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Balcobalancing Numbers and Balcobalancers II

AHMET TEKCAN and MERYEM YILDIZ

ABSTRACT. In this work, we derived some new algebraic results on continued fraction expansion of the ra-
tio of the two consecutive balcobalancing numbers, circulant matrices and spectral norms, Pythagorean triples,
characteristic polynomials and eigenvalues of the nth power of the companion matrices, Cassini and Catalan
identities, cross-ratios and Heisenberg groups related to balcobalancing numbers, Lucas-balcobalancing num-
bers and balcobalancers.

1. INTRODUCTION

A positive integer n is called a balancing number ([1]) if the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)

holds for some positive integer r which is called balancer corresponding to n. Let Bn

denote the nth balancing number. Then B0 = 0, B1 = 1, B2 = 6 and Bn+1 = 6Bn − Bn−1

for n ≥ 2.
Later Panda and Ray ([10]) defined that a positive integer n is called a cobalancing

number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.2)

holds for some positive integer r which is called cobalancer corresponding to n. Let bn
denote the nth cobalancing number. Then b0 = b1 = 0, b2 = 2 and bn+1 = 6bn − bn−1 + 2
for n ≥ 2.

It is clear from (1.1) and (1.2) that every balancing number is a cobalancer and every
cobalancing number is a balancer, that is, Bn = rn+1 and Rn = bn for n ≥ 1, where Rn is
the nth balancer and rn is the nth cobalancer. Since Rn = bn, we get from (1.1) that

bn =
−2Bn − 1 +

√
8B2

n + 1

2
and Bn =

2bn + 1 +
√

8b2n + 8bn + 1

2
. (1.3)

Thus from (1.3), we see that Bn is a balancing number if and only if 8B2
n + 1 is a perfect

square and bn is a cobalancing number if and only if 8b2n + 8bn + 1 is a perfect square.
So Cn =

√
8B2

n + 1 and cn =
√
8b2n + 8bn + 1 are integers which are called the nth Lucas-

balancing number and the nth Lucas-cobalancing number (see [3, 8, 9, 13, 14]).
Balancing numbers and their generalizations have been investigated by several authors

from many aspects. In [6], Liptai proved that there is no Fibonacci balancing number
except 1 and in [7] he proved that there is no Lucas-balancing number. In [16], Szalay
considered the same problem and obtained some nice results by a different method. In
[4], Kovács, Liptai and Olajos extended the concept of balancing numbers to the (a, b)-ba-
lancing numbers defined as follows: Let a > 0 and b ≥ 0 be coprime integers. If
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(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some integers n, r ≥ 1, then an + b is an (a, b)-balancing number. The sequence of
(a, b)-balancing numbers is denoted by B

(a,b)
m for m ≥ 1. In [5], Liptai, Luca, Pintér and

Szalay generalized the notion of balancing numbers to numbers defined as follows: Let
y, k, l ∈ Z+ with y ≥ 4. A positive integer x such that x ≤ y − 2 is called a (k, l)-power
numerical center for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They studied the number of solutions of the equation above and proved several effective
and ineffective finiteness results for (k, l)-power numerical centers. For positive integers
k, x, let

Πk(x) = x(x+ 1) . . . (x+ k − 1).

Then it was proved in [4] that the equation Bm = Πk(x) for fixed integer k ≥ 2 has only in-
finitely many solutions and for k ∈ {2, 3, 4} all solutions were determined. In [20] Tengely,
considered the case k = 5 and proved that this Diophantine equation has no solution for
m ≥ 0 and x ∈ Z. In [12], Panda, Komatsu and Davala considered the reciprocal sums of
sequences involving balancing and Lucas-balancing numbers and in [15], Ray considered
the sums of balancing and Lucas-balancing numbers by matrix methods. In [11], Panda
and Panda defined the almost balancing number and its balancer. In [18], the first author
considered amost balancing numbers, triangular numbers and square triangular numbers
and in [17], he considered the sums and spectral norms of all almost balancing numbers.

2. RESULTS.

In [19], we defined three new integer sequences called balcobalancing numbers, bal-
cobalancers and Lucas-balcobalancing numbers and derived some results on them.

Similarly in this paper, we will deduce some new results on continued fraction expan-
sion of the ratio of the two consecutive balcobalancing numbers, circulant matrices and
spectral norms, Pythagorean triples, characteristic polynomials and eigenvalues of the nth

power of the companion matrices, Cassini and Catalan identities, cross-ratios and Heisen-
berg groups related to balcobalancing numbers, Lucas-balcobalancing numbers and bal-
cobalancers.

2.1. Continued Fraction Expansion. In [3, Theorem 2.17], the authors proved that the
continued fraction expansions of two consecutive balancing numbers, cobalancing num-
bers, Lucas-balancing numbers and Lucas-cobalancing numbers are

Bn+1

Bn
= [5; 1, 4,︸︷︷︸

n−2 times

1, 5] for n ≥ 2

bn+1

bn
=



[5; 1, 4,︸︷︷︸
n−5
2 times

1, 5] for odd n ≥ 5

[5; 1, 4,︸︷︷︸
n−4
2 times

1, 6] for even n ≥ 4

Cn+1

Cn
= [5; 1, 4,︸︷︷︸

n−1 times

1, 2] for n ≥ 1
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cn+1

cn
= [5; 1, 4,︸︷︷︸

n−2 times

1, 6] for n ≥ 2.

Similarly we can give the following theorem.

Theorem 2.1. The continued fraction expansion of Bbc
n

Bbc
n−1

is

Bbc
n

Bbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
3k−2 times

1, 33, 1, 3, 1, 5, 1, 168, 1, 5, 1, 3, 1, 5,︸ ︷︷ ︸ 1, 169
k−1 times

]

for n = 6k;

Bbc
n

Bbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
3k−1 times

1, 172, 1, 5, 1, 3, 1, 5, 1, 168, 1, 5, 1, 3︸ ︷︷ ︸
k−1 times

, 1, 6]

for n = 6k + 1;

Bbc
n

Bbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
3k−1 times

1, 33, 1, 3, 1, 5, 1, 168, 1, 5︸ ︷︷ ︸
k times

, 1, 4]

for n = 6k + 2;

Bbc
n

Bbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
3k times

1, 172, 1, 5, 1, 3, 1, 5, 1, 168, 1, 5, 1, 3, 1, 5︸ ︷︷ ︸
k−1 times

, 1, 169]

for n = 6k + 3;

Bbc
n

Bbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
3k times

1, 33, 1, 3, 1, 5, 1, 168, 1, 5, 1, 3,︸ ︷︷ ︸
k times

1, 6]

for n = 6k + 4 and

Bbc
n

Bbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
3k+1 times

1, 172, 1, 5, 1, 3, 1, 5, 1, 168, 1, 5, 1, 3, 1, 5,︸ ︷︷ ︸
k−1 times

1, 168, 1, 5, 1, 4]

for n = 6k + 5, where k ≥ 1 is an integer. The continued fraction expansion of Cbc
n

Cbc
n−1

is

Cbc
n

Cbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
n−2 times

1, 28]

for n ≥ 2 and continued fraction expansion of Rbc
n

Rbc
n−1

is

Rbc
n

Rbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
n−4
2 times

1, 35, 33, 1, 32,︸ ︷︷ ︸
n−6
2 times

1, 33]

for even n ≥ 6 and
Rbc

n

Rbc
n−1

= [33; 1, 32,︸ ︷︷ ︸
n−5
2 times

1, 33, 35, 1, 32,︸ ︷︷ ︸
n−5
2 times

1, 33]

for odd n ≥ 5.

Proof. It can be proved by induction on n. □
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2.2. Circulant Matrix and Spectral Norm. A circulant matrix (see [2]) is a matrix

M =



m0 m1 m2 · · · mn−2 mn−1

mn−1 m0 m1 · · · mn−3 mn−2

mn−2 mn−1 m0 · · · mn−4 mn−3

.

.

.

.

.

.

.

.

.

· · ·
· · ·
· · ·

.

.

.

.

.

.
m2 m3 m4 · · · m0 m1

m1 m2 m3 · · · mn−1 m0


,

where mi are constant. In this case the eigenvalues of M are

λj(M) =

n−1∑
u=0

muw
−ju, (2.4)

where w = e
2πi
n , i =

√
−1, j = 0, 1, · · · , n− 1. The spectral norm of a matrix X = [xij ]n×n

is

||X||spec = max
0≤j≤n−1

{
√
λj},

where λj are the eigenvalues of X∗X and X∗ denotes the conjugate transpose of X .

Theorem 2.2. Let M(Bbc
n ),M(Cbc

n ) and M(Rbc
n ) denote the circulant matrices of balcobalancing

numbers, Lucas-balcobalancing numbers and balcobalancers, respectively. Then

(1) The eigenvalues of M(Bbc
n ),M(Cbc

n ) and M(Rbc
n ) are

λj(M(Bbc
n )) =

(Bbc
n−1 + 2)w−j −Bbc

n

w−2j − 34w−j + 1

λj(M(Cbc
n )) =

(Cbc
n−1 − 5)w−j − Cbc

n + 1

w−2j − 34w−j + 1

λj(M(Rbc
n )) =

(Rbc
n−1 − 4)w−j −Rbc

n

w−2j − 34w−j + 1

for j = 0, 1, 2, · · · , n− 1.
(2) The spectral norms of M(Bbc

n ),M(Cbc
n ) and M(Rbc

n ) are

||M(Bbc
n )||spec =

33Bbc
n−1 −Bbc

n−2 − 8n+ 6

32

||M(Cbc
n )||spec =

33Cbc
n−1 − Cbc

n−2 + 4

32

||M(Rbc
n )||spec =

33Rbc
n−1 −Rbc

n−2 − 8n+ 12

32
.

Proof. (1) Recall that Bbc
n = α4n+1+β4n+1

8 − 1
4 by [19, Theorem 3.6]. So we get from (2.4) that

λj(B
bc
n ) =

n−1∑
u=0

Bbc
u w−ju

=

n−1∑
u=0

(
α4u+1 + β4u+1

8
− 1

4

)
w−ju
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=
1

8

[
α

n−1∑
u=0

(α4w−j)u + β

n−1∑
u=0

(β4w−j)u

]
− 1

4

n−1∑
u=0

w−ju

=
1

8

[
α− α4n+1

1− α4w−j
+

β − β4n+1

1− β4w−j

]
=

1

8

[
w−j(−αβ4 + α4n+1β4 − α4β + α4β4n+1) + α+ β − α4n+1 − β4n+1

w−2j − 34w−j + 1

]
=

1

8

[
w−j(α4n−3 + β4n−3 + 14)− (α4n+1 + β4n+1 − 2)

w−2j − 34w−j + 1

]
=

w−j(α
4n−3+β4n−3−2+16

8 )− α4n+1+β4n+1−2
8

w−2j − 34w−j + 1

=
(Bbc

n−1 + 2)w−j −Bbc
n

w−2j − 34w−j + 1
.

(2) For the circulant matrix

Bbc
n =



Bbc
0 Bbc

1 Bbc
2 · · · Bbc

n−2 Bbc
n−1

Bbc
n−1 Bbc

0 Bbc
1 · · · Bbc

n−3 Bbc
n−2

.

.

.

.

.

.

.

.

.

· · ·
· · ·
· · ·

.

.

.

.

.

.
Bbc

2 Bbc
3 Bbc

4 · · · Bbc
0 Bbc

1

Bbc
1 Bbc

2 Bbc
3 · · · Bbc

n−1 Bbc
0


,

for balcobalancing numbers, we have

(Bbc
n )∗Bbc

n =



Bbc
11 Bbc

12 · · · Bbc
1(n−1) Bbc

1n

Bbc
21 Bbc

22 · · · Bbc
2(n−1) Bbc

2n

.

.

.

.

.

.
· · ·

.

.

.

.

.

.
Bbc

(n−1)1 Bbc
(n−1)2 · · · Bbc

(n−1)(n−1) Bbc
(n−1)n

Bbc
n1 Bbc

n2 · · · Bbc
n(n−1) Bbc

nn


,

where

Bbc
11 = (Bbc

0 )2 + (Bbc
n−1)

2 + · · ·+ (Bbc
2 )2 + (Bbc

1 )2

Bbc
12 = Bbc

0 Bbc
1 +Bbc

n−1B
bc
0 + · · ·+Bbc

2 Bbc
3 +Bbc

1 Bbc
2

· · ·

Bbc
1(n−1) = Bbc

0 Bbc
n−2 +Bbc

n−1B
bc
n−3 + · · ·+Bbc

2 Bbc
0 +Bbc

1 Bbc
n−1

Bbc
1n = Bbc

0 Bbc
n−1 +Bbc

n−1B
bc
n−2 + · · ·+Bbc

2 Bbc
1 +Bbc

1 Bbc
0

Bbc
21 = Bbc

1 Bbc
0 +Bbc

0 Bbc
n−1 + · · ·+Bbc

3 Bbc
2 +Bbc

2 Bbc
1

Bbc
22 = (Bbc

1 )2 + (Bbc
0 )2 + · · ·+ (Bbc

3 )2 + (Bbc
2 )2

· · ·

Bbc
2(n−1) = Bbc

1 Bbc
n−2 +Bbc

0 Bbc
n−3 + · · ·+Bbc

3 Bbc
0 +Bbc

2 Bbc
n−1

Bbc
2n = Bbc

1 Bbc
n−1 +Bbc

0 Bbc
n−2 + · · ·+Bbc

3 Bbc
1 +Bbc

2 Bbc
0
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· · ·

Bbc
n1 = Bbc

n−1B
bc
0 +Bbc

n−2B
bc
n−1 + · · ·+Bbc

1 Bbc
2 +Bbc

0 Bbc
1

Bbc
n2 = Bbc

n−1B
bc
1 +Bbc

n−2B
bc
0 + · · ·+Bbc

1 Bbc
3 +Bbc

0 Bbc
2

· · ·

Bbc
n(n−1) = Bbc

n−1B
bc
n−2 +Bbc

n−2B
bc
n−3 + · · ·+Bbc

1 Bbc
0 +Bbc

0 Bbc
n−1

Bbc
nn = (Bbc

n−1)
2 + (Bbc

n−2)
2 + · · ·+ (Bbc

1 )2 + (Bbc
0 )2.

The eigenvalues of (Bbc
n )∗Bbc

n are λ0, λ1, · · · , λn−1. Here λ0 is the maximum and is

λ0 = (Bbc
0 )2 + (Bbc

1 )2 + · · ·+ (Bbc
n−2)

2 + (Bbc
n−1)

2

+ 2


Bbc

0 (Bbc
1 +Bbc

2 + · · ·+Bbc
n−2 +Bbc

n−1)
+Bbc

1 (Bbc
2 + · · ·+Bbc

n−2 +Bbc
n−1)

+ · · ·
+Bbc

n−2B
bc
n−1


= (Bbc

0 +Bbc
1 + · · ·+Bbc

n−1)
2.

Thus the spectral norm of M(Bbc
n ) is

||M(Bbc
n )||spec =

√
λ0 = Bbc

0 +Bbc
1 + · · ·+Bbc

n−1.

Since
n∑

i=1

Bbc
i =

33Bbc
n −Bbc

n−1−8n−2

32 by [19, Theorem 6.18], we conclude that the spectral

norm of M(Bbc
n ) is

||M(Bbc
n )||spec =

33Bbc
n−1 −Bbc

n−2 − 8n+ 6

32
as we wanted. □

2.3. Pythagorean Triples. Notice that a Pythagorean triple consists of three positive in-
tegers a, b, c such that a2 + b2 = c2 and commonly written (a, b, c). For instance, for Pell
numbers Pn, it is known that

(2PnPn+1, P
2
n+1 − P 2

n , P
2
n+1 + P 2

n)

is a Pythagorean triple. Also for balancing numbers, it was proved in [3, Theorem 2.14]
that

(Bn+1 − bn+1, Bn+1 − bn+1 − 1, 2bn+1 + 1)

is a Pythagorean triple. Similarly we can give the following result.

Theorem 2.3. For balcobalancing numbers, balcobalancers and Lucas-balcobalancing numbers,
(1) (Cbc

n − 2Rbc
n , 2Bbc

n , Cbc
n ) is a Pythagorean triple.

(2) (2Bbc
n+1 − 4Rbc

n+1, 2B
bc
n+1 − 4Rbc

n+1 − 1, 6Rbc
n+1 − 2Bbc

n+1 + 1) is a Pythagorean triple.
(3) (4Cbc

n (Bbc
n −Rbc

n ), (Cbc
n )2 − 4(Bbc

n −Rbc
n )2, (Cbc

n )2 + 4(Bbc
n −Rbc

n )2) is a Pythagorean
triple.

Proof. (1) Since Bbc
n = α4n+1+β4n+1

8 − 1
4 , C

bc
n = α4n+1−β4n+1

2
√
2

and Rbc
n = α4n+β4n

8 − 1
4 by [19,

Theorem 3.6], we deduce that

(Cbc
n − 2Rbc

n )2 + (2Bbc
n )2

=

(
α4n+1 − β4n+1

2
√
2

− 2(
α4n + β4n − 2

8
)

)2

+

(
2(

α4n+1 + β4n+1 − 2

8
)

)2
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= (
α4n+1 + β4n+1 + 2

4
)2 + (

α4n+1 + β4n+1 − 2

4
)2

=
α8n+2 + β8n+2 + 2

8

= (
α4n+1 − β4n+1

2
√
2

)2

= (Cbc
n )2.

The others can be proved similarly. □

2.4. Characteristic Polynomials and Eigenvalues. We proved in [19, Theorem 3.9], that
the nth power of M bc is

(M bc)n =


kn+2 ln kn+1

kn+1 ln−1 kn

kn ln−2 kn−1


for every n ≥ 2, and the nth power of N bc is

(N bc)n = (−1)n



 kn+2 − kn+1 kn − kn+1

−kn + kn+1 −kn + kn−1

 for even n ≥ 2

 kn+1 − kn+2 kn+1 − kn

−kn+1 + kn −kn−1 + kn

 for odd n ≥ 1,

where M bc is the companion matrix for balcobalancing numbers and balcobalancers, N bc

is the companion matrix for Lucas-balcobalancing numbers, kn and ln are integer se-
quences defined by kn = −8B2n+3C2n−3

96 and ln = −288B2n−102C2n+102
96 for n ≥ 0.

For characteristic polynomial and eigenvalues of (M bc)n and (N bc)n, we can give the
following theorem.

Theorem 2.4. The characteristic polynomial of (M bc)n is

Pλ((M
bc)n) = −λ3 + (2C2n + 1)λ2 − (2C2n + 1)λ+ 1

and the eigenvalues of (M bc)n are

λ0 = 1, λ1 = C2n + 2
√
2B2n and λ2 = C2n − 2

√
2B2n.

The characteristic polynomial of (N bc)n is

Pλ((N
bc)n) = λ2 − 2C2nλ+ 1

and the eigenvalues of (N bc)n are

λ0 = C2n + 2
√
2B2n and λ1 = C2n − 2

√
2B2n.

Proof. The characteristic polynomial of (M bc)n is

Pλ((M
bc)n) = det((M bc)n − λI3)
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= det




kn+2 ln kn+1

kn+1 ln−1 kn

kn ln−2 kn−1

− λ


1 0 0

0 1 0

0 0 1




=

∣∣∣∣∣∣∣∣∣∣
kn+2 − λ ln kn+1

kn+1 ln−1 − λ kn

kn ln−2 kn−1 − λ

∣∣∣∣∣∣∣∣∣∣
= −λ3 + (kn+2 + ln−1 + kn−1)λ

2 + (−kn+2ln−1 − kn+2kn−1 − ln−1kn−1

+ knln−2 + kn+1ln + kn+1kn)λ+ kn+2ln−1kn−1 − kn+2knln−2 + ln−2k
2
n+1

− kn+1lnkn−1 + lnk
2
n − knkn+1ln−1

= −λ3 + (2C2n + 1)λ2 − (2C2n + 1)λ+ 1

since kn+2+ ln−1+kn−1 = 2C2n+1, −kn+2ln−1−kn+2kn−1− ln−1kn−1+knln−2+kn+1ln+
kn+1kn = −2C2n − 1 and kn+2ln−1kn−1 − kn+2knln−2 + ln−2k

2
n+1 − kn+1lnkn−1 + lnk

2
n −

knkn+1ln−1 = 1. Note that

Pλ((M
bc)n) = −(λ− 1)(λ2 − 2C2nλ+ 1).

So the roots of Pλ((M
bc)n) are λ0 = 1 and

λ1,2 =
2C2n ±

√
(2C2n)2 − 4

2
= C2n ±

√
C2

2n − 1 = C2n ± 2
√
2B2n.

The other case can be proved similarly. □

2.5. Cassini and Catalan Identities. Recall that the Cassini identity for Fibonacci num-
bers Fn is

F 2
n − Fn+1Fn−1 = (−1)n−1

for n ≥ 1 and the Catalan identity for Fibonacci numbers Fn is

F 2
n − Fn−rFn+r = (−1)n−rF 2

r

for n ≥ r ≥ 1. Similarly for all balcobalancing numbers, we can give the following result.

Theorem 2.5. The Cassini identities for all balcobalancing numbers are

(Bbc
n )2 −Bbc

n+1B
bc
n−1 = 8Bbc

n + 20

(Cbc
n )2 − Cbc

n+1C
bc
n−1 = −144

(Rbc
n )2 −Rbc

n+1R
bc
n−1 = 8Rbc

n − 16

for n ≥ 1 and the Catalan identities for all balcobalancing numbers are

(Bbc
n )2 −Bbc

n−rB
bc
n+r = (

5Bbc
r −Bbc

r−1 + 4

12
)2 +Bbc

n (
5Bbc

r −Bbc
r−1 − 2

6
)− 1

4

(Cbc
n )2 − Cbc

n−rC
bc
n+r = −(

5Cbc
r − Cbc

r−1

12
)2

(Rbc
n )2 −Rbc

n−rR
bc
n+r = Rbc

r (2Rbc
n −Rbc

r )

for n ≥ r ≥ 1.
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Proof. Notice that Bbc
n = α4n+1+β4n+1

8 − 1
4 by [19, Theorem 3.6]. So we easily get

(Bbc
n )2 −Bbc

n+1B
bc
n−1 =

(
α4n+1 + β4n+1

8
− 1

4

)2

−
(
α4n+5 + β4n+5

8
− 1

4

)(
α4n−3 + β4n−3

8
− 1

4

)
= 8

(
α4n+1 + β4n+1

8
− 1

4

)
+ 20

= 8Bbc
n + 20.

The other cases can be proved similarly. □

2.6. Cross-Ratio. The cross-ratio of a quadruple of distinct points on the real line with
coordinates z1, z2, z3, z4 is given by

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
. (2.5)

It is known that the cross-ratio for Fibonacci numbers Fn is

(Fn+1, Fn+2;Fn+3, Fn+4) =
Fn+3

2Fn+1
.

Similarly we can give the following result.

Theorem 2.6. The cross-ratios for all balcobalancing numbers are

(Bbc
n+1, B

bc
n+2;B

bc
n+3, B

bc
n+4) =

288Bbc
n+2B

bc
n+3 + 72Bbc

n+2 + 72Bbc
n+3 + 324

280Bbc
n+2B

bc
n+3 + 70Bbc

n+2 + 70Bbc
n+3 + 175

(Cbc
n+1, C

bc
n+2;C

bc
n+3, C

bc
n+4) =

72Cbc
n+2C

bc
n+3 − 612

70Cbc
n+2C

bc
n+3 − 315

(Rbc
n+1, R

bc
n+2;R

bc
n+3, R

bc
n+4) =

144Rbc
n+2R

bc
n+3 + 36Rbc

n+2 + 36Rbc
n+3 − 144

140Rbc
n+2R

bc
n+3 + 35Rbc

n+2 + 35Rbc
n+3 − 70

.

Proof. Recall that Bbc
n = α4n+1+β4n+1−2

8 . So we get from (2.5) that

(Bbc
n+1, B

bc
n+2;B

bc
n+3, B

bc
n+4)

=
(Bbc

n+3 −Bbc
n+1)(B

bc
n+4 −Bbc

n+2)

(Bbc
n+3 −Bbc

n+2)(B
bc
n+4 −Bbc

n+1)

=
(α

4n+13+β4n+13−2
8 − α4n+5+β4n+5−2

8 )(α
4n+17+β4n+17−2

8 − α4n+9+β4n+9−2
8 )

(α
4n+13+β4n+13−2

8 − α4n+9+β4n+9−2
8 )(α

4n+17+β4n+17−2
8 − α4n+5+β4n+5−2

8 )

=
[α4n+5(α8 − 1) + β4n+5(β8 − 1)][α4n+9(α8 − 1) + β4n+9(β8 − 1)]

[α4n+9(α4 − 1) + β4n+9(β4 − 1)][α4n+5(α12 − 1) + β4n+5(β12 − 1)]

=
[24

√
2(α4n+9 − β4n+9)][24

√
2(α4n+13 − β4n+13)]

[4
√
2(α4n+11 − β4n+11)][140

√
2(α4n+11 − β4n+11)]

=
36(α8n+22 + β8n+22 + 34)

35(α8n+22 + β8n+22 + 2)
. (2.6)
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Here we notice that

α8n+22 + β8n+22 = α4n+9α4n+13 + α4n+9β4n+13 + α4n+13β4n+9 + β4n+9β4n+13

− 2(α4n+9 + β4n+9 + α4n+13 + β4n+13)

+ 2(α4n+9 + β4n+9 + α4n+13 + β4n+13) + 34

= (α4n+9 + β4n+9 − 2)(α4n+13 + β4n+13 − 2)

+ 2(α4n+9 + β4n+9 + α4n+13 + β4n+13) + 30

= 64(
α4n+9 + β4n+9 − 2

8
)(
α4n+13 + β4n+13 − 2

8
)

+ 16(
α4n+9 + β4n+9 − 2

8
+

α4n+13 + β4n+13 − 2

8
) + 38

= 64Bbc
n+2B

bc
n+3 + 16Bbc

n+2 + 16Bbc
n+3 + 38.

Thus from (2.6), we get

(Bbc
n+1, B

bc
n+2;B

bc
n+3, B

bc
n+4) =

288Bbc
n+2B

bc
n+3 + 72Bbc

n+2 + 72Bbc
n+3 + 324

280Bbc
n+2B

bc
n+3 + 70Bbc

n+2 + 70Bbc
n+3 + 175

.

The others can be proved similarly. □

2.7. Heisenberg Group. Let x, y, z be real numbers. Then the set of matrices 1 x y
0 1 z
0 0 1


is a group under matrix multiplication. This group known as the Heisenberg group which
is denoted by H3(x, y, z).

For balcobalancing numbers Bbc
n , Cbc

n and Rbc
n , we let

Hbc
3 = Hbc

3 (Bbc
i , Cbc

i , Rbc
i ) =

 1 Bbc
i Cbc

i

0 1 Rbc
i

0 0 1


for i = 1, 2, · · · . Then we can give the following theorem.

Theorem 2.7. The nth power of Hbc
3 is

(Hbc
3 )n =

 1 nBbc
i nCbc

i + n(n−1)
2 Bbc

i Rbc
i

0 1 nRbc
i

0 0 1


for n, i ≥ 1.

Proof. We prove it by induction on n. Let n = 1. Then

(Hbc
3 )1 =

 1 Bbc
i Cbc

i

0 1 Rbc
i

0 0 1

 = Hbc
3 .

So it is true for n = 1. Let us assume that it is satisfied for n− 1, that is,

(Hbc
3 )n−1 =

 1 (n− 1)Bbc
i (n− 1)Cbc

i + (n−1)(n−2)
2 Bbc

i Rbc
i

0 1 (n− 1)Rbc
i

0 0 1

 .



Balcobalancing Numbers II 257

Then we easily deduce that

(Hbc
3 )n = Hbc

3 (Hbc
3 )n−1

=

 1 Bbc
i Cbc

i

0 1 Rbc
i

0 0 1

 1 (n− 1)Bbc
i (n− 1)Cbc

i + (n−1)(n−2)
2 Bbc

i Rbc
i

0 1 (n− 1)Rbc
i

0 0 1


=

 1 (n− 1)Bbc
i +Bbc

i (n− 1)Cbc
i + (n−1)(n−2)

2 Bbc
i Rbc

i + (n− 1)Bbc
i Rbc

i + Cbc
i

0 1 (n− 1)Rbc
i +Rbc

i

0 0 1


=

 1 nBbc
i nCbc

i + n(n−1)
2 Bbc

i Rbc
i

0 1 nRbc
i

0 0 1

 .

So it is true for every n. □

3. CONCLUSION.

In [19], we defined three integer sequences called balcobalancing numbers, balcobal-
ancers and Lucas-balcobalancing numbers. We said that a positive integer n is called a
balcobalancing number if the Diophantine equation

1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n = 2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]

(which is the sum of (1.1) and (1.2)) verified for some positive integer r which is called
balcobalancer. From above equation, we get

r =
−2n− 1 +

√
8n2 + 4n+ 1

2
. (3.7)

Let Bbc
n denote the nth balcobalancing number. Then from (3.7), Bbc

n is a balcobalancing
number if and only if 8(Bbc

n )2 + 4Bbc
n + 1 is a perfect square. Thus

Cbc
n =

√
8(Bbc

n )2 + 4Bbc
n + 1

is an integer which is called the nth Lucas-balcobancing number. We proved in [19, Theo-
rem 2.2] that the general terms of Bbc

n , Cbc
n and Rbc

n (which is the nth balcobalancer) are

Bbc
n =

c2n+1 − 1

4
, Cbc

n = 2b2n+1 + 1 and Rbc
n =

4b2n+1 − c2n+1 + 1

4

for n ≥ 1. Further we deduced some algebraic relations on binet formulas, recurrence
relations, companion matrices, relationship with Pell, Pell-Lucas, triangular and square
triangular numbers and sums of them including sums of balancing numbers and Pell
numbers.

In the present paper, we again consider the balcobalancing numbers and derived some
new algebraic results on continued fraction expansion of the ratio of the two consecu-
tive balcobalancing numbers, circulant matrices and spectral norms, Pythagorean triples,
characteristic polynomials and eigenvalues of the nth power of the companion matrices,
Cassini and Catalan identities, cross-ratios and Heisenberg groups.
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