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Fold thickness of some classes of graphs

REJI THANKACHAN and VAISHNAVI SIDHARTHAN

ABSTRACT. A 1-fold of G is the graph G′ obtained from a graph G by identifying two nonadjacent vertices in
G having at least one common neighbor and reducing the resulting multiple edges to simple edges. A sequence
of graphs G = G0, G1, G2, . . . , Gk , where Gi+1 is a 1-fold of Gi for i = 0, 1, 2, . . . , k − 1 is called a uniform
k-folding if all the graphs in the sequence are singular or all of them are nonsingular. The largest k for which
there exists a uniform k- folding of G is called fold thickness of G and it was first introduced in [Campeña, F.
J. H.; Gervacio, S. V. On the fold thickness of graphs. Arab, J. Math. (Springer) 9 (2020), no. 2, 345–355]. In this
paper, we determine fold thickness of Kn ⊙Km, Kn +Km, cone graph and tadpole graph.

1. INTRODUCTION

The motivation for the concept of graph folding as defined by Gervacio et al. [7] is from
the situation of folding a meter stick. Let a finite number of unit bars be joined together
at ends in such a way that they are free to turn. There are some meter sticks with this
structure as in Fig.1. This meter stick can be considered as a physical model of the path
Pn on n vertices and can be folded to become a physical model of the complete graph
K2. It is a natural question to find the minimum fold of a graph, so the concept of fold
thickness was introduced as follows.

FIGURE 1. Meter stick - Folded and unfolded

Definition 1.1. [2] Let G be a graph that is not isomorphic to a complete graph. If x and y
are nonadjacent vertices of G that have atleast one common neighbor, then identify x and
y and reduce any resulting multiple edges to simple edges to form a new graph, G′. We
call G′, a 1-fold of G.

Definition 1.2. [2] Consider a sequence of graphs G = G0, G1, G2, . . . , Gk where Gi+1 is a
1-fold of Gi for i = 0, 1, 2, . . . , k − 1. This sequence is called a k- folding of G = G0.

Let A (Gi) be the adjacency matrix of Gi. A graph Gi is singular if A (Gi) is singular
and nonsingular if A (Gi) is nonsingular.

Definition 1.3. [2] A graph G is said to have a uniform k - folding if there is a k- folding in
which all graphs in the sequence are singular or all of them are nonsingular. The largest
integer k for which there exists a uniform k - folding of G is called fold thickness of G, and
is denoted by fold (G).
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If G = G0, G1, G2, . . . , Gk is a k-folding of G, the graph Gk is referred as a k-fold of G.
The fold thickness of a graph was first defined by F. J. H. Campeña and S.V. Gervacio in [2]
and evaluated fold thickness of some special classes of graphs such as wheel graph, cycle
graph, bipartite graphs etc.

2. PRELIMINARY RESULTS

In this paper Kn, Pn and Cn denotes the complete graph, path and cycle graph on n

vertices respectively. The empty graph Kn is the graph with n vertices and zero edges or
it is the complement of complete graph, Kn. V (G) and E(G) denotes the vertex set and
edge set respectively of a graph G. χ (G) denotes the vertex chromatic number of G. For
any vertex x in a graph G, N(x) is the set of all vertices y in G that are adjacent to x and is
called the neighbor set of x. Let G1, G2, . . . , Gn be the components of G. Label the vertices
of G by labelling the vertices of G1, then the vertices of G2 and so on. The adjacency
matrix of G, A(G) is a block diagonal matrix,

A(G) =


A(G1) 0 · · · 0

0 A(G2) · · · 0
...

...
. . .

...
0 0 · · · A(Gn)


Thus, the determinant of the adjacency matrix, detA(G) =

n∏
i=1

detA(Gi) .

The corona product [4] G ⊙H of two graphs G and H is defined as the graph obtained
by taking one copy of G and |V (G)| copies of H and joining by an edge each vertex from
the ith-copy of H with the ith-vertex of G.

The sum of two vertex disjoint graphs G and H denoted by G+H is the graph consisting
of G and H and all edges of the form xy, where x is a vertex of G and y is a vertex of H .

An m-gonal n-cone graph, Cm,n is the graph join Cm + Kn, where Cm is a cycle graph
and Kn is an empty graph (the graph complement of the complete graph Kn).

The (m,n)− tadpole graph, also called a dragon graph or kite graph is the graph obtained
by joining a cycle Cm to a path Pn with a bridge.

Theorem 2.1. [3] Let G be a simple connected graph. The smallest complete graph that G folds
into is the complete graph with order χ(G), where χ(G) denotes the chromatic number of G.

Thus, a maximum folding of a graph G on n vertices or simply a max fold of G is
defined to be a k-folding of G, where k = n− χ(G).

Theorem 2.2. [6] If x and y are vertices in a graph G such that N(x) = N(y), then G is
singular.

Theorem 2.3. [6] For each n ≥ 1, detA(Kn) = (−1)n−1(n− 1).

Theorem 2.4. [6] Let x and y be vertices in a graph G such that N(x) ⊆ N(y). If G′ is the
graph obtained from G by deleting all the edges of the form yz, where z is a neighbor of x, then
detA(G) = detA(G′).

The following theorem gives an upper bound for the fold thickness of graphs.

Theorem 2.5. [2] For any connected graph G of order n,

fold(G) ≤

{
n− χ(G) if G is nonsingular,

n− χ(G)− 1 if G is singular .
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Remark 2.1. In view of the above theorem, if there exists a uniform k-folding of a con-
nected graph G where k is equal to the upper bound in the theorem, then k must be the
fold thickness of the graph. This observation will be used to obtain the fold thickness of
most of the graphs.

Theorem 2.6. [2] For each integer n ≥ 1,

detA(Pn) =

{
0 if n is odd,

(−1)n/2 if n is even.

Theorem 2.7. [2] For each integer n ≥ 3,

detA(Cn) =


0 if n ≡ 0 (mod 4),

2 if n ≡ 1 or 3 (mod 4),

−4 if n ≡ 2 (mod 4).

Theorem 2.8. [2] The path Pn has fold thickness given by,

fold (Pn) =

{
0 if n is even

max{0, n− 3} if n is odd.

Theorem 2.9. [2] The cycle Cn, has fold thickness given by

fold (Cn) =

{
0 if n ≡ 2 (mod4),

n− 3 otherwise.

3. FOLD THICKNESS OF SOME CLASSES OF GRAPHS

3.1. Corona product, Kn ⊙ Km. In this section we evaluate the fold thickness of corona
product, Kn ⊙ Km of complete graph Kn and an empty graph Km, m ≥ 2. The vertices
of the graph Kn ⊙Km is labelled as follows : let v1, v2, . . . vn be the vertices of Kn and let
ui1, ui2, . . . uim be the pendant vertices adjacent to the ith vertex vi of Kn for i = 1, 2, . . . n.

Theorem 3.10. If m ≥ 2, then the fold thickness of Kn ⊙Km is given by,

fold (Kn ⊙Km) = mn− 2 .

Proof. The graph Kn ⊙ Km, m ≥ 2 is singular, since the vertices uij and uik, where
i ∈ {1, 2, . . . n}, j, k ∈ {1, 2, . . .m} has common neighbor vi. Therefore, by Theorem 2.5,
fold (Kn ⊙ Km) ≤ (m + 1)n − χ(Kn ⊙ Km) − 1 = (m + 1)n − χ(Kn) − 1 = mn − 1.
For i = 1, 2, . . . n − 1, first identify the pendant vertices ui1, ui2, . . . uim to a single vertex
and then identify it with an eligible vertex of Kn. Thus, a uniform m(n − 1)-folding
G0 = Kn ⊙ Km, G1, . . . Gm(n−1) is obtained in which every graph in the sequence is
singular and Gm(n−1) is the graph Kn plus m − 1 pendant vertices un1, un2, . . . unm ad-
jacent to the vertex vn. Next, identify the vertices un2, un3, . . . unm of Gm(n−1) one by
one to obtain a graph G′ which is Kn plus two pendant vertices adjacent to the ver-
tex vn. Thus, a uniform (m − 2)-folding of Gm(n−1) is obtained in which each graph
is singular. If the two pendant vertices of G′ are identified, then we obtain a nonsin-
gular graph which is Kn plus one pendant vertex adjacent to one of its vertices. Thus,
fold (Kn ⊙Km) = m(n− 1) +m− 2 = mn− 2. □
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3.2. Sum graph, Kn + Km. In this section, we evaluate the fold thickness of sum of Kn

and Km, Kn +Km. Let u1, u2, . . . un be the vertices of Kn and v1, v2, . . . vm be the vertices
of Km.

Theorem 3.11. If m ≥ 2, then the fold thickness of Kn +Km is given by,

fold (Kn +Km) = m− 2.

Proof. The graph Kn+Km, m ≥ 2 is singular since, for any two vertices x and y in V (Km),
N(x) = N(y) = V (Kn). Note that χ(Kn + Km) = χ(Kn) + 1 = n + 1. By Theorem 2.5,
fold (Kn+Km) ≤ m+n−χ(Kn+Km)−1 = m+n−(n+1)−1 = m−2. Identify the vertices
v2, v3, . . . vm to a single vertex. So, a uniform m− 2 - folding G0 = Kn +Km, G1, . . . Gm−2

is obtained in which the last graph Gm−2 is isomorphic to the graph Kn + K2. If the
vertices of K2 are identified, then a complete graph on n + 1 vertices is obtained and is
nonsingular. Hence, fold (Kn +Km) = m− 2. □

3.3. Cone graph, Cm,n. In this section, we determine the fold thickness of cone graph
Cm,n. Cm,1 is the wheel graph and its fold thickness is studied in [2]. Hence, fold thickness
for the case n ≥ 2 is evaluated in this section.

Theorem 3.12. For m ≥ 3 and n ≥ 2, the fold thickness of cone graph Cm,n is given by,

fold (Cm,n) =

{
m+ n− 5 if m is odd

m+ n− 4 if m is even.

Proof. By definition of cone graph, if x, y ∈ V (Kn), N(x) = N(y) = V (Cm). Hence, by
Theorem 2.2, Cm,n, n ≥ 2 is singular. Clearly, χ(Cm,n) = χ(Cm) + 1. So, χ(Cm,n) = 3,
if m is even and χ(Cm,n) = 4, if m is odd. Since N(x) = N(y) for any pair of vertices x

and y in V (Kn), folding Cm in any manner keeps Cm,n singular. So, we have to find the
maximum folding of Cm.
Case 1 : m is odd.

By Theorem 2.5, fold(Cm,n) ≤ m+n−4−1 = m+n−5. Since χ (Cm) = 3, there exists
an (m − 3)- maximum folding of Cm, by Theorem 2.1. After these (m − 3) foldings, Cm

becomes K3 and Cm,n becomes K3 +Kn, a singular graph. Fold K3 +Kn by identifying
any two vertices of Kn. Continue this process (n−2) times until there remains exactly two
vertices in Kn. The graph now obtained is K3 +K2. In this (n− 2)-folding, all graphs are
singular. If the remaining two vertices of K2 in K3+K2 are identified, we obtain the graph
K3+K1, which is the complete graph K4 and is nonsingular. So, the maximum folding of
K3+Kn in which all graphs are singular is (n−2). Hence, an (m−3)+(n−2) = (m+n−5)-
uniform folding of Cm,n is obtained. Consequently, fold(Cm,n) = m+ n− 5.
Case 2 : m is even.

By Theorem 2.5, fold(Cm,n) ≤ m + n − 3 − 1 = m + n − 4. There exists an (m − 2)-
maximum folding of Cm, since χ (Cm) = 2. After these (m− 2) foldings, Cm becomes K2

and Cm,n becomes K2+Kn, a singular graph. Similarly, fold K2+Kn as in the above case,
(n − 2) times by identifying vertices of Kn until the singular graph K2 +K2 is obtained.
All graphs in this (n − 2)- folding are singular. If the remaining two vertices in K2 of
K2 + K2 are identified, then we obtain K2 + K1, which is the complete graph K3 and
is nonsingular. Thus, maximum folding of K2 + Kn in which all graphs are singular is
(n− 2). Hence, an (m− 2) + (n− 2) = (m+ n− 4)- uniform folding of Cm,n is obtained.
So, fold(Cm) = m+ n− 4. □
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FIGURE 2. Folding process of the cone graph C4,3

An example of the folding process for the case m = 4 and n = 3 is shown in Fig.2.
Two vertices having distinct colors cannot be identified, since they are adjacent. We can
observe that fold(C4,3) = 3.

3.4. Tadpole graph. Here, we evaluate the fold thickness of the tadpole graph Tm,n.

Lemma 3.1. For m ≥ 3 and n ≥ 1,

det A(Tm,n) =

{
(−1)(n−1)/2 detA(Pm+1) if n is odd

(−1)n/2 detA(Cm) if n is even.

Proof. Let x, y and z be vertices of Tm,n, where x is the pendant vertex, y is the unique
neighbor of x and z is a vertex adjacent to y. In Tm,1, apply Theorem 2.4 and remove the
edge yz to obtain the graph Pm+1. Hence, detA(Tm,1) = detA(Pm+1). Similarly, in Tm,2,
the edge yz can be removed to obtain a disconnected graph with two components, K2 and
Cm such that detA(Tm,2) = detA(K2)detA(Cm) = (−1)detA(Cm). If n ≥ 3, by Theo-
rem 2.4, we get detA(Tm,n) = detA(Tm,n−2) detA(K2). Then, by applying mathematical
induction on n, we can conclude that detA(Tm,n) = (−1)(n−1)/2 detA(Pm+1) if n is odd
and det A(Tm,n) = (−1)n/2 detA(Cm) if n is even. □

Remark 3.2. By above lemma, we can observe that, if m is odd, Tm,n is nonsingular for all
n ≥ 1. If m ≡ 0 (mod 4), Tm,n is singular for all n ≥ 1. If m ≡ 2 (mod 4), Tm,n is singular
for odd n and nonsingular for even n.

Theorem 3.13. For m ≥ 3 and n ≥ 1,

fold (Tm,n) =

{
0 if m ≡ 2 (mod 4) and n is even

m+ n− 3 otherwise.
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Proof. The chromatic number of Tm,n and Cm are the same. So, χ (Tm,n) = 2, if m is even
and χ (Tm,n) = 3, if m is odd.
Case 1 : m is odd.

By Lemma 3.1, Tm,n is non-singular for n ≥ 1. Therefore, by Theorem 2.5, fold (Tm,n) ≤
m+n−3. Consider the n-uniform folding G0, G1, . . . , Gn of Tm,n, where Gi+1 is a 1- fold
of Gi for i = 1, 2, . . . , n − 1, obtained by identifying the pendant vertex of Gi with an
eligible vertex. Each graph Gi , i = 1, 2, . . . , n− 1 is nonsingular by Lemma 3.1 and Gn is
the cycle Cm. Since fold (Cm) = m− 3, an n+ (m− 3) = (m+ n− 3)- uniform folding of
Tm,n is obtained in which all graphs are nonsingular. Thus, fold (Tm,n) = m+ n− 3.
Case 2 : m ≡ 0 (mod 4)

Here, Tm,n, n ≥ 1 is singular. So, by Theorem 2.5, fold (Tm,n) ≤ m+n−2−1 = m+n−3.
Fold this graph n times as in the above case by identifying the pendant vertex with the
eligible vertex on each step. Then, we obtain an n- uniform folding G0, G1, . . . , Gn, where
Gn is Cm. By Lemma 3.1, each graph in this sequence is singular. Since fold (Cm) = m−3,
we get an (m+ n− 3)- uniform folding of Tm,n and hence fold (Tm,n) = m+ n− 3.
Case 3 : m ≡ 2 (mod 4)

By Lemma 3.1, the graph Tm,n is singular if n is odd and nonsingular if n is even.
If n is odd, fold (Tm,n) ≤ m + n − 2 − 1 = m + n − 3 by Theorem 2.5. Fold the graph

Tm,n once as in Fig 3 to obtain the graph Tm−2,n+1. Since, m − 2 ≡ 0 (mod 4), the graph
Tm−2,n+1 is singular. From Case 2, fold (Tm−2,n+1) = (m− 2) + (n+ 1)− 3 = m+ n− 4.
Therefore, we get a 1 + (m + n − 4) = m + n − 3 - uniform folding of Tm,n. Hence,
fold (Tm,n) = m+ n− 3 .

G0 = Tm,n Tm−2,n+1

FIGURE 3. A uniform 1-fold of Tm,n when m ≡ 2 (mod 4) and n is odd.

When n is even, obtain a 1-fold of Tm,n by identifying two eligible vertices. There are
three possibilities. Both vertices are in V (Pn), one is in V (Pn) and other is in V (Cm) or
both are in V (Cm). In any case, one of the following graphs are obtained: (1) A graph
which has at least two distinct vertices having a common neighbor (2) A graph, after
applying Theorem 2.4 sufficient number of times by taking x as the pendant vertex and y
as a vertex adjacent to the unique neighbor of x, leads to a disconnected graph in which
one component is Tm,1 (3) A graph, after applying Theorem 2.4 sufficient number of times
by taking x as the pendant vertex and y as a vertex adjacent to the unique neighbor of x,
leads to a disconnected graph in which one component has at least two distinct vertices
having a common neighbor. By Theorem 2.2 and Remark 3.2, all these graphs are singular.
This implies that, any 1-fold of Tm,n is a singular graph. Hence, fold (Tm,n) = 0. □
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The m- pan graph is the graph obtained by joining a cycle graph Cm to K1 with a bridge
and hence it is isomorphic to the (m, 1)- tadpole graph.

Corollary 3.1. The fold thickness of m - pan graph is given by fold (Tm,1) = m− 2.

Proof. The m- pan graph is the special case of tadpole graph Tm,n when n = 1. By Theorem
3.13, the conclusion follows easily. □

4. CONCLUSION

In this paper, we have determined the fold thickness of Kn⊙Km, Kn+Km, cone graph
and tadpole graph. It can be extended to various classes of graphs such as product graphs,
bipartite graphs and in general to any incomplete graph. This also gives a lot of problems
for further research such as characterizing graphs with fold thickness as a parameter.
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