Fold thickness of some classes of graphs

REJI THANKACHAN and VAISHNAVI SIDHARTHAN

ABSTRACT. A 1-fold of G is the graph G' obtained from a graph G by identifying two nonadjacent vertices in G having at least one common neighbor and reducing the resulting multiple edges to simple edges. A sequence of graphs $G = G_0, G_1, G_2, \ldots, G_k$, where G_{i+1} is a 1-fold of G_i for $i = 0, 1, 2, \ldots, k - 1$ is called a uniform k-folding if all the graphs in the sequence are singular or all of them are nonsingular. The largest k for which there exists a uniform k-folding of G is called fold thickness of G and it was first introduced in [Campeña, F. J. H.; Gervacio, S. V. On the fold thickness of graphs. Arab. J. Math. (Springer) 9 (2020), no. 2, 345–355]. In this paper, we determine fold thickness of $K_n \circ K_m$, $K_n + K_m$, cone graph and tadpole graph.

1. INTRODUCTION

The motivation for the concept of graph folding as defined by Gervacio et al. [7] is from the situation of folding a meter stick. Let a finite number of unit bars be joined together at ends in such a way that they are free to turn. There are some meter sticks with this structure as in Fig.1. This meter stick can be considered as a physical model of the path P_n on n vertices and can be folded to become a physical model of the complete graph K_2. It is a natural question to find the minimum fold of a graph, so the concept of fold thickness was introduced as follows.

Definition 1.1. [2] Let G be a graph that is not isomorphic to a complete graph. If x and y are nonadjacent vertices of G that have atleast one common neighbor, then identify x and y and reduce any resulting multiple edges to simple edges to form a new graph, G'. We call G', a 1-fold of G.

Definition 1.2. [2] Consider a sequence of graphs $G = G_0, G_1, G_2, \ldots, G_k$ where G_{i+1} is a 1-fold of G_i for $i = 0, 1, 2, \ldots, k - 1$. This sequence is called a k-folding of $G = G_0$.

Let $A(G_i)$ be the adjacency matrix of G_i. A graph G_i is singular if $A(G_i)$ is singular and nonsingular if $A(G_i)$ is nonsingular.

Definition 1.3. [2] A graph G is said to have a uniform k-folding if there is a k-folding in which all graphs in the sequence are singular or all of them are nonsingular. The largest integer k for which there exists a uniform k-folding of G is called fold thickness of G, and is denoted by fold(G).

Received: 11.12.2021. In revised form: 12.04.2022. Accepted: 17.04.2022
2010 Mathematics Subject Classification. 05C50, 05C76.
Key words and phrases. fold thickness, uniform folding, singular graphs.
Corresponding author: Reji T; rejiaran@gmail.com
If \(G = G_0, G_1, G_2, \ldots, G_k \) is a \(k \)-folding of \(G \), the graph \(G_k \) is referred as a \(k \)-fold of \(G \). The fold thickness of a graph was first defined by F. J. H. Campeña and S.V. Gervacio in [2] and evaluated fold thickness of some special classes of graphs such as wheel graph, cycle graph, bipartite graphs etc.

2. Preliminary results

In this paper \(K_n, P_n \) and \(C_n \) denotes the complete graph, path and cycle graph on \(n \) vertices respectively. The empty graph \(\overline{K}_n \) is the graph with \(n \) vertices and zero edges or it is the complement of complete graph, \(K_n \). \(V(G) \) and \(E(G) \) denotes the vertex set and edge set respectively of a graph \(G \). \(\chi(G) \) denotes the vertex chromatic number of \(G \). For any vertex \(x \) in a graph \(G \), \(N(x) \) is the set of all vertices \(y \) in \(G \) that are adjacent to \(x \) and is called the neighbor set of \(x \). Let \(G_1, G_2, \ldots, G_n \) be the components of \(G \). Label the vertices of \(G \) by labelling the vertices of \(G_1 \), then the vertices of \(G_2 \) and so on. The adjacency matrix of \(G \), \(A(G) \) is a block diagonal matrix,

\[
A(G) = \begin{bmatrix}
A(G_1) & 0 & \cdots & 0 \\
0 & A(G_2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A(G_n)
\end{bmatrix}
\]

Thus, the determinant of the adjacency matrix, \(\det A(G) = \prod_{i=1}^{n} \det A(G_i) \).

The corona product [4] \(G \odot H \) of two graphs \(G \) and \(H \) is defined as the graph obtained by taking one copy of \(G \) and \(|V(G)| \) copies of \(H \) and joining by an edge each vertex from the \(i \)-th copy of \(H \) with the \(i \)-th vertex of \(G \).

The sum of two vertex disjoint graphs \(G \) and \(H \) denoted by \(G+H \) is the graph consisting of \(G \) and \(H \) and all edges of the form \(xy \), where \(x \) is a vertex of \(G \) and \(y \) is a vertex of \(H \).

An \(m \)-gonal \(n \)-cone graph, \(C_{m,n} \) is the graph join \(C_m + \overline{K}_n \), where \(C_m \) is a cycle graph and \(\overline{K}_n \) is an empty graph (the graph complement of the complete graph \(K_n \)).

The \((m, n)\)-tadpole graph, also called a dragon graph or kite graph is the graph obtained by joining a cycle \(C_m \) to a path \(P_n \) with a bridge.

Theorem 2.1. [3] Let \(G \) be a simple connected graph. The smallest complete graph that \(G \) folds into is the complete graph with order \(\chi(G) \), where \(\chi(G) \) denotes the chromatic number of \(G \).

Thus, a maximum folding of a graph \(G \) on \(n \) vertices or simply a max fold of \(G \) is defined to be a \(k \)-folding of \(G \), where \(k = n - \chi(G) \).

Theorem 2.2. [6] If \(x \) and \(y \) are vertices in a graph \(G \) such that \(N(x) = N(y) \), then \(G \) is singular.

Theorem 2.3. [6] For each \(n \geq 1 \), \(\det A(K_n) = (-1)^{n-1}(n-1) \).

Theorem 2.4. [6] Let \(x \) and \(y \) be vertices in a graph \(G \) such that \(N(x) \subseteq N(y) \). If \(G' \) is the graph obtained from \(G \) by deleting all the edges of the form \(yz \), where \(z \) is a neighbor of \(x \), then \(\det A(G) = \det A(G') \).

The following theorem gives an upper bound for the fold thickness of graphs.

Theorem 2.5. [2] For any connected graph \(G \) of order \(n \),

\[
\text{fold}(G) \leq \begin{cases}
\chi(G) & \text{if } G \text{ is nonsingular,} \\
\chi(G) - 1 & \text{if } G \text{ is singular.}
\end{cases}
\]
Remark 2.1. In view of the above theorem, if there exists a uniform \(k \)-folding of a connected graph \(G \) where \(k \) is equal to the upper bound in the theorem, then \(k \) must be the fold thickness of the graph. This observation will be used to obtain the fold thickness of most of the graphs.

Theorem 2.6. [2] For each integer \(n \geq 1 \),

\[
\det A(P_n) = \begin{cases}
0 & \text{if } n \text{ is odd}, \\
(-1)^{n/2} & \text{if } n \text{ is even}.
\end{cases}
\]

Theorem 2.7. [2] For each integer \(n \geq 3 \),

\[
\det A(C_n) = \begin{cases}
0 & \text{if } n \equiv 0 \pmod{4}, \\
2 & \text{if } n \equiv 1 \text{ or } 3 \pmod{4}, \\
-4 & \text{if } n \equiv 2 \pmod{4}.
\end{cases}
\]

Theorem 2.8. [2] The path \(P_n \) has fold thickness given by,

\[
\text{fold} (P_n) = \begin{cases}
0 & \text{if } n \text{ is even} \\
\max\{0, n-3\} & \text{if } n \text{ is odd}.
\end{cases}
\]

Theorem 2.9. [2] The cycle \(C_n \), has fold thickness given by

\[
\text{fold} (C_n) = \begin{cases}
0 & \text{if } n \equiv 2 \pmod{4}, \\
n-3 & \text{otherwise}.
\end{cases}
\]

3. Fold Thickness of Some Classes of Graphs

3.1. Corona Product, \(K_n \odot \overline{K_m} \). In this section we evaluate the fold thickness of corona product, \(K_n \odot \overline{K_m} \) of complete graph \(K_n \) and an empty graph \(\overline{K_m} \), \(m \geq 2 \). The vertices of the graph \(K_n \odot \overline{K_m} \) is labelled as follows: let \(v_1, v_2, \ldots v_n \) be the vertices of \(K_n \) and let \(u_{i1}, u_{i2}, \ldots u_{im} \) be the pendant vertices adjacent to the \(i \)-th vertex \(v_i \) of \(K_n \) for \(i = 1, 2, \ldots n \).

Theorem 3.10. If \(m \geq 2 \), then the fold thickness of \(K_n \odot \overline{K_m} \) is given by,

\[
\text{fold} (K_n \odot \overline{K_m}) = mn - 2.
\]

Proof. The graph \(K_n \odot \overline{K_m}, m \geq 2 \) is singular, since the vertices \(u_{ij} \) and \(u_{ik} \), where \(i \in \{1, 2, \ldots n\}, j, k \in \{1, 2, \ldots m\} \) has common neighbor \(v_i \). Therefore, by Theorem 2.5,

\[
\text{fold} (K_n \odot \overline{K_m}) \leq (m + 1)n - \chi(K_n \odot \overline{K_m}) - 1 = (m + 1)n - \chi(K_n) - 1 = mn - 1.
\]

For \(i = 1, 2, \ldots n - 1 \), first identify the pendant vertices \(u_{i1}, u_{i2}, \ldots u_{im} \) to a single vertex and then identify it with an eligible vertex of \(K_n \). Thus, a uniform \(m(n - 1) \)-folding \(G_0 = K_n \odot \overline{K_m}, G_1, \ldots G_{m(n-1)} \) is obtained in which every graph in the sequence is singular and \(G_{m(n-1)} \) is the graph \(K_n \) plus \(m - 1 \) pendant vertices \(u_{n1}, u_{n2}, \ldots u_{nm} \) adjacent to the vertex \(v_n \). Next, identify the vertices \(u_{n2}, u_{n3}, \ldots u_{nm} \) of \(G_{m(n-1)} \) one by one to obtain a graph \(G' \) which is \(K_n \) plus two pendant vertices adjacent to the vertex \(v_n \). Thus, a uniform \((m - 2) \)-folding of \(G_{m(n-1)} \) is obtained in which each graph is singular. If the two pendant vertices of \(G' \) are identified, then we obtain a nonsingular graph which is \(K_n \) plus one pendant vertex adjacent to one of its vertices. Thus, \(\text{fold} (K_n \odot \overline{K_m}) = m(n - 1) + m - 2 = mn - 2 \). \(\square \)
3.2. Sum graph, \(K_n + \overline{K_m}\). In this section, we evaluate the fold thickness of sum of \(K_n\) and \(\overline{K_m}\). Let \(u_1, u_2, \ldots, u_n\) be the vertices of \(K_n\) and \(v_1, v_2, \ldots, v_m\) be the vertices of \(\overline{K_m}\).

Theorem 3.11. If \(m \geq 2\), then the fold thickness of \(K_n + \overline{K_m}\) is given by,

\[
\text{fold}(K_n + \overline{K_m}) = m - 2.
\]

Proof. The graph \(K_n + \overline{K_m}\), \(m \geq 2\) is singular since, for any two vertices \(x\) and \(y\) in \(V(\overline{K_m})\), \(N(x) = N(y) = V(K_n)\). Note that \(\chi(K_n + \overline{K_m}) = \chi(K_n) + 1 = n + 1\). By Theorem 2.5, \(\text{fold}(K_n + \overline{K_m}) \leq m + n - \chi(K_n + \overline{K_m}) - 1 = m + n - (n + 1) - 1 = m - 2\). Identify the vertices \(v_2, v_3, \ldots, v_m\) to a single vertex. So, a uniform \(m - 2\)-folding \(G_0 = K_n + \overline{K_m}, G_1, \ldots, G_{m-2}\) is obtained in which the last graph \(G_{m-2}\) is isomorphic to the graph \(K_n + \overline{K_2}\). If the vertices of \(\overline{K_2}\) are identified, then a complete graph on \(n + 1\) vertices is obtained and is nonsingular. Hence, \(\text{fold}(K_n + \overline{K_m}) = m - 2\).

3.3. Cone graph, \(C_{m,n}\). In this section, we determine the fold thickness of cone graph \(C_{m,n}\). \(C_{m,1}\) is the wheel graph and its fold thickness is studied in [2]. Hence, fold thickness for the case \(n \geq 2\) is evaluated in this section.

Theorem 3.12. For \(m \geq 3\) and \(n \geq 2\), the fold thickness of cone graph \(C_{m,n}\) is given by,

\[
\text{fold}(C_{m,n}) = \begin{cases}
m + n - 5 & \text{if } m \text{ is odd} \\
m + n - 4 & \text{if } m \text{ is even}. \end{cases}
\]

Proof. By definition of cone graph, if \(x, y \in V(\overline{K_n})\), \(N(x) = N(y) = V(C_m)\). Hence, by Theorem 2.2, \(C_{m,n}, n \geq 2\) is singular. Clearly, \(\chi(C_{m,n}) = \chi(C_m) + 1\). So, \(\chi(C_{m,n}) = 3\), if \(m\) is even and \(\chi(C_{m,n}) = 4\), if \(m\) is odd. Since \(N(x) = N(y)\) for any pair of vertices \(x\) and \(y\) in \(V(\overline{K_n})\), folding \(C_m\) in any manner keeps \(C_{m,n}\) singular. So, we have to find the maximum folding of \(C_m\).

Case 1: \(m\) is odd.

By Theorem 2.5, \(\text{fold}(C_{m,n}) \leq m + n - 4 - 1 = m + n - 5\). Since \(\chi(C_m) = 3\), there exists an \((m - 3)\)-maximum folding of \(C_m\), by Theorem 2.1. After these \((m - 3)\) foldings, \(C_m\) becomes \(K_3\) and \(C_{m,n}\) becomes \(K_3 + \overline{K_n}\), a singular graph. Fold \(K_3 + \overline{K_n}\) by identifying any two vertices in \(\overline{K_n}\). Continue this process \((n - 2)\) times until there remains exactly two vertices in \(\overline{K_n}\). The graph now obtained is \(K_3 + \overline{K_2}\). In this \((n - 2)\)-folding, all graphs are singular. If the remaining two vertices of \(\overline{K_2}\) in \(K_3 + \overline{K_2}\) are identified, we obtain the graph \(K_3 + K_1\), which is the complete graph \(K_4\) and is nonsingular. So, the maximum folding of \(K_3 + \overline{K_n}\) in which all graphs are singular is \((n - 2)\). Hence, an \((m - 3) + (n - 2) = (m + n - 5)\)-uniform folding of \(C_{m,n}\) is obtained. Consequently, \(\text{fold}(C_{m,n}) = m + n - 5\).

Case 2: \(m\) is even.

By Theorem 2.5, \(\text{fold}(C_{m,n}) \leq m + n - 3 - 1 = m + n - 4\). There exists an \((m - 2)\)-maximum folding of \(C_m\), since \(\chi(C_m) = 2\). After these \((m - 2)\) foldings, \(C_m\) becomes \(K_2\) and \(C_{m,n}\) becomes \(K_2 + \overline{K_n}\), a singular graph. Similarly, fold \(K_2 + \overline{K_n}\) as in the above case, \((n - 2)\) times by identifying vertices of \(\overline{K_n}\) until the singular graph \(K_2 + \overline{K_2}\) is obtained. All graphs in this \((n - 2)\)-folding are singular. If the remaining two vertices in \(\overline{K_2}\) of \(K_2 + \overline{K_2}\) are identified, then we obtain \(K_2 + K_1\), which is the complete graph \(K_3\) and is nonsingular. Thus, maximum folding of \(K_2 + \overline{K_n}\) in which all graphs are singular is \((n - 2)\). Hence, an \((m - 2) + (n - 2) = (m + n - 4)\)-uniform folding of \(C_{m,n}\) is obtained. So, \(\text{fold}(C_m) = m + n - 4\).
An example of the folding process for the case $m = 4$ and $n = 3$ is shown in Fig.2. Two vertices having distinct colors cannot be identified, since they are adjacent. We can observe that \(\text{fold}(C_{4,3}) = 3 \).

3.4. Tadpole graph.

Here, we evaluate the fold thickness of the tadpole graph \(T_{m,n} \).

Lemma 3.1. For $m \geq 3$ and $n \geq 1$,

\[
\det A(T_{m,n}) = \begin{cases}
(-1)^{(n-1)/2} \det A(P_{m+1}) & \text{if } n \text{ is odd} \\
(-1)^{n/2} \det A(C_m) & \text{if } n \text{ is even}
\end{cases}
\]

Proof. Let x, y and z be vertices of $T_{m,n}$, where x is the pendant vertex, y is the unique neighbor of x and z is a vertex adjacent to y. In $T_{m,1}$, apply Theorem 2.4 and remove the edge yz to obtain the graph P_{m+1}. Hence, $\det A(T_{m,1}) = \det A(P_{m+1})$. Similarly, in $T_{m,2}$, the edge yz can be removed to obtain a disconnected graph with two components, K_2 and C_m such that $\det A(T_{m,2}) = \det A(K_2) \det A(C_m) = (-1) \det A(C_m)$. If $n \geq 3$, by Theorem 2.4, we get $\det A(T_{m,n}) = \det A(T_{m,n-2}) \det A(K_2)$. Then, by applying mathematical induction on n, we can conclude that $\det A(T_{m,n}) = (-1)^{(n-1)/2} \det A(P_{m+1})$ if n is odd and $\det A(T_{m,n}) = (-1)^{n/2} \det A(C_m)$ if n is even. \(\square\)

Remark 3.2. By above lemma, we can observe that, if m is odd, $T_{m,n}$ is nonsingular for all $n \geq 1$. If $m \equiv 0 \pmod{4}$, $T_{m,n}$ is singular for all $n \geq 1$. If $m \equiv 2 \pmod{4}$, $T_{m,n}$ is singular for odd n and nonsingular for even n.

Theorem 3.13. For $m \geq 3$ and $n \geq 1$,

\[
\text{fold}(T_{m,n}) = \begin{cases}
0 & \text{if } m \equiv 2 \pmod{4} \text{ and } n \text{ is even} \\
m + n - 3 & \text{otherwise}
\end{cases}
\]
Proof. The chromatic number of $T_{m,n}$ and C_m are the same. So, $\chi(T_{m,n}) = 2$, if m is even and $\chi(T_{m,n}) = 3$, if m is odd.

Case 1: m is odd.

By Lemma 3.1, $T_{m,n}$ is non-singular for $n \geq 1$. Therefore, by Theorem 2.5, $\text{fold}(T_{m,n}) \leq m + n - 3$. Consider the n-uniform folding G_0, G_1, \ldots, G_n of $T_{m,n}$, where G_{i+1} is a 1-fold of G_i for $i = 1, 2, \ldots, n - 1$, obtained by identifying the pendant vertex of G_i with an eligible vertex. Each graph G_i, $i = 1, 2, \ldots, n - 1$ is nonsingular by Lemma 3.1 and G_n is the cycle C_m. Since $\text{fold}(C_m) = m - 3$, an $n + (m - 3) = (m + n - 3)$-uniform folding of $T_{m,n}$ is obtained in which all graphs are nonsingular. Thus, $\text{fold}(T_{m,n}) = m + n - 3$.

Case 2: $m \equiv 0 \pmod{4}$

Here, $T_{m,n}$, $n \geq 1$ is singular. So, by Theorem 2.5, $\text{fold}(T_{m,n}) \leq m + n - 2 - 1 = m + n - 3$. Fold this graph n times as in the above case by identifying the pendant vertex with the eligible vertex on each step. Then, we obtain an n-uniform folding G_0, G_1, \ldots, G_n, where G_n is C_m. By Lemma 3.1, each graph in this sequence is singular. Since $\text{fold}(C_m) = m - 3$, we get an $(m + n - 3)$-uniform folding of $T_{m,n}$ and hence $\text{fold}(T_{m,n}) = m + n - 3$.

Case 3: $m \equiv 2 \pmod{4}$

By Lemma 3.1, the graph $T_{m,n}$ is singular if n is odd and nonsingular if n is even.

If n is odd, $\text{fold}(T_{m,n}) \leq m + n - 2 - 1 = m + n - 3$ by Theorem 2.5. Fold the graph $T_{m,n}$ once as in Fig 3 to obtain the graph $T_{m-2,n+1}$. Since, $m - 2 \equiv 0 \pmod{4}$, the graph $T_{m-2,n+1}$ is singular. From Case 2, $\text{fold}(T_{m-2,n+1}) = (m - 2) + (n + 1) - 3 = m + n - 4$. Therefore, we get a $1 + (m + n - 4) = m + n - 3$ - uniform folding of $T_{m,n}$. Hence, $\text{fold}(T_{m,n}) = m + n - 3$.

![Figure 3](image-url) A uniform 1-fold of $T_{m,n}$ when $m \equiv 2 \pmod{4}$ and n is odd.

When n is even, obtain a 1-fold of $T_{m,n}$ by identifying two eligible vertices. There are three possibilities. Both vertices are in $V(P_n)$, one is in $V(P_n)$ and other is in $V(C_m)$ or both are in $V(C_m)$. In any case, one of the following graphs are obtained: (1) A graph which has at least two distinct vertices having a common neighbor (2) A graph, after applying Theorem 2.4 sufficient number of times by taking x as the pendant vertex and y as a vertex adjacent to the unique neighbor of x, leads to a disconnected graph in which one component is $T_{m,1}$ (3) A graph, after applying Theorem 2.4 sufficient number of times by taking x as the pendant vertex and y as a vertex adjacent to the unique neighbor of x, leads to a disconnected graph in which one component has at least two distinct vertices having a common neighbor. By Theorem 2.2 and Remark 3.2, all these graphs are singular. This implies that, any 1-fold of $T_{m,n}$ is a singular graph. Hence, $\text{fold}(T_{m,n}) = 0$. □
The m-pan graph is the graph obtained by joining a cycle graph C_m to K_1 with a bridge and hence it is isomorphic to the $(m, 1)$-tadpole graph.

Corollary 3.1. The fold thickness of m-pan graph is given by $\text{fold}(T_{m,1}) = m - 2$.

Proof. The m-pan graph is the special case of tadpole graph $T_{m,n}$ when $n = 1$. By Theorem 3.13, the conclusion follows easily. \qed

4. Conclusion

In this paper, we have determined the fold thickness of $K_n \odot \overline{K_m}, K_n + \overline{K_m}$, cone graph and tadpole graph. It can be extended to various classes of graphs such as product graphs, bipartite graphs and in general to any incomplete graph. This also gives a lot of problems for further research such as characterizing graphs with fold thickness as a parameter.

References

