CREAT. MATH. INFORM. Volume **31** (2022), No. 2, Pages 259 - 265 Online version at https://semnul.com/creative-mathematics/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2022.02.11

Fold thickness of some classes of graphs

REJI THANKACHAN and VAISHNAVI SIDHARTHAN

ABSTRACT. A 1-fold of *G* is the graph *G'* obtained from a graph *G* by identifying two nonadjacent vertices in *G* having at least one common neighbor and reducing the resulting multiple edges to simple edges. A sequence of graphs $G = G_0, G_1, G_2, \ldots, G_k$, where G_{i+1} is a 1-fold of G_i for $i = 0, 1, 2, \ldots, k-1$ is called a uniform *k*-folding if all the graphs in the sequence are singular or all of them are nonsingular. The largest *k* for which there exists a uniform *k*- folding of *G* is called fold thickness of *G* and it was first introduced in [Campeña, F. J. H.; Gervacio, S. V. On the fold thickness of graphs. *Arab, J. Math. (Springer)* **9** (2020), no. 2, 345–355]. In this paper, we determine fold thickness of $K_n \odot \overline{K_m}, K_n + \overline{K_m}$, cone graph and tadpole graph.

1. INTRODUCTION

The motivation for the concept of graph folding as defined by Gervacio et al. [7] is from the situation of folding a meter stick. Let a finite number of unit bars be joined together at ends in such a way that they are free to turn. There are some meter sticks with this structure as in Fig.1. This meter stick can be considered as a physical model of the path P_n on n vertices and can be folded to become a physical model of the complete graph K_2 . It is a natural question to find the minimum fold of a graph, so the concept of fold thickness was introduced as follows.

FIGURE 1. Meter stick - Folded and unfolded

Definition 1.1. [2] Let *G* be a graph that is not isomorphic to a complete graph. If x and y are nonadjacent vertices of *G* that have atleast one common neighbor, then identify x and y and reduce any resulting multiple edges to simple edges to form a new graph, *G'*. We call *G'*, a 1-fold of *G*.

Definition 1.2. [2] Consider a sequence of graphs $G = G_0, G_1, G_2, \ldots, G_k$ where G_{i+1} is a 1-fold of G_i for $i = 0, 1, 2, \ldots, k - 1$. This sequence is called a k-folding of $G = G_0$.

Let $\mathcal{A}(G_i)$ be the adjacency matrix of G_i . A graph G_i is singular if $\mathcal{A}(G_i)$ is singular and nonsingular if $\mathcal{A}(G_i)$ is nonsingular.

Definition 1.3. [2] A graph *G* is said to have a uniform k - folding if there is a k- folding in which all graphs in the sequence are singular or all of them are nonsingular. The largest integer k for which there exists a uniform k - folding of *G* is called *fold thickness* of *G*, and is denoted by **fold** (*G*).

Received: 11.12.2021. In revised form: 12.04.2022. Accepted: 17.04.2022

²⁰¹⁰ Mathematics Subject Classification. 05C50, 05C76.

Key words and phrases. fold thickness, uniform folding, singular graphs.

Corresponding author: Reji T.; rejiaran@gmail.com

If $G = G_0, G_1, G_2, \ldots, G_k$ is a *k*-folding of *G*, the graph G_k is referred as a *k*-fold of *G*. The *fold thickness* of a graph was first defined by F. J. H. Campeña and S.V. Gervacio in [2] and evaluated fold thickness of some special classes of graphs such as wheel graph, cycle graph, bipartite graphs etc.

2. PRELIMINARY RESULTS

In this paper K_n , P_n and C_n denotes the complete graph, path and cycle graph on n vertices respectively. The empty graph $\overline{K_n}$ is the graph with n vertices and zero edges or it is the complement of complete graph, K_n . V(G) and E(G) denotes the vertex set and edge set respectively of a graph G. $\chi(G)$ denotes the vertex chromatic number of G. For any vertex x in a graph G, N(x) is the set of all vertices y in G that are adjacent to x and is called the *neighbor set of* x. Let G_1, G_2, \ldots, G_n be the components of G. Label the vertices of G by labelling the vertices of G_1 , then the vertices of G_2 and so on. The adjacency matrix of G, $\mathcal{A}(G)$ is a block diagonal matrix,

$$\mathcal{A}(G) = \begin{bmatrix} \mathcal{A}(G_1) & 0 & \cdots & 0 \\ 0 & \mathcal{A}(G_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{A}(G_n) \end{bmatrix}$$

Thus, the determinant of the adjacency matrix, $\det \mathcal{A}(G) = \prod_{i=1}^{n} \det \mathcal{A}(G_i)$.

The *corona product* [4] $G \odot H$ of two graphs G and H is defined as the graph obtained by taking one copy of G and |V(G)| copies of H and joining by an edge each vertex from the *i*th-copy of H with the *i*th-vertex of G.

The *sum* of two vertex disjoint graphs G and H denoted by G+H is the graph consisting of G and H and all edges of the form xy, where x is a vertex of G and y is a vertex of H.

An *m*-gonal *n*-cone graph, $C_{m,n}$ is the graph join $C_m + \overline{K_n}$, where C_m is a cycle graph and $\overline{K_n}$ is an empty graph (the graph complement of the complete graph K_n).

The (m, n) – *tadpole graph*, also called a dragon graph or kite graph is the graph obtained by joining a cycle C_m to a path P_n with a bridge.

Theorem 2.1. [3] Let G be a simple connected graph. The smallest complete graph that G folds into is the complete graph with order $\chi(G)$, where $\chi(G)$ denotes the chromatic number of G.

Thus, a maximum folding of a graph *G* on *n* vertices or simply a max fold of *G* is defined to be a *k*-folding of *G*, where $k = n - \chi(G)$.

Theorem 2.2. [6] If x and y are vertices in a graph G such that N(x) = N(y), then G is singular.

Theorem 2.3. [6] For each $n \ge 1$, det $\mathcal{A}(K_n) = (-1)^{n-1}(n-1)$.

Theorem 2.4. [6] Let x and y be vertices in a graph G such that $N(x) \subseteq N(y)$. If G' is the graph obtained from G by deleting all the edges of the form yz, where z is a neighbor of x, then $\det \mathcal{A}(G) = \det \mathcal{A}(G')$.

The following theorem gives an upper bound for the fold thickness of graphs.

Theorem 2.5. [2] For any connected graph G of order n,

 $\mathbf{fold}(G) \leq \begin{cases} n-\chi(G) & \quad if \ G \ is \ nonsingular, \\ n-\chi(G)-1 & \quad if \ G \ is \ singular \ . \end{cases}$

Remark 2.1. In view of the above theorem, if there exists a uniform k-folding of a connected graph G where k is equal to the upper bound in the theorem, then k must be the fold thickness of the graph. This observation will be used to obtain the fold thickness of most of the graphs.

Theorem 2.6. [2] For each integer $n \ge 1$,

$$\det \mathcal{A}(P_n) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ (-1)^{n/2} & \text{if } n \text{ is even.} \end{cases}$$

Theorem 2.7. [2] For each integer $n \ge 3$,

$$\det \mathcal{A}(C_n) = \begin{cases} 0 & \text{if } n \equiv 0 \pmod{4}, \\ 2 & \text{if } n \equiv 1 \text{ or } 3 \pmod{4}, \\ -4 & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Theorem 2.8. [2] The path P_n has fold thickness given by,

$$\mathbf{fold}\left(P_n\right) = \begin{cases} 0 & \text{if } n \text{ is even} \\ \max\{0, n-3\} & \text{if } n \text{ is odd.} \end{cases}$$

Theorem 2.9. [2] The cycle C_n , has fold thickness given by

$$\mathbf{fold}\left(C_{n}\right) = \begin{cases} 0 & \text{ if } n \equiv 2 \; (\mathrm{mod}4), \\ n-3 & \text{ otherwise.} \end{cases}$$

3. FOLD THICKNESS OF SOME CLASSES OF GRAPHS

3.1. **Corona product**, $K_n \odot \overline{K_m}$. In this section we evaluate the fold thickness of corona product, $K_n \odot \overline{K_m}$ of complete graph K_n and an empty graph $\overline{K_m}$, $m \ge 2$. The vertices of the graph $K_n \odot \overline{K_m}$ is labelled as follows : let $v_1, v_2, \ldots v_n$ be the vertices of K_n and let $u_{i1}, u_{i2}, \ldots u_{im}$ be the pendant vertices adjacent to the *i*th vertex v_i of K_n for $i = 1, 2, \ldots n$.

Theorem 3.10. If $m \ge 2$, then the fold thickness of $K_n \odot \overline{K_m}$ is given by,

fold
$$(K_n \odot \overline{K_m}) = mn - 2$$
.

Proof. The graph $K_n \odot \overline{K_m}$, $m \ge 2$ is singular, since the vertices u_{ij} and u_{ik} , where $i \in \{1, 2, \ldots n\}$, $j, k \in \{1, 2, \ldots m\}$ has common neighbor v_i . Therefore, by Theorem 2.5, fold $(K_n \odot \overline{K_m}) \le (m+1)n - \chi(K_n \odot \overline{K_m}) - 1 = (m+1)n - \chi(K_n) - 1 = mn - 1$. For $i = 1, 2, \ldots n - 1$, first identify the pendant vertices $u_{i1}, u_{i2}, \ldots u_{im}$ to a single vertex and then identify it with an eligible vertex of K_n . Thus, a uniform m(n-1)-folding $G_0 = K_n \odot \overline{K_m}, G_1, \ldots G_{m(n-1)}$ is obtained in which every graph in the sequence is singular and $G_{m(n-1)}$ is the graph K_n plus m-1 pendant vertices $u_{n1}, u_{n2}, \ldots u_{nm}$ adjacent to the vertex v_n . Next, identify the vertices $u_{n2}, u_{n3}, \ldots u_{nm}$ of $G_{m(n-1)}$ one by one to obtain a graph G' which is K_n plus two pendant vertices adjacent to the vertex v_n . Thus, a uniform (m-2)-folding of $G_{m(n-1)}$ is obtained in which each graph is singular. If the two pendant vertices of G' are identified, then we obtain a nonsingular graph which is K_n plus one pendant vertex adjacent to one of its vertices. Thus, fold $(K_n \odot \overline{K_m}) = m(n-1) + m - 2 = mn - 2$.

3.2. Sum graph, $K_n + \overline{K_m}$. In this section, we evaluate the fold thickness of sum of K_n and $\overline{K_m}$, $K_n + \overline{K_m}$. Let $u_1, u_2, \ldots u_n$ be the vertices of K_n and $v_1, v_2, \ldots v_m$ be the vertices of $\overline{K_m}$.

Theorem 3.11. If $m \ge 2$, then the fold thickness of $K_n + \overline{K_m}$ is given by,

fold
$$(K_n + \overline{K_m}) = m - 2$$
.

Proof. The graph $K_n + \overline{K_m}$, $m \ge 2$ is singular since, for any two vertices x and y in $V(\overline{K_m})$, $N(x) = N(y) = V(K_n)$. Note that $\chi(K_n + \overline{K_m}) = \chi(K_n) + 1 = n + 1$. By Theorem 2.5, fold $(K_n + \overline{K_m}) \le m + n - \chi(K_n + \overline{K_m}) - 1 = m + n - (n+1) - 1 = m - 2$. Identify the vertices $v_2, v_3, \ldots v_m$ to a single vertex. So, a uniform m - 2 - folding $G_0 = K_n + \overline{K_m}, G_1, \ldots G_{m-2}$ is obtained in which the last graph G_{m-2} is isomorphic to the graph $K_n + \overline{K_2}$. If the vertices of $\overline{K_2}$ are identified, then a complete graph on n + 1 vertices is obtained and is nonsingular. Hence, fold $(K_n + \overline{K_m}) = m - 2$.

3.3. **Cone graph**, $C_{m,n}$. In this section, we determine the fold thickness of cone graph $C_{m,n}$. $C_{m,1}$ is the wheel graph and its fold thickness is studied in [2]. Hence, fold thickness for the case $n \ge 2$ is evaluated in this section.

Theorem 3.12. For $m \ge 3$ and $n \ge 2$, the fold thickness of cone graph $C_{m,n}$ is given by,

$$\mathbf{fold}\left(C_{m,n}\right) = \begin{cases} m+n-5 & \text{if } m \text{ is odd} \\ m+n-4 & \text{if } m \text{ is even.} \end{cases}$$

Proof. By definition of cone graph, if $x, y \in V(\overline{K_n})$, $N(x) = N(y) = V(C_m)$. Hence, by Theorem 2.2, $C_{m,n}$, $n \ge 2$ is singular. Clearly, $\chi(C_{m,n}) = \chi(C_m) + 1$. So, $\chi(C_{m,n}) = 3$, if m is even and $\chi(C_{m,n}) = 4$, if m is odd. Since N(x) = N(y) for any pair of vertices x and y in $V(\overline{K_n})$, folding C_m in any manner keeps $C_{m,n}$ singular. So, we have to find the maximum folding of C_m .

Case 1 : *m* is odd.

By Theorem 2.5, $\operatorname{fold}(C_{m,n}) \leq m+n-4-1 = m+n-5$. Since $\chi(C_m) = 3$, there exists an (m-3)- maximum folding of C_m , by Theorem 2.1. After these (m-3) foldings, C_m becomes K_3 and $C_{m,n}$ becomes $K_3 + \overline{K_n}$, a singular graph. Fold $K_3 + \overline{K_n}$ by identifying any two vertices of $\overline{K_n}$. Continue this process (n-2) times until there remains exactly two vertices in $\overline{K_n}$. The graph now obtained is $K_3 + \overline{K_2}$. In this (n-2)-folding, all graphs are singular. If the remaining two vertices of $\overline{K_2}$ in $K_3 + \overline{K_2}$ are identified, we obtain the graph $K_3 + K_1$, which is the complete graph K_4 and is nonsingular. So, the maximum folding of $K_3 + \overline{K_n}$ in which all graphs are singular is (n-2). Hence, an (m-3) + (n-2) = (m+n-5)uniform folding of $C_{m,n}$ is obtained. Consequently, $\operatorname{fold}(C_{m,n}) = m + n - 5$. **Case 2** : *m* is even.

By Theorem 2.5, $\mathbf{fold}(C_{m,n}) \leq m + n - 3 - 1 = m + n - 4$. There exists an (m - 2)-maximum folding of C_m , since $\chi(C_m) = 2$. After these (m - 2) foldings, C_m becomes K_2 and $C_{m,n}$ becomes $K_2 + \overline{K_n}$, a singular graph. Similarly, fold $K_2 + \overline{K_n}$ as in the above case, (n - 2) times by identifying vertices of $\overline{K_n}$ until the singular graph $K_2 + \overline{K_2}$ is obtained. All graphs in this (n - 2)- folding are singular. If the remaining two vertices in $\overline{K_2}$ of $K_2 + \overline{K_2}$ are identified, then we obtain $K_2 + K_1$, which is the complete graph K_3 and is nonsingular. Thus, maximum folding of $K_2 + \overline{K_n}$ in which all graphs are singular is (n - 2). Hence, an (m - 2) + (n - 2) = (m + n - 4)- uniform folding of $C_{m,n}$ is obtained. So, $\mathbf{fold}(C_m) = m + n - 4$.

FIGURE 2. Folding process of the cone graph $C_{4,3}$

An example of the folding process for the case m = 4 and n = 3 is shown in Fig.2. Two vertices having distinct colors cannot be identified, since they are adjacent. We can observe that $fold(C_{4,3}) = 3$.

3.4. **Tadpole graph.** Here, we evaluate the fold thickness of the tadpole graph $T_{m,n}$.

Lemma 3.1. For $m \ge 3$ and $n \ge 1$,

$$\det \mathcal{A}(T_{m,n}) = \begin{cases} (-1)^{(n-1)/2} \det \mathcal{A}(P_{m+1}) & \text{if } n \text{ is odd} \\ (-1)^{n/2} \det \mathcal{A}(C_m) & \text{if } n \text{ is even.} \end{cases}$$

Proof. Let x, y and z be vertices of $T_{m,n}$, where x is the pendant vertex, y is the unique neighbor of x and z is a vertex adjacent to y. In $T_{m,1}$, apply Theorem 2.4 and remove the edge yz to obtain the graph P_{m+1} . Hence, det $\mathcal{A}(T_{m,1}) = \det \mathcal{A}(P_{m+1})$. Similarly, in $T_{m,2}$, the edge yz can be removed to obtain a disconnected graph with two components, K_2 and C_m such that det $\mathcal{A}(T_{m,2}) = \det \mathcal{A}(K_2) \det \mathcal{A}(C_m) = (-1) \det \mathcal{A}(C_m)$. If $n \ge 3$, by Theorem 2.4, we get det $\mathcal{A}(T_{m,n}) = \det \mathcal{A}(T_{m,n-2}) \det \mathcal{A}(K_2)$. Then, by applying mathematical induction on n, we can conclude that det $\mathcal{A}(T_{m,n}) = (-1)^{(n-1)/2} \det \mathcal{A}(P_{m+1})$ if n is odd and det $\mathcal{A}(T_{m,n}) = (-1)^{n/2} \det \mathcal{A}(C_m)$ if n is even.

Remark 3.2. By above lemma, we can observe that, if *m* is odd, $T_{m,n}$ is nonsingular for all $n \ge 1$. If $m \equiv 0 \pmod{4}$, $T_{m,n}$ is singular for all $n \ge 1$. If $m \equiv 2 \pmod{4}$, $T_{m,n}$ is singular for odd *n* and nonsingular for even *n*.

Theorem 3.13. For $m \ge 3$ and $n \ge 1$,

$$\mathbf{fold} (T_{m,n}) = \begin{cases} 0 & \text{if } m \equiv 2 \pmod{4} \text{ and } n \text{ is even} \\ m+n-3 & \text{otherwise.} \end{cases}$$

Proof. The chromatic number of $T_{m,n}$ and C_m are the same. So, $\chi(T_{m,n}) = 2$, if m is even and $\chi(T_{m,n}) = 3$, if m is odd.

Case 1 : *m* is odd.

By Lemma 3.1, $T_{m,n}$ is non-singular for $n \ge 1$. Therefore, by Theorem 2.5, fold $(T_{m,n}) \le m+n-3$. Consider the *n*-uniform folding G_0, G_1, \ldots, G_n of $T_{m,n}$, where G_{i+1} is a 1- fold of G_i for $i = 1, 2, \ldots, n-1$, obtained by identifying the pendant vertex of G_i with an eligible vertex. Each graph $G_i, i = 1, 2, \ldots, n-1$ is nonsingular by Lemma 3.1 and G_n is the cycle C_m . Since fold $(C_m) = m-3$, an n + (m-3) = (m+n-3)- uniform folding of $T_{m,n}$ is obtained in which all graphs are nonsingular. Thus, fold $(T_{m,n}) = m + n - 3$. Case 2: $m \equiv 0 \pmod{4}$

Here, $T_{m,n}$, $n \ge 1$ is singular. So, by Theorem 2.5, fold $(T_{m,n}) \le m+n-2-1 = m+n-3$. Fold this graph n times as in the above case by identifying the pendant vertex with the eligible vertex on each step. Then, we obtain an n- uniform folding G_0 , G_1 , ..., G_n , where G_n is C_m . By Lemma 3.1, each graph in this sequence is singular. Since fold $(C_m) = m-3$, we get an (m + n - 3)- uniform folding of $T_{m,n}$ and hence fold $(T_{m,n}) = m + n - 3$. **Case 3**: $m \equiv 2 \pmod{4}$

By Lemma 3.1, the graph $T_{m,n}$ is singular if *n* is odd and nonsingular if *n* is even.

If n is odd, fold $(T_{m,n}) \leq m+n-2-1 = m+n-3$ by Theorem 2.5. Fold the graph $T_{m,n}$ once as in Fig 3 to obtain the graph $T_{m-2,n+1}$. Since, $m-2 \equiv 0 \pmod{4}$, the graph $T_{m-2,n+1}$ is singular. From Case 2, fold $(T_{m-2,n+1}) = (m-2) + (n+1) - 3 = m+n-4$. Therefore, we get a 1 + (m+n-4) = m+n-3 - uniform folding of $T_{m,n}$. Hence, fold $(T_{m,n}) = m+n-3$.

FIGURE 3. A uniform 1-fold of $T_{m,n}$ when $m \equiv 2 \pmod{4}$ and n is odd.

When *n* is even, obtain a 1-fold of $T_{m,n}$ by identifying two eligible vertices. There are three possibilities. Both vertices are in $V(P_n)$, one is in $V(P_n)$ and other is in $V(C_m)$ or both are in $V(C_m)$. In any case, one of the following graphs are obtained: (1) A graph which has at least two distinct vertices having a common neighbor (2) A graph, after applying Theorem 2.4 sufficient number of times by taking *x* as the pendant vertex and *y* as a vertex adjacent to the unique neighbor of *x*, leads to a disconnected graph in which one component is $T_{m,1}$ (3) A graph, after applying Theorem 2.4 sufficient number of times by taking *x* as the pendant vertex and *y* as a vertex adjacent to the unique neighbor of *x*, leads to a disconnected graph in which one component has at least two distinct vertices having a common neighbor. By Theorem 2.2 and Remark 3.2, all these graphs are singular. This implies that, any 1-fold of $T_{m,n}$ is a singular graph. Hence, fold $(T_{m,n}) = 0$. The *m*- pan graph is the graph obtained by joining a cycle graph C_m to K_1 with a bridge and hence it is isomorphic to the (m, 1)- tadpole graph.

Corollary 3.1. The fold thickness of m - pan graph is given by fold $(T_{m,1}) = m - 2$.

Proof. The *m*- pan graph is the special case of tadpole graph $T_{m,n}$ when n = 1. By Theorem 3.13, the conclusion follows easily.

4. CONCLUSION

In this paper, we have determined the fold thickness of $K_n \odot \overline{K_m}$, $K_n + \overline{K_m}$, cone graph and tadpole graph. It can be extended to various classes of graphs such as product graphs, bipartite graphs and in general to any incomplete graph. This also gives a lot of problems for further research such as characterizing graphs with fold thickness as a parameter.

REFERENCES

- Barik, S.; Pati, S.; Sarma, B. K. The spectrum of the corona of two graphs. SIAM J. Discrete Math., 21 (2007), no. 1, 47–56.
- [2] Campeña, F. J. H.; Gervacio, S. V. On the fold thickness of graphs. Arab, J. Math. (Springer) 9 (2020), no. 2, 345–355.
- [3] Cook, Curtis R.; Anthony, B. Evans. Graph folding. in: Proceedings of the 10th southern conference on combinatorics. *Graph Theory and Computing*, vol 23–24 of Congressional Numerical, (1979), 305–314.
- [4] Frucht, R.; Harary, F. On the corona of two graphs. Aequationes Math. 4 (1970), 322–325.
- [5] Gervacio, S. V. Singularity of graphs in some special classes. Trans. Natl. Acad. Sci. Technol 13 (1991), 367–373.
- [6] Gervacio, S. V. Trees with diameter less than 5 and non-singular complement. Discrete Mathematics, 151 (1996), no. (1-3), 91–97.
- [7] Gervacio, S. V.; Guerrero, R. C.; Rara, H. M. Folding wheels and fans. Graphs and Combinatorics. 18 (2002), no. 4, 731–737.
- [8] Harary, F. Graph Theory. Addison-Wesley Publishing Company Inc, Massachusetts (1969).
- [9] Harary, F.; Gordon, W. Boolean operations on graphs. Math. Scand. (1967), 41-51.
- [10] Harary, F. The determinant of the adjacency matrix of a graph. Siam Review 4 (1962), no. 3, 202–210.

DEPARTMENT OF MATHEMATICS GOVERNMENT COLLEGE, CHITTUR PALAKKAD, KERALA, INDIA-678104 *Email address*: rejiaran@gmail.com

DEPARTMENT OF MATHEMATICS SREE NARAYANA COLLEGE, ALATHUR PALAKKAD, KERALA, INDIA-678682 *Email address*: vaishnavisvaishu@gmail.com