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An algorithm for automorphisms of infinite dimensional
Grassmann algebras

NAZAN AKDOĞAN

ABSTRACT. Let G be the infinite dimensional Grassmann algebra. In this study, we determine a subgroup
of the automorphism group Aut(G) of the algebra G which is of an importance in the description of the group
Aut(G). We give an infinite generating set for this subgroup and suggest an algorithm which shows how to
express each automorphism as compositions of generating elements.

1. INTRODUCTION

Let K be a field of characteristic zero and let Am be the free unitary associative alge-
bra of rank m generated by f1, . . . , fm. Then the m-generated Grassmann algebra Gm is
defined as the factor algebra Am/Im such that Im is the ideal of Gm generated by all ele-
ments of the form fifj + fjfi, 1 ≤ i, j ≤ m. We see that Gm is generated by ei = fi + Im,
i = 1, . . . ,m. Clearly the Grassmann algebra Gm is of the canonical basis elements of the
form

ei1 · · · eik , i1 ≤ · · · ≤ ik, k = 1, . . . ,m

and 1. Note that eiej = −ejei for all i, j = 1, . . . ,m, since e2
i = 0 as a consequence of

characteristic of K. The algebra Gm satisfies the identity

[[x, y], z] = (xy − yx)z − z(xy − yx) = 0 (1.1)

for all x, y, z ∈ Gm. In particular one has ad2(x) = 0 for x ∈ Gm.
The Grassmann algebra has become an important tool in many fields of mathematics

as well as physics. One may see the book by Bourbaki [5] for a background. Working on
the automorphism group of a given algebra has always become a remarkable approach
in order to recognize and characterize the algebra. One of the works about the group of
automorphisms of the Grassmann algebra is done by Berezin. Let Um be the group of
linear automorphisms and let Bm be the group of automorphisms of the form T (ep) =
ep + fp(e1, · · · , em), where fp does not have a linear component. Berezin [4] determined
the group of automorphisms of Gm as the semidirect product of the subgroups Bm and
Um when K is the field of complex numbers. Djoković [6] showed that when charK 6= 2,
the group of automorphisms of Gm can be written as the semidirect product of the group
of inner automorphisms of Gm and the subgroup of Aut(Gm) which preserves the Z2-
grading of Gm. The description of the automorphism group Aut(Gm) of the Grassmann
algebra Gm can be explicitly found in the literature (see e.g. Laszlo [9]).

Theorem 1.1. The group Aut(Gm) of K-automorphisms of Gm is isomorphic to a semidirect
product of those three subgroups.

Aut(Gm) = Inn(Gm) o Av o Glm(K)
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where
i) Glm(K) is the group of automorphisms sending ei to a linear combination of e1, . . . , em such

that the determinant of the coefficients is nonzero,
ii) Inn(Gm) is the group of inner automorphisms of Gm. Each automorphism in this class is of

the form 1 + adx, where adx(ei) = [x, ei] = xei − eix,
iii) Av is the group of automorphisms sending ei to ei + vi such that vi is a linear combination of

monomials of odd length ≥ 3.

Bavula [1] showed that the group of automorphisms of Gm can be written similarly
when K is a commutative ring. In this study, following the results on the automorphism
group of Gm and extending the idea of the finite dimensional Grassmann algebra to the
infinite generated (or equivalently infinite dimensional) Grassmann algebra G over the
field K of characteristic zero, we give a class of automorphisms of G, which consists of a
subgroup H of the group Aut(G) of automorphisms of the Grassmann algebra G.

The group H corresponds to a subgroup of Av in the third class of Theorem 1.1 in the
setting of infinite generation, which can be considered as an important approach in the
description of the group Aut(G) of K-automorphisms of the Grassmann algebra G. In
this study, we suggest an algorithm which expresses each automorphism in H in terms
of automorphisms defined in a certain set. This is also to show that this set provides an
infinite list of generators for the group H .

2. PRELIMINARIES

Let K be a field of characteristic zero. Let A stand for the free unital associative K-
algebra generated by an infinite countable set F = {f1, f2, . . . }. We define the quotient
algebra

G = A/I

where I is the ideal of A generated by all elements of the form

fifj + fjfi, fi, fj ∈ F.

Then G is the infinite dimensional unitary Grassmann algebra generated by the set

E = {ej = fj + I : j = 1, 2, . . . }

over the field K. For each ei ∈ E, we have e2
i = 0 and G has the following canonical basis.

B = {ei1 · · · eik : k ≥ 1, i1 < · · · < ik} ∪ {1}.

The algebra G satisfies the identity [[x, y], z] = 0 for all x, y, z ∈ G. Hence, the Grassmann
algebraG is a PI-algebra. Krakowski and Regev [8] showed that the T -ideal of the infinite
dimensional unitary Grassmann algebra over a field of characteristic zero is generated by
[[x, y], z]. It is still valid in the case of positive characteristic by Giambruno and Koshlukov
[7]. The T -ideal of the infinite dimensional unitary Grassmann algebra over a finite field
is completely defined by Bekh-Ochir and Rankin [2]; moreover, they [2, 3] describe the
T -space of this algebra over a field of arbitrary characteristic .

Let G(0) be the subvector space of G consisting of linear combinations of monomials
of even length and let G(1) be the subvector space containing the linear combinations of
monomials of odd length. Then obviously G(0) is the center of G, and as a vector space

G = G(0) ⊕G(1).

This gives also a Z2-grading of the vector space G. It is straightforward to show that if

f : E −→ G
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is a function such that f(ei)f(ej)+f(ej)f(ei) = 0 for all ei, ej ∈ E, then f can be uniquely
extended to a homomorphism of the infinite dimensional Grassmann algebra G.

Now consider the augmentation ideal ω(G) of G consisting of elements p(e1, e2, . . . ) ∈
G such that p(0, 0, . . . ) = 0; i.e, if x ∈ ω(G) then

x =
∑

cjyj , yj ∈ B\{1}, cj ∈ K,

such that only a finite number of cj ’s are nonzero. Let φ be an automorphism of G. Then
we have following observation: φ(1) = 1 and φ(ei) ∈ ω(G) for each ei ∈ E. Since
[[x, y], z] = 0 is an identity for G, we naturally obtain by identity (1.1) that ad2x = 0,
x ∈ G, and the map defined as

(exp(adx))(y) = (1 + adx)(y) = ψx(y) = y + [x, y], y ∈ G

for a fixed x ∈ G, is an automorphism called inner automorphism. Note that ψx+y = ψxψy ,
and the set

Inn(G) = {ψx : x ∈ G}
is an abelian group called the inner automorphism group. Thus, the question on other
automorphism classes arises naturally. Let x be an element in G(1) ∩ ω3(G); i.e., the linear
combination of the monomials of odd length at least 3, and let us define the map fx :
E −→ G such that fx(ei) = ei + x. Then

fx(ei)fx(ej) + fx(ej)fx(ei) = (eiej + ejei) + (eix+ xei) + (ejx+ xej) + 2x2 = 0.

Hence fx can be extended uniquely to a K-homomorphism φx : G −→ G. In particular,
the inverse of φx is φ−x, when x is a monomial. In the sequel we give some technical
lemmas which are to be utilized in the main results.

Lemma 2.1. Let x, y ∈ G(1) ∩ ω3(G). Then φxφy = φx+φx(y).

Proof. φxφy(ei) = φx(ei + y) = ei + x + φx(y) = φx+φx(y)(ei). Note that x + φx(y) ∈
G(1) ∩ ω3(G). �

Now let us define some notations. Let y = βej1 · · · ej2n+1
be a monomial inG(1)∩ω3(G),

β ∈ K. We define y(i) = (−1)i+1βej1 · · · eji−1
eji+1

· · · ej2n+1
for i = 1, . . . , n, and ȳ =

y(1) + · · · + y(2n+1). As a consequence of this notation we have that yȳ = 0 and y(i)ȳ = 0

for i = 1, . . . , n. Additionally, by easy computations φx(ȳ) = ȳ for all x ∈ G(1) ∩ ω3(G).

Lemma 2.2. Let x ∈ G(1) ∩ω3(G) be an element and let y ∈ G(1) ∩ω3(G) be a monomial. Then

φx(y) = y + xȳ.

Proof. Let y = βej1 · · · ej2n+1 . Using the fact that xn = 0, n ≥ 2, we have

φx(y) = β(ej1 + x)(ej2 + x) · · · (ej2n+1 + x)

= βej1 · · · ej2n+1
+ x(βej2ej3 · · · ej2n+1

+ · · ·+ βej1 · · · ej2n)

= y + x(y(1) + · · ·+ y(2n+1))

= y + xȳ

�

The proof of following lemma is straightforward.

Lemma 2.3. Let x1, . . . , xk, xk+1 ∈ G(1) ∩ ω3(G) be monomials. If φx1+···+xk is an automor-
phism, then

φ−1
x1+···+xk(xk+1) = xk+1 −Xx̄k+1
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where

X =x1 + · · ·+ xk − x1(x̄2 + · · ·+ x̄k)− · · · − xk(x̄1 + · · ·+ x̄k−1)

x1(x̄2x̄3 + · · ·+ x̄kx̄k−1) + · · ·+ xk(x̄1x̄2 + · · ·+ x̄k−1x̄k−2)

...

+ (−1)k−1x1(x̄2x̄3 · · · x̄k + · · ·+ x̄kx̄k−1 · · · x̄2) + · · ·

+ (−1)k−1xk(x̄1x̄2 · · · x̄k−1 + · · ·+ x̄k−1x̄k−2 · · · x̄1).

Let supp(x) be the set of generators appearing in the expression of a given monomial
x. For instance supp(x) = {ei1 , . . . , eik} if x = αei1 · · · eik for some α ∈ K.

Lemma 2.4. Let x, y ∈ G(1) ∩ ω3(G) be monomials such that |supp(x) ∩ supp(y)| ≥ 2. Then
φx(y) = y, and thus xȳ = 0.

Proof. Let y = βej1 · · · ej2n+1
. Then

φx(y) = β(ej1 + x)(ej2 + x) · · · (ej2n+1
+ x)

= βej1 · · · ej2n+1 + βx(ej2 · · · ej2n+1 − ej1ej3 · · · ej2n+1 + · · ·+ ej1 · · · ej2n)

= y

Hence xȳ = 0 by Lemma 2.2. �

As a consequence of Lemma 2.4 we obtain the following corollary.

Corollary 2.1. Let x1, . . . , xn, y ∈ G(1)∩ω3(G) be monomials such that |supp(xi)∩supp(y)| ≥
2 for each i = 1, . . . , n. Then φx1+···+xn(y) = y.

Lemma 2.5. Let x1, . . . , xn, y ∈ G(1)∩ω3(G) be monomials such that |supp(xi)∩supp(y)| ≥ 2,
for each i = 1, . . . , n. If φx1+···+xn is an automorphism, then φ−1

x1+···+xn(y) = y.

Proof. Let x = x1 + · · · + xn. By Corollary 2.1 we have φx(y) = y. Thus φ−1
x (φx(y)) =

φ−1
x (y). Finally, φ−1

x (y) = y. �

Lemma 2.6. Let x1, . . . , xn ∈ G(1) ∩ ω3(G) be monomials where n ≥ 2. Then

φ(−1)n−1x1x̄2···x̄n

is an automorphism. Furthermore,

φ(−1)n−1x1x̄2···x̄n = φ(−1)n−1x1(x2)(1)x̄3···x̄n . . . φ(−1)n−1x1(x2)(2t+1)x̄3···x̄n

where x̄2 = (x2)(1) + · · ·+ (x2)(2t+1).

Proof. We make induction on n. Let us check the statement of the lemma for n = 2. Let
x2 = v. Then

φ−x1x̄2
= φ−x1v̄

= φ−x1(v(1)+···+v(2t+1))

= φ−x1v(1)−···−x1v(2t+1)

= φ−x1v(1)+φ−x1v(1)φ
−1
−x1v(1)

(−x1v(2)−···−x1v(2t+1))

= φ−x1v(1)φφ−1
−x1v(1)

(−x1v(2)−···−x1v(2t+1))

= φ−x1v(1)φφx1v(1) (−x1v(2)−···−x1v(2t+1))

= φ−x1v(1)φ−φx1v(1) (x1v(2))−···−φx1v(1) (x1v(2t+1)).
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Since |supp(w1v(1))∩supp(w1vi)| ≥ 2 for i = 2, . . . , 2t+1, by Lemma 2.4 we have φ−x1x̄2
=

φ−x1v(1)φ−x1v(2)−···−x1v(2t+1)
. Similarly, by easy computations after 2t-steps we get that

φ−x1x̄2 = φ−x1v(1)φ−x1v(2) . . . φ−x1v(2t+1)
.

We know that −x1v(l) is a monomial for l = 1, . . . , 2t + 1, and φ−x1vl is an automor-
phism. Therefore, φ−x1x̄2

is an automorphism as being a composition of automorphisms.
Assume that the statement hold for n = k; i.e., φ(−1)k−1x1x̄2···x̄k be an automorphism

and φ(−1)k−1x1x̄2···x̄k = φ(−1)k−1x1v(1)x̄3···x̄k . . . φ(−1)k−1x1v(2t+1)x̄3···x̄k by substituting x2 =

v. Now let us check the statement of lemma for n = k + 1. Let use the notation ξ(i, k) =
(−1)kx1v(i)x̄3 · · · x̄kx̄k+1, where i = 1, . . . , 2n+ 1, v̄ = v(1) + · · ·+ v(2t+1).

φ(−1)kx1x̄2x̄3···x̄kx̄k+1
=φ(−1)kx1v̄x̄3···x̄kx̄k+1

=φ(−1)kx1(v(1)+···+v(2t+1))x̄3···x̄kx̄k+1

=φ(−1)kx1v(1)x̄3···x̄kx̄k+1+···+(−1)kx1v(2t+1)x̄3···x̄kx̄k+1

=φξ(1,k)+···+ξ(2t+1,k)

=φ
ξ(1,k)+φξ(1,k)φ

−1
ξ(1,k)

(
ξ(2,k)+···+ξ(2t+1,k)

)
=φξ(1,k)φφ−1

ξ(1,k)

(
ξ(2,k)+···+ξ(2t+1,k)

).
Making use of Lemma 2.5 we have that

φ(−1)kx1x̄2x̄3···x̄kx̄k+1
= φξ(1,k)φξ(2,k)+···+ξ(2t+1,k).

Similarly, after 2t-steps we have that

φ(−1)kx1x̄2x̄3···x̄kx̄k+1
= φξ(1,k)φξ(2,k) · · ·φξ(2t+1,k)

= φ(−1)kx1v(1)x̄3···x̄kx̄k+1
· · ·φ(−1)kx1v(2t+1)x̄3···x̄kx̄k+1

.

φ(−1)kx1v(l)x̄3···x̄kx̄k+1
is an automorphism for l = 1, . . . , 2t + 1, because of induction hy-

pothesis, φ(−1)kx1x̄2···x̄kx̄k+1
is an automorphism being a composition of several automor-

phisms. Thus, the induction statement holds for all n ≥ 2. �

Lemma 2.7. Let x1, . . . , xn, y ∈ G(1) ∩ ω3(G) be monomials. Then

φ(x1+···+xn)ȳ = φx1ȳ · · ·φxnȳ.

Proof.

φ(x1+···+xn)ȳ = φx1ȳ+···+xnȳ = φx1ȳφφ−1
x1y

(x2ȳ+···+xnȳ)

By Lemma 2.5 we have φ(x1+···+xn)ȳ = φx1ȳφx2ȳ+···+xnȳ . Similarly, after n − 1 steps we
have that φ(x1+···+xn)ȳ = φx1ȳ · · ·φxnȳ . �

Lemma 2.8. Let x, y ∈ G(1) ∩ ω3(G) and let x, y be monomials. Then φx+y = φxφyφ−xȳ .

Proof. By Lemma 2.1 and Lemma 2.2 we obtain the followings:

φx+y = φx+φxφ
−1
x (y) = φxφφ−1

x (y) = φxφφ−x(y) = φxφy−xȳ = φxφy+φyφ
−1
y (−xȳ)

= φxφyφφ−1
y (−xȳ) = φxφyφφ−y(−xȳ) = φxφyφ−φ−y(x)φ−y(ȳ) = φxφyφ−(x−yx̄)ȳ

= φxφyφ−xȳ

�
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3. MAIN RESULTS

Theorem 3.2. Let xi, xj1 , . . . , xjk ∈ G(1)∩ω3(G) be monomials for i = 1, . . . , n, k = 1, . . . , n−
1, i 6= jk. The homomorphism φx1+···+xn can be expressed as a composition of automorphisms of
the form φxi , φxix̄j1 ···x̄jk .

Proof. We make induction on n. The statement of the theorem is clear for n = 2 by Lemma
2.8:

φx1+x2 = φx1φx2φ−x1x̄2 .

Assume that the statement hold for n = k. Now let us check the statement for n = k + 1.

φx1+···+xk+xk+1
= φx1+···+xk+φ(x1+···+xk)φ

−1
x1+···+xk

(xk+1)

= φx1+···+xkφφ−1
x1+···+xk

(xk+1)

By Lemma 2.3 we get that

φx1+···+xk+xk+1
= φx1+···+xkφxk+1−Xx̄k+1

= φx1+···+xkφxk+1
φ−φ−1

xk+1
(Xx̄k+1)

= φx1+···+xkφxk+1
φ−φ−xk+1

(Xx̄k+1)

where X is the same as in Lemma 2.3, and note that

φ−xk+1
(Xx̄k+1) = φ−xk+1

(X)x̄k+1 = (X + xk+1Y )x̄k+1 = Xx̄k+1

for some Y ∈ G(0). Hence φx1+···+xk+xk+1
= φx1+···+xkφxk+1

φ−Xx̄k+1
.

By Lemma 2.3 and Lemma 2.7 taking the structure of X into account, φ−Xx̄k+1
is a

composition of automorphism appearing in the statement of Lemma 2.6 which completes
the proof. �

Corollary 3.2. Let x ∈ G(1) ∩ ω3(G). Then

φx : ei −→ ei + x

is an automorphism.

Example 3.1. Let x = e1e2e3 + e1e4e5.

φe1e2e3+e1e4e5 = φe1e2e3+φe1e2e3φ
−1
e1e2e3

(e1e4e5) = φe1e2e3φφ−1
e1e2e3

(e1e4e5)

= φe1e2e3φφ−e1e2e3 (e1e4e5) = φe1e2e3φe1e4e5−e1e2e3(e1e4e5)

= φe1e2e3φe1e4e5+φe1e4e5φ
−1
e1e4e5

(−e1e2e3(e1e4e5))

= φe1e2e3φe1e4e5φφ−1
e1e4e5

(−e1e2e3(e1e4e5))

= φe1e2e3φe1e4e5φφ−e1e4e5 (−e1e2e3(e1e4e5))

= φe1e2e3φe1e4e5φφ−e1e4e5 (−e1e2e3)φ−e1e4e5 (e1e4e5))

= φe1e2e3φe1e4e5φ−(e1e2e3−e1e4e5(e1e2e3))(e1e4e5)

= φe1e2e3φe1e4e5φ−(e1e2e3)e1e4e5 = φe1e2e3φe1e4e5φ−e1e2e3e4e5
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φe1e2e3+e1e4e5(ei) = (φe1e2e3φe1e4e5φ−e1e2e3e4e5)(ei) = φe1e2e3(φe1e4e5(φ−e1e2e3e4e5(ei)))

= φe1e2e3(φe1e4e5(ei − e1e2e3e4e5))

= φe1e2e3(φe1e4e5(ei)− φe1e4e5(e1e2e3e4e5))

= φe1e2e3(ei + e1e4e5 − (e1e2e3e4e5 + e1e4e5(e1e2e3e4e5)))

= φe1e2e3(ei + e1e4e5 − e1e2e3e4e5)

= φe1e2e3(ei) + φe1e2e3(e1e4e5)− φe1e2e3(e1e2e3e4e5)

= ei+ e1e2e3+ e1e4e5+ e1e2e3(e1e4e5)− e1e2e3e4e5 − e1e2e3(e1e2e3e4e5)

= ei + e1e2e3 + e1e4e5 + e1e2e3e4e5 − e1e2e3e4e5 = ei + e1e2e3 + e1e4e5

Remark 3.1. Note that, the inverse of an automorphism of the form φx and the compo-
sition φxφy of two automorphisms φx and φy indicated in Corollary 3.2 are of the same
form by Lemma 2.1 and Theorem 3.2. Thus, we have the following result.

Corollary 3.3. The set H of automorphisms of the form φx, x ∈ G(1) ∩ ω3(G) forms a subgroup
of Aut(G). Furthermore, the group H is generated by the infinite set

{φx | x ∈ G(1) ∩ ω3(G) is monomial}.

4. CONCLUSIONS

In this paper, a special subgroup H of the group Aut(G) of automorphisms of the infi-
nite dimensional Grassmann algebra G is characterized, similar to the subgroup Av of the
group of automorphisms Aut(Gm) as indicated in Theorem 1.1. We also give an infinite
generating set for the subgroup H , suggesting a canonical way to express an arbitrary
automorphism in H in terms of the generating elements.

The next step of the main result of this paper might be the determination of the auto-
morphisms of the form φ : ei → ei + xi, for each nonnecessarily equal xi ∈ G(1) ∩ ω3(G),
i ≥ 1. This will solve an important component of the group Aut(G). A special case of
these automorphisms was suggested by Vesselin Drensky in the next theorem.

Theorem 4.3. An endomorphism φ of the form

φ : ei → ei + xi , xi ∈ G(1)
m ∩ ω3(G) ⊂ G

is an automorphism of G.

Proof. Consider the triangular automorphism of G

τx(ei) = ei , i = 1, . . . ,m,

τx(ei) = ei + xi , i = m+ 1,m+ 2, . . . ,

with inverse automorphism τ−x. Then

τ−xφ(ei) = ei + xi , i = 1, . . . ,m,

τ−xφ(ei) = ei , i = m+ 1,m+ 2, . . . ,

Clearly, τ−xφ sends Gm to Gm and is an automorphism of Gm if and only if its restric-
tion on Gm is an automorphism of Gm. But this holds in virtue of the known results on
automorphisms of Gm; i.e, its restriction is an element of Av . �
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