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Hereditary Perfect Order Subset Groups

S. VINOD, S. SAJIKUMAR and G. S. BIJU

ABSTRACT. A finite group G is said to be a POS-group if, for each x ∈ G, the cardinality of the set {y ∈ G :
o(y) = o(x)} is a divisor of the order of G. A POS-group G is said to be a Hereditary Perfect Order Subset group
if all even order subgroups of G are POS-group. In this paper we study the structure of Hereditary perfect order
subset groups.

1. INTRODUCTION

Let G be a finite group and x ∈ G. We denote the order of x, i.e. the smallest positive
integer k such that xk = e, as o(x). Then the set of all elements in G having same order
as x is called the order subset of G determined by x (see[4]). We say that G is a group
with perfect order subsets or briefly a POS-group if the number of elements of each order
subset of G is a divisor of |G|. Some of the recent works [1, 2, 5, 6, 8, 9, 10, 11] deal with
the structure of POS-groups.

Let G be a finite POS-group. Motivated by the above notions, we say that G is Hered-
itary perfect order subset group, or briefly HPOS-group, if all even order subgroups of G
are POS-group. In this paper we study the structure of HPOS-groups.

2. NOTATIONS AND BASIC RESULTS

Most of the notations, definitions and results mentioned here are standard and are as in
[4, 3, 7]. Throughout the paper G denotes a finite group and S(G) = {o(x) : x ∈ G}. For
each k ∈ S(G), denote Sk = {x ∈ G : o(x) = k}. For a positive integer n, D2n denotes
the n−th dihedral group with 2n elements and φ(n) denotes the number of non-negative
integers less than n and relatively prime to n. Also, Zn denotes the group of integers
modulo n and Z∗

n denotes the group of relatively prime integers modulo n.

Definition 2.1. Let G be a finite group. Then the order class of G is defined as the set

{(k, |Sk|) : k ∈ S(G)}
and G is POS if |Sk| divides G.

Example 2.1. Let G = S3. Then S(G) = {1, 2, 3}. S1 = {e}, S2 = {(12), (23), (13)} and S3=
{(123), (132)}. Hence the order class of S3 is {(k, |Sk|) : k ∈ S(G)}= {(1, 1), (2, 3), (3, 2)}.
Since |Sk| divide |S3| for all k, G is a POS-group.

Theorem 2.1. [2] Zn is a POS-group if and only if n = 1 or n = 2α3β where α ≥ 1 and β ≥ 0.

Theorem 2.2. [2] For each k ∈ S(G), |Sk| is a multiple of φ(k).

Theorem 2.3. [4] Let G be a non trivial POS-group. Then |G| is even.

Theorem 2.4. [7] If n is a positive divisor of |G| and X = {g ∈ G : gn = e}, then n divides |X|.
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Theorem 2.5. [11] D2n is a POS-group if and only if n = 3α where α ≥ 0

Theorem 2.6. For n ≥ 1, φ(n) divide n if and only if n = 2k3l where k ≥ 1 and l ≥ 0.

Theorem 2.7. A subgroup of D2n is either isomorphic to Zm or D2m where m is a divisor of n.

Theorem 2.8. Aut(D2n) is isomorphic to Gn for all n where Aut(D2n) is the automorphism

group of the Dihedral group D2n and Gn =

{[
a b
0 1

]
: a ∈ Z∗

n, b ∈ Zn

}
, a group of order

nφ(n) with respect to matrix multiplication.

3. MAIN RESULTS

It is known, by Theorem 2.1, that the cyclic group Z2n(n ≥ 1) is a POS-group in which
all subgroups are also POS. However there exist groups in which all subgroups are not
POS. For example, the cyclic group Z6 is a POS-group but its subgroup Z3 is not POS by
Theorem 2.3. Hence in this work we characterize the groups where subgroups are also
POS. This naturally raises the question as to which groups have the property that all of its
subgroups are POS.

Theorem 3.9. Let G be a finite POS-group. Then all subgroups of G are POS if and only if G
isomorphic to Z2n for some n ≥ 0.

Proof. Suppose all subgroups of G are POS. Then by Theorem 2.3 either G is trivial or 2 is
the only prime divisor of |G| and hence |G| = 2n for some n ≥ 0. Define Am = {g ∈ G :

g2
m

= e} for all 0 ≤ m ≤ n. Then clearly Am−1 ⊆ Am for all 1 ≤ m ≤ n. Now we use
mathematical induction to prove |Am| = 2m for all 0 ≤ m ≤ n.

Now, |A0| = 1 = 20. Assume by induction,

|Am−1| = 2m−1, (1 ≤ m < n) (3.1)

Since Am − Am−1 = {g ∈ G : o(g) = 2m} and G is a POS-group and by Theorem 2.2, we
have

|Am| − |Am−1| = |Am −Am−1| = 0 or 2t for some m− 1 ≤ t ≤ n (3.2)

By Theorem 2.4,

|Am| = 2mk for some k ≥ 1 (3.3)

Hence by (3.1), (3.2) and (3.3), we have

k 2m = 2m−1 + 2t for some m− 1 ≤ t ≤ n

=⇒ k 2m = 2m−1(1 + 2r) for some 0 ≤ r ≤ n

=⇒ r = 0 and k = 1

Hence from (3.3), we have

|Am| = 2m for all 0 ≤ m ≤ n

Therefore number of elements of order 2n in G is |An−An−1| = |An|−|An−1| = 2n−2n−1 =
2n−1 ≥ 1. Since G is a group of order 2n and has atleast one element of order 2n, we have

G ≃ Z2n for some n ≥ 0

Conversely suppose G ≃ Z2n for some n ≥ 0. Then every subgroup of G is isomorphic
to Z2k for some k ≥ 0 and which is POS-group by Theorem 2.1. □
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The above theorem shows that Z2n(n ≥ 1) is the only POS-group in which all sub-
groups are also POS. Many POS-groups are known to have the property that all of its
even order subgroups are also POS. For example, consider the group D18, Dihedral group
of order 18. By Theorem 2.5, D18 is a POS group. Let X denote the collection of all sub-
groups of D18. Then by Theorem 2.7, X = {Z1,Z3,Z9, D2

∼= Z2, D6, D18}. By Theorem
2.5 all even order subgroups of D18 are POS, but Z3 and Z9 are not.

However there also exist POS-groups whose even order subgroups are not POS. For
example, consider the group G = Z2 × Z2 × Z3. Then H = Z2 × Z2 is an even order
subgroup of G, which is not POS, since the number of 2 order elements in H is 3 and 3
does not divide order of H . This leads to the question whether the POS-groups having the
property that all even order subgroups are POS, can be characterized. In this connection
we have the following.

Definition 3.2. Let G be a finite POS-group. G is said to be Hereditary perfect order subset
group, or briefly HPOS-group if all even order subgroups of G are POS-group.

Firstly, we characterize all finite abelian Hereditary perfect order subset groups.

Theorem 3.10. Let G be a finite abelian POS-group. Then G is HPOS if and only if G isomorphic
to Z2α3β for some α ≥ 1 and β ≥ 0.

Proof. Assume G ≃ Z2α3β for some α ≥ 1 and β ≥ 0. Then all even order subgroups of G
are isomorphic to Z2γ3δ for some γ ≥ 1 and δ ≥ 0 and which is a POS-group by Theorem
2.1. Hence G is a HPOS group.

Conversely suppose G is HPOS-group. Since G is a finite abelian POS-group, we have

G ≃ Z2α × Zp
n1
1

× Zp
n2
2

× · · · × Zpnr
r

(3.4)

where α ≥ 1 and ni ≥ 0 for 1 ≤ i ≤ r and pi’s are prime.
Suppose ni ≥ 1 for some i and pi ̸= 3. If pi = 2 then H = Z2 × Z2 is an even order

group which is isomorphic to a subgroup of G containing 3 elements of order 2 and 3 does
not divides |H|. Therefore H is not a POS-group and hence G is not HPOS. If pi > 3, then
H = Z2 × Zpi

≃ Z2×pi
is an even order group which is isomorphic to a subgroup of G.

By Theorem 2.1 H is not a POS-group and hence G is not HPOS. Therefore if ni ̸= 0 then
pi = 3.

Suppose ni ̸= 0 and nj ̸= 0 for some i ̸= j. Then H = Z2 × Z3 × Z3 is an even order
group which is isomorphic to a subgroup of G. The number of 3 order elements in H is 8
and 8 does not divide |H|. Hence H is not a POS-group and so G is not HPOS. Thus from
(3.4) we have

G ≃ Z2α × Z3β whre α ≥ 1 and β ≥ 0

≃ Z2α3β where α ≥ 1 and β ≥ 0

□

Now we characterize those Dihedral groups which are HPOS.

Theorem 3.11. Let n be a positive integer. Then D2n is HPOS if and only if n = 3α where α ≥ 0.

Proof. Assume D2n is HPOS. Since D2n is even order POS-group, by Theorem 2.5, we
have n = 3α for some α ≥ 0.

Conversly, suppose n = 3α where α ≥ 0. Let H be an even order subgroup of D2n.
Then |H| = 2 × 3β where β ≥ 0. Then by theorem 2.7, either H ≃ Z2×3β or H ≃ D2×3β

where β ≥ 0. In both cases, H is a POS-groups. Hence D2n is a HPOS-group if n = 3α

when α ≥ 0. □
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Next we discuss the automorphism groups of Dihedral groups which are POS but not
HPOS.

Lemma 3.1. Let p be a prime number. Then

1 + z + z2 + . . .+ zk−1 ≡ 0mod(p)

for all z ∈ Z∗
p, z ̸= 1 and o(z) = k in Z∗

p.

Proof. Since o(z) = k in Z∗
p, zk ≡ 1mod(p).

Now,

(1 + z + z2 + . . .+ zk−1)(z − 1) = zk − 1

≡ 0mod(p) (3.5)

Since 1 < z < p, we have z − 1 is not congruent to 0mod(p). Hence by (3.5),

1 + z + z2 + . . .+ zk−1 ≡ 0mod(p)

for all z ∈ Z∗
p, z ̸= 1 and o(z) = k in Z∗

p. □

Lemma 3.2. Let p be a prime number. Then the order class of Aut(D2p) is

{(1, 1), (p, p− 1), (k, pφ(k)) : k ∈ D(p− 1), k ̸= 1}

Proof. By Theorem 2.8, Aut(D2p) is isomorphic to Gp.
Let y ∈ Zp. Then for any m ∈ N, [

1 y
0 1

]m
=

[
1 my
0 1

]
=⇒ o

([
1 y
0 1

])
in Gp = o(y) in Zp (3.6)

Let x ∈ Z∗
p, x ̸= 1 and y ∈ Zp. Then for any m ∈ N,[

x y
0 1

]m
=

[
xm (1 + x+ . . .+ xm−1)y
0 1

]
Therefore [

x y
0 1

]m
= I

=⇒ xm ≡ 1mod(p)

=⇒ m ≥ o(x) in Z∗
p (3.7)

Let o(x) = k in Z∗
p. Then

[
x y
0 1

]k
=

[
xk (1 + x+ . . .+ xk−1)y
0 1

]
=

[
1 0
0 1

]
; by theorem 3.1

=⇒ o

([
x y
0 1

])
≤ k = o(x) in Z∗

p (3.8)

From (3.6) and (3.7), we get

o

([
x y
0 1

])
= o(x) in Z∗

p (3.9)



Hereditary Perfect Order Subset Groups 131

for all x(̸= 1) ∈ Z∗
p and y ∈ Zp. From (3.5) and (3.8)

S(Gp) = S(Z∗
p) ∪ S(Zp) = {p, k : k ∈ D(p− 1)}

Also, |S1| = 1, |Sp| = p− 1 and Sk = pφ(k) for all k ∈ D(p− 1) and k ̸= 1. Hence the order
class of Aut(D2p) is

{(1, 1), (p, p− 1), (k, pφ(k)) : k ∈ D(p− 1), k ̸= 1}

□

Lemma 3.3. Aut(D2p) is a POS-group if and only if p = 1 + 2k3l for some k ≥ 1 and l ≥ 0.

Proof. We have |Aut(2p)| = p(p − 1). Hence by the above theorem, Aut(D2p) is a POS-
group if and only if φ(k) divide p−1 for all k ∈ D(p−1). Hence by Theorem 2.6 Aut(D2p)
is a POS-group if and only if p = 1 + 2k3l for some k ≥ 1 and l ≥ 0. □

Theorem 3.12. Let p be a prime number of the form 1 + 2k. Then Aut(D2p) is a non-abelain
POS-group but not HPOS.

Proof. By Corollary 3.3, Aut(D2p) is a non-abelian POS-group. Since
|Aut(D2p)| = p(p − 1), by Theorem 3.2, the number of p-order elements in Aut(D2p) is
p − 1. Therefore Aut(D2p) has a unique Sylow p-subgroup, let denote it by H . Then H is
normal subgroup of order p. Since Aut(D2p) is of even order, it has a subgroup K of order
2. Then HK is a subgroup of Aut(D2p) of order 2p. Therefore HK is either isomorphic to
Z2p or D2p whre p is prime ≥ 5 and none of them is POS. Hence Aut(D2p) is not HPOS.

□

4. CONCLUSION

In this paper, firstly we have proved that all subgroups of a finite POS-group G are
POS if and only if G isomorphic to Z2n for some n ≥ 0. We introduced the concept of
Hereditary perfect order subset group and characterized all finite abelian Hereditary per-
fect order subset groups. Also, we classified those Dihedral groups which are HPOS and
the automorphism groups of Dihedral groups which are POS but not HPOS. We conclude
by stating a conjecture:

Conjecture 4.1. If G is HPOS and order of G is not a power of 2, then 3 divides the order of G.
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