Then for some $i \in \Lambda$, $U \cap X_i$ is closed in X_i and so $U \cap X_i$ is sequentially *g*-closed in X_i , since each X_i is *g*-Fréchet. So $U \cap X_i$ is closed for some $i \in \Lambda$, since $[A]_{g_{seq}} \subset cl(A)$. Thus, there is a point $x \in U \cap X_i$ and a sequence $\{x_n\}$ in X_i *g*-converges to *x* in X_i and also in *X*. Hence *U* is sequentially *g*-closed. \Box

Theorem 4.18. Let (X, τ) be a g-sequential space, (Y, σ) be a topological space and let $f : X \to Y$ be a map. Then f is strongly g-continuous if and only if f is sequentially g-continuous.

Proof. Suppose f is strongly g-continuous and $\{x_n\} \xrightarrow{g} x$ in X. Let V be a g-open set containing f(x). Then $f^{-1}(V)$ is an open set containing x, by hypothesis. Therefore, $f^{-1}(V)$ is a g-open set containing x. Since $\{x_n\} \xrightarrow{g} x$, $\{x_n\}$ is eventually in $f^{-1}(V)$. That is, there exists $n_0 \in \mathbb{N}$ such that $x_n \in f^{-1}(V)$ for all $n \ge n_0$ and so $f(x_n) \in ff^{-1}(V) \subset V$. Thus, $\{f(x_n)\}$ is eventually in V, by Lemma 1.1. Therefore, $\{f(x_n)\} \xrightarrow{g} f(x)$.

Suppose that f is not strongly g-continuous. Then there is a g-open set $U \subset Y$ such that $f^{-1}(U)$ is not open in X. Thus, $f^{-1}(U)$ is also not sequentially g-open, since X is a

g-sequential space. Therefore, there is a sequence $\{x_n\}$ in $X \setminus f^{-1}(U)$ that *g*-converges to a point $y \in f^{-1}(U)$. But $\{f(x_n)\}$ is a sequence in $Y \setminus U$, a closed set and so f(x) can not be a *g*-limit of $\{f(x_n)\}$. Hence *f* does not preserve *g*-convergence. Therefore, *f* is not sequentially *g*-continuous.

Proposition 4.2. The strongly *g*-continuous open (or closed) image of a *g*-sequential space is a *g*-sequential space.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be an open and a strongly *g*-continuous map. Let *X* be a *g*-sequential space. Suppose f(X) is not a *g*-sequential space. Then there exists a sequentially *g*-open subset *U* of f(X) which is not open. Since *f* is an open map, $f^{-1}(U)$ is not open. Now *X* is a *g*-sequential space and $f^{-1}(U)$ is not open implies that $f^{-1}(U)$ is not sequentially *g*-open. Therefore, there exists a point $x \in f^{-1}(U)$ and a sequence $\{x_n\} \notin f^{-1}(U)$ such that $\{x_n\}$ *g*-converges to *x*. By Theorem 4.18, $\{f(x_n)\} \xrightarrow{g} f(x)$ and $f(x) \in U$. But $f(x_n) \notin U$ which is a contradiction to the fact that *U* is sequentially *g*open.

Theorem 4.19. *Each sequentially g-open (sequentially g-closed) subspace of a g-sequential space is g-sequential.*

Proof. Let (X, τ) be a *g*-sequential space. Suppose that *Y* is a sequentially *g*-open subspace of *X*. Then *Y* is open in *X*, since *X* is *g*-sequential. Let *U* be an arbitrary sequentially *g*open subset of *Y*. We prove that *U* is sequentially *g*-open in *X*. Let $\{x_n\}$ be a sequence in *X* which *g*-converges to $x \in U$. Then $x \in Y$ and since *Y* is a sequentially *g*-open subset of *X*, $\{x_n\}$ is eventually in *Y*. That is, there exists $k_1 \in \mathbb{N}$ such that $\{x_n \mid n > k_1\} \subset Y$. Since *U* is a sequentially *g*-open subset of *Y*, there exists $k_2 \in \mathbb{N}$ such that $\{x_n \mid n > k_2\} \subset U$. Then $\{x_n \mid n > k\} \subset U$ where $k = max\{k_1, k_2\}$. Therefore, *U* is sequentially *g*-open in *X* and hence open in *X* implies that *U* is open in *Y*, since *Y* is open in *X*. Therefore, *Y* is a *g*-sequential space.

If *Y* is a sequentially *g*-closed subset of *X*, then *Y* is closed in *X*, since *X* is a *g*-sequential space. Let *A* be a sequentially *g*-closed subset of *Y* and $\{x_n\}$ be a sequence in *A g*-converging to $x \in X$. Since *Y* is closed, $x \in Y$. Hence $x \in A$. Therefore, *A* is a sequentially *g*-closed set in *X* and so *A* is closed in *X*, as *X* is a *g*-sequential space. Since *Y* is closed in *X*, *A* is closed in *Y*.

The following Corollary 4.1 shows that strongly *g*-continuous image of a *g*-sequential space is *g*-sequential, if the map is quotient.

Corollary 4.1. Let $f : (X, \tau) \to (Y, \sigma)$ be a quotient map from X onto a space Y and f be strongly g-continuous. If X is a g-sequential space, then Y is a g-sequential space.

Proof. Suppose that X is a g-sequential space. Let G be any sequentially g-open set in Y. We prove that $f^{-1}(G)$ is sequentially g-open in X. Let $\{x_n\}$ be a sequence in X which g-converges to a point x in $f^{-1}(G)$. Then $\{f(x_n)\} \xrightarrow{g} f(x)$, by Theorem 4.18. Since $f(x) \in G$, there exists $k \in \mathbb{N}$ such that $\{f(x_n) \mid n > k\}$ is eventually in G. Since f is onto, $x = f^{-1}(f(x)) \in f^{-1}(G)$. Hence $\{f^{-1}(f(x_n)) \mid n > k\}$ is eventually in $f^{-1}(G)$ which implies that $\{x_n \mid n > k\}$ is eventually in $f^{-1}(G)$ and so $f^{-1}(G)$ is sequentially g-open in X. Since X is g-sequential, $f^{-1}(G)$ is open X. Therefore, G is an open subset of Y, by the definition of quotient map.

5. SEQUENTIALLY g-QUOTIENT MAP

In this section, we introduce the concept of sequentially *g*-quotient map and study their properties. Also, we give a characterization for a sequentially *g*-quotient map. Finally, we

obtain a necessary and sufficient condition for a topological space to be *g*-sequential in terms of a sequentially *g*-quotient map.

Definition 5.4. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be *sequentially g-quotient* if it satisfies the following: *A* is sequentially *g*-closed in *Y* if and only if $f^{-1}(A)$ is sequentially *g*-closed in *X*.

The following Example 5.9 shows the existence of sequentially g-quotient map and Theorem 5.20 provides an equivalent condition for a sequentially g-quotient map.

Example 5.9. Let *X* be the topological sum of the collection $\{I, S_{\alpha} \mid \alpha \in I\}$ where I = [0, 1] and each S_{α} is a *g*-convergent sequence with its *g*-limit x_{α} for each $\alpha \in I$ and let *Y* be the space obtained from *X* by identifying the *g*-limit point of S_{α} with α . Let $f : X \to Y$ be the natural map. Let $\{y_n\}$ be a *g*-converging sequence in *Y*. Then there is a subsequence of $\{y_n\}$ which is either contained in S_{α} or in *I*. Therefore, the sequence $\{f^{-1}(y_n)\} \cap S_{\alpha}$ or $\{f^{-1}(y_n)\} \cap I$ must *g*-converges whose image is a subsequence of $\{y_n\}$. Therefore, *f* is sequentially *g*-quotient.

Theorem 5.20. Let (X, τ) and (Y, σ) be two topological spaces and let $f : X \to Y$ be a strongly *g*-continuous map. Then the following are equivalent.

(a) *f* is a sequentially *g*-quotient map.

(b) If $\{x_n\}$ is a sequence in Y g-converging to x, then $\{f^{-1}(x_n)\} \xrightarrow{g} f^{-1}(x)$.

Proof. (a) \Rightarrow (b) Suppose f is a sequentially g-quotient map. Let $\{x_n\} \xrightarrow{g} x$ in Y. If $A = \{x_n \mid n \in \mathbb{N}\} \cup \{x\}$, then A is a sequentially g-closed set in Y. Since f is a sequentially g-quotient map, $f^{-1}(A)$ is a sequentially g-closed set in X. That is, $\{f^{-1}(x_n)\} \xrightarrow{g} f^{-1}(x)$ and $f^{-1}(x) \in f^{-1}(A)$.

(b) \Rightarrow (a) Let *B* be sequentially *g*-closed in *Y*. We prove that $f^{-1}(B)$ is sequentially *g*-closed in *X*. Let $\{x_n\}$ be a sequence in $f^{-1}(B)$ *g*-converging to *x*. Then there is some $y_n \in B$ such that $f(x_n) = y_n$. Let *V* be a *g*-open neighbourhood of f(x). Since *f* is strongly *g*continuous, $f^{-1}(V)$ is a *g*-open neighbourhood of *x*. Therefore, there exists $n_0 \in \mathbb{N}$ such that $x_n \in f^{-1}(V)$ for all $n \ge n_0$ and so $f(x_n) \in V$. Thus, $y_n \in V$ for all $n \ge n_0$. Hence $\{y_n\} \xrightarrow{g} f(x)$ and so $x \in f^{-1}(B)$. Therefore, $f^{-1}(B)$ is sequentially *g*-closed in *X*. \Box

Theorem 5.21. Let (X, τ) be a $T_{1/2}$ space and $f : (X, \tau) \to (Y, \sigma)$ be a sequentially g-quotient map. If f is a sequentially g-closed map, then f is a sequentially closed map.

Proof. Suppose *A* is a sequentially closed set in *X*. By Theorem 2.2 (a), *A* is sequentially *g*-closed set in *X*. By hypothesis, f(A) is sequentially *g*-closed in *Y*. To prove that f(A) is sequentially closed in *Y*. Let $\{y_n\}$ be a sequence in f(A) such that $\{y_n\} \to y$. Since *f* is sequentially *g*-quotient, $\{f^{-1}(y_n)\} \xrightarrow{g} f^{-1}(y)$, by Theorem 5.20. That is, $\{f^{-1}(y_n)\}$ is a sequence in *A g*-converging to $f^{-1}(y)$. Since *X* is $T_{1/2}$, $\{f^{-1}(y_n)\} \to f^{-1}(y)$ in *A*, by Lemma 2.3 (a). Hence $f^{-1}(y) \in A$ so that $y \in f(A)$. Hence f(A) is sequentially closed in *Y*. Therefore, *f* is a sequentially closed map.

Theorem 5.22. Let (X, τ) be a topological space. Then X is g-sequential if and only if each quotient map on X is sequentially g-quotient.

Proof. Let *X* be a *g*-sequential space and let $f : X \to Y$ be any quotient map. Then *Y* is a *g*-sequential space, by Lemma 4.5. Let *U* be any non sequentially *g*-closed subset of *Y*. Then *U* is not closed and $f^{-1}(U)$ is not closed. Since *X* is *g*-sequential, $f^{-1}(U)$ is not sequentially *g*-closed in *X*.

Conversely, suppose that *X* is not *g*-sequential. Let *A* be a sequentially *g*-closed subset of *X* which is not closed. Consider the map $f : X \to Y$ where $Y = \{0, 1\}$ defined by

$$f(x) = \begin{cases} 0, \text{ if } x \in A\\ 1, \text{ if } x \in X - A \end{cases}$$

Let *Y* has the quotient topology induced by *f*. Since $f^{-1}(\{1\}) = X - A$ is not open in *X*, $\{1\}$ is not open in *Y* and also, not *g*-open in *Y*. Thus, the constant sequence $(0, 0, ...,) \xrightarrow{g} 1$. The set $\{0\}$ is not sequentially *g*-closed, but $f^{-1}(\{0\})$ is sequentially *g*-closed. Hence *f* is a quotient map on *X* and *f* is not sequentially *g*-quotient.

Recall that a class of map is said to be *hereditary* [1] if whenever $f : X \to Y$ is in the class, then for each subspace L of Y, the restriction of f to $f^{-1}(L)$ is in the class. The following Theorem 5.23 shows that every sequentially g-quotient map is a hereditarily sequentially g-quotient map.

Theorem 5.23. Sequentially *g*-quotient maps are hereditarily sequentially *g*-quotient.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a sequentially *g*-quotient map and *L* be a subspace of *Y*. Take $h = f|_{f^{-1}(L)}$ such that $h : f^{-1}(L) \to L$ be a map. Given a sequence $\{x_n\}$ *g*-convergence to *y* in *L*, there exists a sequence $\{x_n\} \in f^{-1}(y_n) \subset f^{-1}(L)$ such that $\{x_n\} \xrightarrow{g} x \in f^{-1}(y) \subset f^{-1}(L)$, since *f* is a sequentially *g*-quotient map. Hence $\{y_n\} \xrightarrow{g} y$ in *Y*. Therefore, *h* is a sequentially *g*-quotient map. \Box

Proposition 5.3. *Finite product of sequentially g-quotient maps is sequentially g-quotient.*

Proof. Let $\Pi_{i=1}^{N} f_i : \Pi_{i=1}^{N} X_i \to \Pi_{i=1}^{N} Y_i$ be a map where each $f_i : X_i \to Y_i$ is a sequentially g-quotient map for i = 1, 2, ...N. Let $\{(y_{i,n})\}$ be a sequence g-converges to (y_i) in $\Pi_{i=1}^{N} Y_i$. Since each f_i is a sequentially g-quotient map, there exists a sequence $\{x_{i,n}\}$ in X_i such that $\{x_{i,n}\} \xrightarrow{g} x_i$ and $f_i(x_{i,n}) = y_{i,n}$. Let $(x_i) \in \Pi_{i=1}^{N} X_i$ and U be a g-open set containing (x_i) . Then $(x_{i,n}) \in U$ implies that $\{(x_{i,n})\}_{n \in \mathbb{N}} \xrightarrow{g} (x_i)$. Therefore, $\Pi_{i=1}^{N} f_i$ is a sequentially g-quotient map.

Proposition 5.4. Let $f : X \to Y$ and $g : Y \to Z$ be two strongly *g*-continuous maps. Then the following hold.

- (a) If f and g are sequentially g-quotient, then $g \circ f$ is sequentially g-quotient.
- (b) If X is a g-sequential space and $g \circ f$ is sequentially g-quotient, then g is sequentially g-quotient.

Proof. (a) Let *A* be a *g*-converging sequence in *Z* with its *g*-limit point *z*. Since *g* is sequentially *g*-quotient, there exists a *g*-converging sequence *B* in *Y* with its *g*-limit point $y \in g^{-1}(z)$ such that g(B) = A, by Theorem 5.20. Also, *f* is a sequentially *g*-quotient map implies that there exists a *g*-converging sequence *C* in *X* with its *g*-limit point $x \in f^{-1}(y)$ and f(C) = B. That is, there exists a *g*-converging sequence *C* in *X* with its *g*-limit point $x \in (g \circ f)^{-1}(z)$ such that $(g \circ f)(C) = A$. Hence $g \circ f$ is sequentially *g*-quotient. (b) Let *A* be a *g*-convergent sequence in *Z* with its *g*-limit *z*. Since $g \circ f$ is sequentially *g*-

quotient, there exists a *g*-convergent sequence in *Z* with its *g*-limit *z*. Since $g \circ f$ is sequentially *g*quotient, there exists a *g*-convergent sequence *C* in *X* with its *g*-limit point $x \in (g \circ f)^{-1}(z)$ such that $(g \circ f)(C) = A$. By Theorem 4.18, f(C) is a *g*-convergent sequence in *Y* with its *g*-limit $f(x) = y \in g^{-1}(z)$ such that g(f(C)) = A. Therefore, *g* is a sequentially *g*-quotient map.

Theorem 5.24. *If* (Y, σ) *is a g-sequential space, then every sequentially g-quotient map onto* Y *is quotient.*

Proof. Let *Y* be a *g*-sequential space and $f : (X, \tau) \to (Y, \sigma)$ be a sequentially *g*-quotient map onto *Y*. Suppose that $f^{-1}(U)$ is open in *X* and *U* is not open in *Y*. Then $Y \setminus U$ is not closed in *Y*. Therefore, by hypothesis, there exists $y \in U$ such that $\{y_n\} \xrightarrow{g} y$ and

 $\{y_n\} \in Y \setminus U$. Since f is sequentially g-quotient, there exists a sequence $\{x_n\} \xrightarrow{g} x$ such that $x \in f^{-1}(y) \subset f^{-1}(U)$ and $\{x_n\} \in f^{-1}(y_n) \subset f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$. Therefore, $X \setminus f^{-1}(U)$ is not a sequentially g-closed set, since $x \notin X \setminus f^{-1}(U)$. Therefore, $f^{-1}(U)$ is not a sequentially g-closed set, since $x \notin X \setminus f^{-1}(U)$. Therefore, $f^{-1}(U)$ is not a sequentially g-open set which is a contradiction to $f^{-1}(U)$ is open. Hence f is a quotient map.

Acknowledgement. The second author thanks the University Grants Commission, New Delhi, India for financial support in the form of RGNF (F117.1/2016-17/RGNF-2015-17-SC-TAM-26720).

REFERENCES

- Arhangel'skii, A. V.; Pontryagin, L. S. General Topology I, Encyclopaedia of Mathematical Sciences. 17, Springer-Verlage, Berlin, 1990.
- [2] Balachandran, K.; Sundaram, P.; Maki, H. On Genernlized Continuos Maps in Topological Spaces. Mem. Fac. Sci. Kochi Univ. Ser. A Math. 12 (1991), 5–13.
- [3] Boone, J. R.; Siwiec, F. Sequentially quotient mappings. Czechoslovak Math. J. 26 (101) (1976), no. 2, 174–182.
- [4] Caldas, M.; Jafari, S. On g-US space. Stud. Cercet. Stiint. Ser. Mat. Univ. Bacău 14 (2004), 13–19 (2005).
- [5] Engelking, R. General topology (revised and completed edition), Heldermann verlag, Berlin, 1989.
- [6] Fast, H. Sur la convergence statistique. (French) Collog. Math. 2 (1951), 241-244 (1952).
- [7] Levine, N. Generalized closed sets in topology. Rend. Circ. Mat. Palermo (2) 19 (1970), 89-96.
- [8] Šalát, T. On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), no. 2, 139–150.
- [9] Schoenberg, I. J. The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361–375.

DEPARTMENT OF MATHEMATICS CENTRAL UNIVERSITY OF TAMIL NADU THIRUVARUR 610 005, INDIA *Email address*: renukadevi@cutn.ac.in, renu_siva2003@yahoo.com

AYYA NADAR JANAKI AMMAL COLLEGE SIVAKASI 626 124, TAMIL NADU, INDIA *Email address*: vijayashanthi26892@gmail.com