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Fixed point results of R-Enriched Interpolative Kannan
pair in R-convex metric spaces

MUJAHID ABBAS, RIZWAN ANJUM and SHAKEELA RIASAT

ABSTRACT. The purpose of this paper is to introduce the class of R-enriched interpolative Kannan pair and
proved a common fixed point result in the context of R-complete convex metric spaces. Some examples are
presented to support the concepts introduced herein. Moreover, we study the well-posedness, limit shadowing
property and Ulam-Hyers stability of the mappings introduced herein. Our result extend and generalize several
comparable results in the existing literature.

1. INTRODUCTION AND PRELIMINARIES

The study of the existence and approximation of the solutions of nonlinear functional
equations such as differential equations, integral equations, integro-differential equations
is always been a source of great interest for mathematicians. Fixed point theory plays a
vital role in this aspect. The problem of finding the solutions of a functional equation can
be shifted to finding the fixed point of a suitable mapping defined on a set endowed with
a certain structure, that is, finding the solution of the fixed point equation given by

x = Tx, (1.1)

where T is defined on a certain space X . An equation (1.1) is solved by applying some
appropriate fixed point results.
Banach contraction mapping principle [10] is one of the most useful results for approxi-
mation of the solution of (1.1), if a mapping T : X → X on a complete metric space X ,
satisfies the following condition:

d(Tx, Ty) ≤ cd(x, y), for all x, y ∈ X, (1.2)

where c ∈ [0, 1). The mapping satisfying the above condition by taking c = 1 is called
nonexpansive.
Note that, a mapping which satisfies the above condition is uniformly continuos mapping.
Kannan [25] proved a fixed point result which is applicable to the equation (1.1) where the
mapping defined on a complete metric space need not be continuous. In this way, Kannan
fixed point result extends the scope of Banach contraction mapping principle [10]. Kannan
[25] replaced the condition (1.2) with the following:

d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)], (1.3)

for all x, y ∈ X, where a ∈ [0, 0.5). It was shown that, an equation (1.3) involving the
Kannan mapping on a complete metric space, has a unique solution. This paper was a
genesis for a multitude of fixed point papers over the next two decades, see ( [24], [25],
[26], [32], [37], [38]) and references mentioned therein.
Note that Kannan fixed point result [25] is based on the generalization of the condition
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(1.2). The same applies to the most of results in metric fixed point theory. One of such
results proved by Karapinar [28], who employed the technique of interpolation and intro-
duced a new class of interpolative Kannan type mappings defined on a complete metric
space. Let us recall the following definition:
A mapping T : X → X is called an interpolative Kannan type if there exists a ∈ [0, 1)
such that for all x, y ∈ X \ Fix(T ), we have

d(Tx, Ty) ≤ a[d(x, Tx)]α[d(y, Ty)]1−α, (1.4)

where α ∈ (0, 1) and Fix(T ) = {x ∈ X; x = Tx}. For more results see ([20],[26], [27],[34])
and references mentioned therein.
The study of common fixed points of mappings satisfying certain contractive conditions
has been at the center of vigorous research activity. Common fixed point results are use-
ful in finding the simultaneous solution of a certain system of two nonlinear functional
equations. Noorwali [36] extended the condition (1.4) to two mappings and proved a
common fixed point result for such mappings given as: Let (X, d) be a complete metric
space and T, S : X → X be the self mappings. If there exists a ∈ [0, 1) such that for all
x, y ∈ X \ {Fix(T ), F ix(S)}, we have

d(Tx, Sy) ≤ a[d(x, Tx)]α[d(y, Sy)]1−α,

where α ∈ (0, 1). Then, T and S has a unique common fixed point in X .
For more results in this direction, we refer to [5], [8], [9], [19], [21], [22], [29], [30], [31], [36]
and references mentioned therein.

On the other hand, authors [2], [3], [4], [7], [12], [13], [14], [15], [16],[17] used the tech-
nique of enrichment of contractive mappings in the setting of Banach spaces.
In 2021, Rizwan and Abbas [6] introduced the class of (a, b, c)-modified enriched Kannan
pair (T, S) in the setting of Banach space. A pair of self mappings (T, S) is called (a, b, 0)-
modified enriched Kannan pair on a normed space (X, ∥·∥), if there exist b ∈ [0,+∞) and
a ∈ [0, 0.5) such that

∥b(x− y) + Tx− Sy∥ ≤ a
[
∥x− Tx∥+ ∥y − Sy∥

]
,

holds for all x, y ∈ X. It was proven that any (a, b, 0)-modified enriched Kannan pair
(T, S) in the setting of Banach space X admits a unique common fixed point.
An equation (1.1) involving a nonexpansive mapping defined on a complete metric space
may have no solution or have infinitely many solutions. A fundamental problem in fixed
point theory of nonexpansive mappings is to find conditions under which an equation
(1.1) has a solution. It is intimately connected with differential equations and with the
geometry of the Banach spaces. The techniques used to prove the existence of the solu-
tion of non expansive fixed point equations are different than those considered in metric
fixed point theory for mappings satisfying certain contraction conditions. The interplay
between the geometry of Banach spaces and fixed point theory has been very strong and
fruitful. Geometrical properties of Banach spaces which mainly use convexity hypothesis,
play key role in solving an equation (1.1) involving a nonexpansive mapping. The results
obtained in this direction were starting point of a new mathematical field : the application
of the geometric theory of Banach spaces to fixed point theory.

In 1970, Takahashi [41] introduced a notion of convexity structure in a metric space
with the aim of studying the fixed point problem for nonexpansive mappings in such
spaces.

Definition 1.1. [41] Let (X, d) be a metric space. A continuous function W : X × X ×
[0, 1] → X is said to be a convex structure on X if, for all x, y ∈ X and for any λ ∈ [0, 1],



Enriched Interpolative Kannan pair in 3

we have
d(u,W (x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y), for all u ∈ X.

A metric space (X, d) endowed with a convex structure W is called a Takahashi convex
metric space and is usually denoted by (X, d,W ). Obviously, any linear normed space
and each of its convex subsets are convex metric spaces with the natural convex structure
given by

W (x, y;λ) = λx+ (1− λ)y, for all x, y ∈ X.

However, the converse does not hold in general. There are many examples of convex met-
ric spaces which cannot be embedded in any normed space. Let us consider the following
example.

Example 1.1. [1] Let X = R2. For x = (x1, x2), y = (y1, y2) in X and α ∈ [0, 1]. Define a
mapping W : X ×X × [0, 1] → X by

W (x, y, α) =

(
αx1 + (1− α)y1,

αx1x2 + (1− α)y1y2
αx1 + (1− α)y1

)
,

and a metric d : X ×X → [0,+∞) by d(x, y) = |x1 − y1|+ |x1x2 − y1y2|. It can be verified
that X is a convex metric space but not a normed space.

By using the above idea of Takahashi [41], Berinde and Păcurar [15], in 2021, proposed
a new class of enriched contractions in a more generalized setting of convex metric spaces
which is major inspiration for this manuscript.
We need the following lemma in the sequel.

Lemma 1.1. [15] Let (X, d,W ) be a convex metric space and T : X → X . Define the mapping
Tλ : X → X by

Tλx = W (x, Tx;λ). (1.5)
Then, for any λ ∈ [0, 1), we have

Fix(T ) = Fix(Tλ).

Remark 1.1. Since, convex structure W is a continuous mapping on X ×X × [0, 1], then
by (1.5), we can say that Tλ is also a continuous mapping on X .

It is a matter of great interest to study the necessary conditions which ensure the exis-
tence and uniqueness of the solution of an equation (1.1) where the mapping is defined
on a space equipped with some order structure in addition to the distance structure. Ex-
istence of fixed points in partially ordered metric spaces was first investigated in 2004 by
Ran and Reurings [39] and then by Nieto and López [35]. These results weakened the
underlying spaces and added a new dimension to metric fixed point theory: the bridging
between to metric and ordered fixed point theories.
In 2017, Eshaghi et al. [23], gave the idea of orthogonal relation on metric spaces which
was generalized by Rahimi et al. [33], in 2020, by introducing the concept of R-metric
spaces, where R is an arbitrary relation on a metric space X . Formally, any relation R on
two sets E and F is the subset of the cartesian product between E and F .
We now give the notion of R-convex metric space as follows:

Definition 1.2. Suppose (X, d,W ) is a convex metric space and R is an arbitrary relation
on X . Then (X, d,W,R) is called an R-convex metric space.

Example 1.2. Let X = R × R, a = (α, β), and b = (ζ, η) be two arbitrary points in X .
Define a relation R :=≤ on X as a ≤ b if and only if α ≤ ζ and β ≤ η. Let d : X ×X → R
be the metric given by

d(a, b) =

{ √
(α− ζ)2 + (β − η)2 ; if aRb

max{|α− ζ|, |β − η|} ; otherwise.
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Convex structure W on X is given by W (a, b;λ) = (λα + (1 − λ)ζ, λβ + (1 − λ)η). Then
one can easily see that X is an R-convex metric space.

Definition 1.3. A sequence {xn} in an R-convex metric space is called an R-sequence if
xnRxn+k for each n, k ∈ N.

Definition 1.4. An R-sequence {xn} is said to converges to x ∈ X if for every ϵ > 0 and
n ∈ N, there is an integer n0 such that d(xn, x) < ϵ for n ≥ n0.

Definition 1.5. An R-sequence {xn} is said to be an R-Cauchy sequence if for every ϵ > 0
and m,n ∈ N, there is an integer n0 such that d(xn, xm) ≤ ϵ for n,m ≥ n0.

Definition 1.6. Let (X, d,W,R) be an R-convex metric space. Then it is called an R-
complete convex metric space if every R-Cauchy sequence converges in X .

Employing the ideas of Berinde and Păcurar [15], Rizwan and Abbas [6], Karapinar [28]
and Rahimi [33], we introduce the concept of R-enriched interpolative Kannan pair and
prove some fixed point results in the setting of R-complete convex metric spaces. More-
over, we study the well-posedness, limit shadowing property and Ulam-Hyers stability
of the mappings introduced herein.

2. MAIN RESULTS

We first introduce the following concept.

Definition 2.7. Let (X, d,W,R) be an R-convex metric space. A pair of mappings T, S :
X → X is said to be enriched interpolative Kannan pair if there exist a, λ ∈ [0, 1) and
α ∈ (0, 1) such that

d(W (x, Tx;λ),W (y, Sy;λ)) ≤ a[d(x,W (x, Tx;λ))]α[d(y,W (y, Sy;λ))]1−α, (2.6)

holds for all xRy, where x, y ∈ X .
To specify the parameters a, λ and α and relation R in (2.6), we also call (T, S) a (a, α, λ,R)-
enriched interpolative Kannan pair.

We start with the following common fixed point result.

Theorem 2.1. Suppose that (X, d,W,R) is an R-complete convex metric space and (T, S) is
(a, α, λ,R)-enriched interpolative Kannan pair. Suppose the following conditions hold:

i) there exists x0 ∈ X such that x0RW (x0, Tx0;λ),
ii) if for all x, y ∈ X such that xRy,

⇒ W (x, Tx;λ)RW (y, Sy;λ) or W (x, Sx;λ)RW (y, Ty;λ). (2.7)

Then S and T have common fixed point p ∈ X. Moreover, the iterative sequence {xn}+∞
n=0 defined

by
x2n+1 = W (x2n, Tx2n;λ), x2n+2 = W (x2n+1, Sx2n+1;λ) n ≥ 0, (2.8)

converges to the point p.

Proof. Using Lemma 1.1, the condition (2.6) is transformed to following equivalent form

d(Tλx, Sλy) ≤ a[d(x, Tλx)]
α[d(y, Sλy)]

1−α, (2.9)

holds for all xRy. That is, a pair (Tλ, Sλ) becomes an interpolative Kannan pair. Note that
the equation (2.8) becomes

x2n+1 = Tλx2n,

x2n+2 = Sλx2n+1, n ≥ 0.
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Without any loss of generality, we assume that the successive terms of {xn} are distinct.
Otherwise, we are done. Since, x0RTλx0 = x1 by (2.7), we have

(x1 = Tλx0)R(Sλx1 = x2).

Continuing this way, we obtain that

x1Rx2R · · ·RxnRxn+1R · · ·
Thus, {xn}+∞

n=0 is an R-sequence in (X, d,W,R).
Take x = x2n and y = x2n+1 in (2.9), we get

d(x2n+1, x2n+2) = d(Tλx2n, Sλx2n+1)

≤ a[d(x2n, Tλx2n)]
α[d(x2n+1, Sλx2n+1)]

1−α

≤ a[d(x2n, x2n+1)]
α[d(x2n+1, x2n+2)]

1−α

[d(x2n+1, x2n+2)]
α ≤ a[d(x2n, x2n+1)]

α

≤ ad(x2n, x2n+1)

≤ a2n+1d(x0, x1). (2.10)

Similarly, for x = x2n and y = x2n−1 in (2.9), we obtain that

d(x2n+1, x2n) = d(Tλx2n, Sλx2n−1)

≤ a[d(x2n, Tλx2n)]
α[d(x2n−1, Sλx2n−1)]

1−α

≤ a[d(x2n, x2n+1)]
α[d(x2n−1, x2n)]

1−α

[d(x2n+1, x2n)]
1−α ≤ a[d(x2n, x2n−1)]

1−α

≤ ad(x2n, x2n−1)

≤ a2nd(x0, x1). (2.11)

It follows from(2.10) and (2.11) that

d(xn, xn+1) ≤ and(x0, x1).

For r > 0, we have

d(xn, xn+r) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + . . .+

d(xn+r−1, xn+r)

≤ (an + an+1 + an+2 + . . .+ an+r−1)d(x0, x1)

≤ an

1− a
d(x0, x1).

On taking limit as n → +∞, we can deduce that {xn}+∞
n=0 is an R-Cauchy sequence. Since

X is R-complete, there exists p ∈ X such that limn→+∞ xn = p which implies

lim
n→+∞

x2n = p. (2.12)

By using (2.12) and the R-continuity of Tλ (which follows from Remark 1.1 and Definition
1.1), we immediately obtain

lim
n→+∞

Tλx2n = Tλp.

Therefore,
Tλp = Tλ( lim

n→+∞
x2n) = lim

n→+∞
Tλ(x2n) = lim

n→+∞
x2n+1 = p,

i.e.,
p ∈ Fix(Tλ) = Fix(T ).
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By the similar arguments p is the fixed point of S as well.

□

For more illustration, consider the following examples.

Example 2.3. Let X = R2 and D = {(x, y) ∈ R2 : x = y}. For x = (x1, x2), y = (y1, y2) in
X and α ∈ [0, 1]. Define a mapping W : X ×X × [0, 1] → X by

W (x, y, α) = (αx1 + (1− α)y1, αx2 + (1− α)y2),

and a metric d : X ×X → [0,+∞) by d(x, y) = |x1 − y1|+ |x2 − y2|.
Define a relation R on X as xRy if and only if x, y ∈ D. It can be easily seen that the
(X, d,W,R) is an R-complete convex metric space. Define the mappings T, S : X → X by

T (x) =

{
(x1, 2x1 − x2) if x = (x1, x2) /∈ D

(−x1,−x2) if x = (x1, x2) ∈ D,

and

S(x) =

{
(6x2 − x1, 5x2) if x = (x1, x2) /∈ D

(−x1,−x2) if x = (x1, x2) ∈ D.

On the other hand, we have

W (x, Tx; 0.5) =

{
(x1, x1) if x = (x1, x2) /∈ D

(0, 0) if x = (x1, x2) ∈ D,
(2.13)

and

W (x, Sx; 0.5) =

{
(3x2, 3x2) if x = (x1, x2) /∈ D

(0, 0) if x = (x1, x2) ∈ D.
(2.14)

If we choose x0 = (0, 0), then

(0, 0)RW (x0, Tx0, 0.5) = (0, 0).

By using (2.13), (2.14) and xRy we have

(0, 0) = W (x, Tx, 0.5) R W (y, Sy, 0.5) = (0, 0), or
(0, 0) = W (x, Sx, 0.5) R W (y, Ty, 0.5) = (0, 0).

As a result, the assumptions i) and ii) of Theorem 2.1 hold.
Note that (T, S) is an (0.5, 0.5, 0.5,R)-enriched interpolative Kannan pair.

Indeed, for x = (x1, x2)Ry = (y1, y2), we have

d(W (x, Tx; 0.5),W (y, Sy; 0.5)) = 0,

d(x,W (x, Tx; 0.5)) = 2|x|, and
d(y,W (y, Sy; 0.5)) = 2|y|.

Therefore, for all xRSy we have

d(W (x, Tx;λ),W (y, Sy;λ)) = 0

≤ a[d(x,W (x, Tx;λ))]0.5[d(y,W (y, Sy;λ))]0.5

= 0.5(2|x|)0.5(2|y|)0.5.
Thus, all the conditions of Theorem 2.1 are satisfied. Hence, x = (0, 0) is the common
fixed point of T and S.

Corollary 2.1. Let (X, d,W ) be a complete convex metric space and (T, S) be (a, α, λ)-enriched
interpolative Kannan pair. Then the pair (T, S) has a unique common fixed point.
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Proof. Define the relation R on X as R = X × X in Theorem 2.1, then the result follows
from Theorem 2.1 . To prove the uniqueness, let p and q be two distinct common fixed
points of the mappings T and S and by Lemma 1.1, also of Tλ and Sλ, then by (2.9)

d(p, q) = d(Tλp, Sλq) ≤ a[d(p, Tλp)]
α[d(q, Sλq)]

1−α = 0

Hence, p = q. □

Corollary 2.2. Let (X, ∥·∥) be Banach space and T, S : X → X be a mappings satisfying

∥b(x− y) + (Tx− Sy)∥ ≤ a ∥x− Tx∥α ∥y − Sy∥1−α
, (2.15)

is satisfied for all x, y ∈ X such that Tx ̸= x whenever Sy ̸= y, with b ∈ [0,+∞), a ∈ [0, 1) and
α ∈ (0, 1). Then S and T have a unique common fixed point.

Proof. We choose λ = 1
b+1 , then condition (2.15) becomes

∥(1− λ)(x− y) + λ(Tx− Sy)∥ ≤ aλ ∥x− Tx∥α ∥y − Sy∥1−α for all x, y ∈ X.

which can be written in an equivalent form as:

∥Tλx− Sλy∥ ≤ a ∥x− Tλx∥α ∥y − Sλy∥1−α
, for all x, y ∈ X. (2.16)

If we define convex structure W as W (x, y;α) = (1 − α)x + αy on a Banach space X
equipped with a relation R = X × X. Since X is Banach space, it is R-Banach convex
space. The inequality (2.16) and we have that the mappings Sλ, Tλ : X → X defined by
(1.5) suggest that (T, S) a (a, α, λ,R)-enriched interpolative Kannan pair. Corollary 2.1
leads to the conclusion.

□

As a corollary of our result (Corollary 2.2), we can obtain Theorem 2.1 of [12].

Corollary 2.3. [12] Let (X, ∥·∥) be a Banach space and T : X → X be an (b, a)-enriched Kannan
contraction, that is a mapping satisfying:

||b(x− y) + Tx− Ty|| ≤ a
[
||x− Tx||+ ||y − Ty||

]
for all x, y ∈ X, (2.17)

with b ∈ [0,+∞) and a ∈ [0, 1/2). Then, T has a unique fixed point.

Proof. By taking λ = 1
b+1 , in (2.17) we get,

∥(1− λ)(x− y) + λ(Tx− Ty)∥ ≤ aλ
[
∥x− Tx∥+ ∥y − Ty∥

]
for all x, y ∈ X,

which can be written in an equivalent form as:

∥Tλx− Tλy∥ ≤ a
[
∥x− Tλx∥+ ∥y − Tλy∥

]
, for all x, y ∈ X. (2.18)

Therefore, by (2.18), Tλ is a Kannan contraction (1.3). It follows from [36], mapping Tλ

satisfying (2.18) also satisfies (2.16). Since for value λ = 1
b+1 , the inequality (2.16) is equiv-

alent to (2.15), hence result follows from Corollary 2.2.
□

As a corollary of our result (Corollary 2.2), we can obtain Theorem 2.1 of [36].

Corollary 2.4. [36] Let (X, ∥·∥) be a Banach space and T, S : X → X be a mappings satisfying

∥Tx− Sy∥ ≤ a ∥x− Tx∥α ∥y − Sy∥1−α
,

for all x, y ∈ X such that Tx ̸= x whenever Ty ̸= y, with a ∈ [0, 1) and α ∈ (0, 1). Then S and
T have a unique common fixed point.

Proof. For b = 0, Corollary 2.2 leads to the conclusion. □
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3. WELL-POSEDNESS, LIMIT SHADOWING PROPERTY AND ULAM-HYERS STABILITY

Now we will present the well-posedness, limit shadowing property and Ulam-Hyers
stability results for the Corollary 2.1.

3.1. Well-Posedness. Let us start with the following definition.

Definition 3.8. Let (X, d,W ) be a convex metric space and T, S : X → X . The common
fixed point problem of a pair (T, S) is said to be well-posed if Fix(T ) = Fix(S) = {p}
(say) and for any sequence {xn}+∞

n=0 in X satisfying

lim
n→+∞

d(W (xn, Txn, λ), xn) = 0 and

lim
n→+∞

d(xn,W (xn, Sxn, λ)) = 0,

we have limn→+∞ xn = p.

Since by Lemma 1.1 Fix(T ) = Fix(Tλ), and Fix(S) = Fix(Sλ), we conclude that the
common fixed point problem of (T, S) is well-posed if and only if the fixed point problem
of (Tλ, Sλ) is well-posed.
If we take S = T in the above definition, we have a well-posedness of a fixed point prob-
lem of a mapping T. Well-posedness of certain fixed point problems has been studied by
several mathematicians, see for example, [18], [40] and references mentioned therein.
We now study the well-posedness of a common fixed point problem of mappings in The-
orem 2.1.

Theorem 3.2. Let (X, d,W ) be a complete convex metric space. Suppose that T, S are mappings
on X as in the Corollary 2.1. Then, common fixed point problem of a pair (T, S) is well-posed.

Proof. It follows from Corollary 2.1, that Fix(T ) = Fix(S) = {p}. Let {xn}+∞
n=0 be any se-

quence in X such that limn→+∞ d(W (xn, Txn, λ), xn) = 0 and limn→+∞ d(xn,W (xn, Sxn, λ)) =
0. Then, from triangular inequality and (2.9), we have

d(xn, p) ≤ d(xn,W (xn, Sxn, λ)) + d(W (xn, Sxn, λ), p)

= d(xn, Sλxn) + d(Tλp, Sλxn)

≤ d(xn, Sλxn) + a[d(p, Tλp)]
α[d(xn, Sλxn)]

1−α.

On taking limit as n → +∞ on both sides of the above inequality, we obtain that d(xn, p) =
0. Hence the given common fixed point problem of a pair (T, S) is well-posed □

3.2. Limit Shadowing Property.

Definition 3.9. Let (X, d,W ) be a convex metric space and T, S : X → X . The common
fixed point problem of a pair (T, S) is said to have the limit shadowing property if for any
sequence {xn}+∞

n=0 in X with limn→+∞ d(W (xn, Txn, λ), xn) = 0 and limn→+∞ d(xn,W (xn, Sxn, λ)) =
0, there exists z ∈ X such that

i) limn→+∞ d(W (z, Tnz, λ), xn) = 0
ii) limn→+∞ d(xn,W (z, Snz, λ)) = 0

Theorem 3.3. Let (X, d,W ) be a complete convex metric space. Suppose that T, S are mappings
on X as in the Corollary 2.1. Then, The common fixed point problem of a pair (T, S) has limit
shadowing property.
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Proof. For any z ∈ X , consider

d(W (z, Tnz, λ), xn) = d(Tn
λ z, xn)

≤ d(Tn
λ z, Sλxn) + d(Sλxn, xn)

≤ a[d(Tn−1
λ z, Tn

λ z)]
α[d(xn, Sλxn)]

1−α.

On taking limit as n → +∞ on both sides of the above inquality, we get d(Tn
λ z, xn) = 0.

Similarly, we have limn→+∞ d(xn,W (z, Snz, λ)) = 0. Hence the given common fixed
point problem of a pair (T, S) has the limit shadowing property. □

3.3. Ulam-Hyers Stability. Let (X, d,W ) be a convex metric space, T, S : X → X and
ϵ > 0 . A point w∗ ∈ X called an ϵ-solution of the common fixed point problem for a pair
(T, S), if w∗ satisfies the following inequalities

d(w∗,W (w∗, Tw∗, λ)) ≤ ϵ.

and,

d(w∗,W (w∗, Sw∗, λ)) ≤ ϵ.

Now we will give the notion of Ulam-Hyers stability in convex metric space.

Definition 3.10. Let (X, d,W ) be a convex metric space, T, S : X → X and ϵ > 0. The
common fixed point problem of a pair (T, S) is called Ulam-Hyers stable if and only if
for each ϵ-solution w∗ ∈ X of a pair (T, S), there exists a common solution x∗ of the pair
(T, S) in X such that

d(x∗, w∗) ≤ cϵ.

Theorem 3.4. Let (X, d,W ) be a complete convex metric space. Suppose that T, S be mappings
on X as in the Corollary 2.1. Then, the common fixed point problem of a pair (T, S) is Ulam-Hyers
stable.

Proof. Since Fix(T ) = Fix(Tλ) and Fix(S) = Fix(Sλ), it follows that the common fixed
point problem for the pair (T, S) is equivalent to the common fixed point problem for pair
(Tλ, Sλ). Let w∗ be ϵ-solution of the common fixed point problem of a pair (T, S) , that is,

d(w∗,W (w∗, Tw∗, λ)) ≤ ϵ,

and,

d(w∗,W (w∗, Sw∗, λ)) ≤ ϵ,

which is equivalent to,

d(w∗, Tλw
∗) ≤ ϵ.

and,

d(w∗, Sλw
∗) ≤ ϵ. (3.19)

respectively. Using (2.9) and (3.19), we get

d(x∗, w∗) = d(Tλx
∗, w∗) ≤ d(Tλx

∗, Sλw
∗) + d(Sλw

∗, w∗)

≤ a[d(x∗, Tλx
∗)]α[d(w∗, Sλw

∗)]1−α + d(Sλw
∗, w∗)

≤ ϵ

Hence the common fixed point problem of a pair (T, S) is Ulam-Hyers stable. □
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4. CONCLUSIONS

i) We introduced a more generalized class of contractive mappings, called R-enriched
interpolative Kannan pair, and proved a common fixed point result in the setup of
R-complete convex metric space.

ii) We presented examples to support the concepts introduced and results proved herein.
iii) Moreover, we studied well-posedness, limit shadowing property and Ulam-Hyers

stability for the results (Corollary 2.1) introduced herein.
Acknowledgments. Authors are thankful to the reviewers for their useful comments and
constructive remarks that helped to improve the presentation of the paper.
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