Fixed point results for P-contractions via w-distance

Ishak Altun, Hatice Aslan Hancer and Ümran Başar

Abstract

In the present paper, we define the $P w$-contraction by considering the inequality called P contraction in metric space together with the w-distance. We then present fixed point theorems for both singlevalued and multivalued $P w$-contractions. We also support our results with suitable examples.

1. Introduction and Preliminaries

In 2017, Fulga and Proca [7, 8] presented some fixed point theorems for single-valued mappings via new type contractive inequalities inspired by E-contraction on metric space. Since this idea, called E-contraction, was first used by Popescu (see the references of $[7,8]$), we prefer to use it as P-contraction in our papers to cite Popescu $[2,3,5]$. Popescu's original definition and related fixed point theorem are as follows: Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping. Then T is called P-contraction if there exists $k \in[0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq k[d(x, y)+|d(x, T x)-d(y, T y)|] \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$. It is easy to see that every contraction mapping on metric space is P contraction, but the converse is not true as shown in some examples in [2, 8]. Thus, the following theorem addresses a more general class of mappings than the famous Banach fixed point theorem.

Theorem 1.1. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be P-contraction. Then T has a unique fixed point. Moreover, every Picard iteration converges to the fixed point.

We recommend papers such as $[1,4,9,12]$ in addition to the above for fixed point results regarding the concept of P-contraction.

In this paper, we will present the fixed point theorems for both single-valued and multivalued mappings by considering P-contraction idea of Popescu together with the w distance in metric space.

First of all, let's remember the basic definition and properties of w-distance which was introduced by Kada et al. [11] in metric space. See [17] for more information on w-distance.
Definition 1.1 ([11]). Let (X, d) be a metric space. A function $w: X \times X \rightarrow[0, \infty)$ is called w-distance in X if it satisfies the following:

- $w(x, z) \leq w(x, y)+w(y, z)$ for all $x, y, z \in X$,
- the mapping $w_{x}: X \rightarrow[0, \infty)$ is lower semicontinuous for each $x \in X$, where $w_{x}(\cdot)=w(x, \cdot)$, that is, if $\left\{y_{n}\right\}$ is a sequence in X with $y_{n} \rightarrow y \in X$, then

$$
w_{x}(y) \leq \lim \inf _{n \rightarrow \infty} w_{x}\left(y_{n}\right)
$$

for each $x \in X$,

[^0]- for any $\varepsilon>0$, there exists $\delta>0$ such that $w(x, y) \leq \delta$ and $w(x, z) \leq \delta$ imply $d(y, z) \leq \varepsilon$.
Now we present some examples, which more explanations of them, can be found in some papers in the literature such as [10, 11, 14, 16].
Example 1.1. Let (X, d) be a metric space.
(1) The metric d is a w-distance in X.
(2) Define $w_{k}(x, y)=k>0$. Then w_{k} is a w-distance in X.
(3) Let A, which has at least two elements, be a closed and bounded subset of X, and let $c \geq \operatorname{diam}(A)=\sup \{d(a, b): a, b \in A\}$. Define

$$
w_{c}(x, y)=\left\{\begin{array}{lc}
d(x, y), & x, y \in A \\
c, & x \notin A \text { or } y \notin A
\end{array} .\right.
$$

Then w_{c} is a w-distance in X.
(4) Let $f: X \rightarrow X$ be a continuous function. Define

$$
w_{f}(x, y)=\max \{d(f x, y), d(f x, f y)\}
$$

Then w_{f} is a w-distance in X.
Example 1.2. Let $(X,\|\cdot\|)$ be a normed linear space. Then the functions $w_{1}(x, y)=\|y\|$ and $w_{2}(x, y)=\|x\|+\|y\|$ are w-distances in X.

The following lemmas about w-distance play crucial role in the proofs of our theorems
Lemma 1.1 ([11]). Let (X, d) be a metric space, w be a w-distance in $X,\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequence in X, and $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be two sequences in $[0, \infty)$ converging to 0 . Then, for all $x, y, z \in X$, the following hold:
(a) If $w\left(x_{n}, y\right) \leq \alpha_{n}$ and $w\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $y=z$. In particular, if $w(x, y)=0$ and $w(x, z)=0$, then $y=z$.
(b) If $w\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $w\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $y_{n} \rightarrow z$ as $n \rightarrow \infty$.
(c) If $w\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for all $n, m \in \mathbb{N}$ with $n>m$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
(d) If $w\left(x, x_{n}\right) \leq \alpha_{n}$ for all $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

Lemma 1.2 ([16]). Let (X, d) be a metric space, K be a closed subset of X and w be a w-distance in X. Suppose that there exists $u \in X$ such that $w(u, u)=0$. Then $u \in K$ if and only if

$$
w(u, K)=\inf \{w(u, z): z \in K\}=0
$$

In the literature, besides the fixed point theorems for single-valued mappings obtained with the help of the w-distance function, Latif and Albar [15] (resp. Latif and Abdou [14]) proved the following theorem for multivalued mappings inspired by Feng-Liu's [6] paper (resp. Klim and Wardowski's [13] paper).
Theorem $1.2([15,14])$. Let (X, d) be a complete space and let $T: X \rightarrow P_{C}(X)$ be a weakly contractive (resp. generalized w-contractive) map. Suppose that a real-valued function f on X defined by $f(x)=w(x, T x)$ is lower semicontinous. Then there exists $v z \in X$ such that $f(z)=0$. Further, if $w(z, z)=0$, then $z \in T z$.

2. Main results

First we introduce the following definition.
Definition 2.2. Let (X, d) be a metric space, w be a w-distance on X and $T: X \rightarrow X$ be a mapping. If there exists a nonnegative real number $c<1$ satisfying satisfying

$$
\begin{equation*}
w(T x, T y) \leq c[w(x, y)+|w(x, T x)-w(y, T y)|] \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$, then T is said to be P_{w}-contraction.

Now we present our first main result.
Theorem 2.3. Let (X, d) be a complete metric space, w be a w-distance on X and $T: X \rightarrow X$ be a P_{w}-contraction. Assume that one following hold:
(i) T is continuous,
(ii) w is continuous,
(iii) for every $y \in X$ with $y \neq T y$

$$
\inf \{w(x, y)+w(x, T x): x \in X\}>0
$$

Then T has a unique fixed point $z \in X$. Moreover $w(z, z)=0$.
Proof. Let $x_{0} \in X$ be an arbitrary point. Consider the associated Picard sequence $\left\{x_{n}\right\}$ defined by $x_{n+1}=T x_{n}$ for $n \geq 0$. Now, we will consider the following two cases:
(1) Assume there exists $n_{0} \in \mathbb{N}$ such that $w\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$. In this case we claim that $w\left(x_{n_{0}+1}, x_{n_{0}+2}\right)=0$. Indeed, by (2.2) we have

$$
\begin{aligned}
w\left(x_{n_{0}+1}, x_{n_{0}+2}\right) & =w\left(T x_{n_{0}}, T x_{n_{0}+1}\right) \\
& \leq c\left[w\left(x_{n_{0}}, x_{n_{0}+1}\right)+\left|w\left(x_{n_{0}}, T x_{n_{0}}\right)-w\left(x_{n_{0}+1}, T x_{n_{0}+1}\right)\right|\right] \\
& =c\left[w\left(x_{n_{0}}, x_{n_{0}+1}\right)+\left|w\left(x_{n_{0}}, x_{n_{0}+1}\right)-w\left(x_{n_{0}+1}, x_{n_{0}+2}\right)\right|\right] \\
& =c w\left(x_{n_{0}+1}, x_{n_{0}+2}\right),
\end{aligned}
$$

which is a contradiction unless $w\left(x_{n_{0}+1}, x_{n_{0}+2}\right)=0$. Hence $w\left(x_{n_{0}+1}, x_{n_{0}+2}\right)=0$ and so from the triangular inequality we have

$$
w\left(x_{n_{0}}, x_{n_{0}+2}\right) \leq w\left(x_{n_{0}}, x_{n_{0}+1}\right)+w\left(x_{n_{0}+1}, x_{n_{0}+2}\right)=0 .
$$

Now that we have $w\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$ and $w\left(x_{n_{0}}, x_{n_{0}+2}\right)=0$, from Lemma 1.1 (a), we get $x_{n_{0}+1}=x_{n_{0}+2}=T x_{n_{0}+1}$ hence $x_{n_{0}+1}$ is a fixed point of T.
(2) Now suppose $w\left(x_{n}, x_{n+1}\right)>0$ for all $n \in \mathbb{N}$. Then from (2.2) we have

$$
\begin{align*}
w\left(x_{n+1}, x_{n+2}\right) & =w\left(T x_{n}, T x_{n+1}\right) \\
& \leq c\left[w\left(x_{n}, x_{n+1}\right)+\left|w\left(x_{n}, T x_{n}\right)-w\left(x_{n+1}, T x_{n+1}\right)\right|\right] \\
& =c\left[w\left(x_{n}, x_{n+1}\right)+\left|w\left(x_{n}, x_{n+1}\right)-w\left(x_{n+1}, x_{n+2}\right)\right|\right] \tag{2.3}
\end{align*}
$$

for all $n \in \mathbb{N}$. In this case it must be $w\left(x_{n+1}, x_{n+2}\right)<w\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ (otherwise from (2.3) we get a contradiction as $0<w\left(x_{n+1}, x_{n+2}\right) \leq c w\left(x_{n+1}, x_{n+2}\right)$ for some $\left.n \in \mathbb{N}\right)$ and hence from (2.3) we have

$$
w\left(x_{n+1}, x_{n+2}\right) \leq \frac{2 c}{1+c} w\left(x_{n}, x_{n+1}\right)
$$

for all $n \in \mathbb{N}$. Therefore we have

$$
w\left(x_{n+1}, x_{n+2}\right) \leq \lambda^{n+1} w\left(x_{0}, x_{1}\right),
$$

for all $n \in \mathbb{N}$, where $\lambda=\frac{2 c}{1+c}<1$. Now for any $m, n \in \mathbb{N}$ with $m>n$, we have

$$
\begin{align*}
w\left(x_{n}, x_{m}\right) & \leq \sum_{i=n}^{m-1} w\left(x_{i}, x_{i+1}\right) \\
& =\sum_{i=n}^{m-1} \lambda^{i} w\left(x_{0}, x_{1}\right) \\
& \leq \frac{\lambda^{n}}{1-\lambda} w\left(x_{0}, x_{1}\right) \tag{2.4}
\end{align*}
$$

and so from Lemma 1.1 (c), $\left\{x_{n}\right\}$ is a Cauchy sequence. Due to the completeness of X, there exists $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Since w is lower semicontinuous in the second variable and $x_{m} \rightarrow z$ as $m \rightarrow \infty$, from (2.4) we get

$$
\begin{equation*}
w\left(x_{n}, z\right) \leq \lim \inf _{m \rightarrow \infty} w\left(x_{n}, x_{m}\right) \leq \frac{\lambda^{n}}{1-\lambda} w\left(x_{0}, x_{1}\right) \tag{2.5}
\end{equation*}
$$

Now, if T is continuous, then $x_{n+1}=T x_{n} \rightarrow T z$ and so by the uniqueness of the limit we get $z=T z$. Moreover, we have $w(z, z)=0$. Indeed, from (2.2)

$$
\begin{equation*}
w(z, z)=w(T z, T z) \leq c w(z, z) \tag{2.6}
\end{equation*}
$$

which is a contradiction unless $w(z, z)=0$.
If w is continuous, then from (2.4) and (2.5) we have

$$
w(z, z)=\lim _{n, m \rightarrow \infty} w\left(x_{n}, x_{m}\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} w\left(x_{n}, z\right)=0
$$

Now putting $x=x_{n}$ and $y=z$ in (2.2) we have

$$
w\left(x_{n+1}, T z\right) \leq c\left[w\left(x_{n}, z\right)+\left|w\left(x_{n}, x_{n+1}\right)-w(z, T z)\right|\right]
$$

for all $n \in \mathbb{N}$. Taking limit as $n \rightarrow \infty$ and using the continuity of w, we have

$$
w(z, T z) \leq c w(z, T z)
$$

which is a contradiction unless $w(z, T z)=0$. Hence we have $w(z, z)=0=w(z, T z)$ and so from Lemma 1.1 (a) we have $z=T z$.

Finally, assume (iii) holds and $z \neq T z$. Then from (2.4) and (2.5) we have

$$
\begin{aligned}
0 & <\inf \{w(x, z)+w(x, T x): x \in X\} \\
& \leq \inf \left\{w\left(x_{n}, z\right)+w\left(x_{n}, T x_{n}\right): n \in \mathbb{N}\right\} \\
& =\inf \left\{w\left(x_{n}, z\right)+w\left(x_{n}, x_{n+1}\right): n \in \mathbb{N}\right\} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, which is a contradiction. Hence $z=T z$ and as in (2.6), we have $w(z, z)=0$.
To show the uniqueness of fixed point, suppose u be also a fixed point of T. Then from (2.2) we have $w(u, u)=0$ and

$$
w(z, u)=w(T z, T u) \leq c w(z, u)
$$

which implies $w(z, u)=0$. Hence from Lemma 1.1 (a) we have $u=z$.
Now we provide a few illustrative examples along with a comparative example.
Example 2.3. Let $X=\left[0, \frac{1}{2}\right]$ with the usual metric d. Define $T: X \rightarrow X$ by $T x=x^{2}$ and consider the w-distance in X as $w(x, y)=y$. Then we have

$$
w(T x, T y)=y^{2}
$$

and

$$
w(x, y)+|w(x, T x)-w(y, T y)|=y+\left|x^{2}-y^{2}\right|
$$

for all $x, y \in X$. Hence we get

$$
w(T x, T y) \leq \frac{1}{2}[w(x, y)+|w(x, T x)-w(y, T y)|]
$$

for all $x, y \in X$, that is, T is P_{w}-contraction. Other conditions of Theorem 2.3 are clearly hold, and therefore T has a unique fixed point.

Note that T is not P-contraction with respect to usual metric d. Indeed, since

$$
\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{d\left(T x, T \frac{1}{2}\right)}{d\left(x, \frac{1}{2}\right)+\left|d(x, T x)-d\left(\frac{1}{2}, T \frac{1}{2}^{\frac{1}{2}}\right)\right|}=\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{\frac{1}{4}-x^{2}}{\frac{1}{2}-x+\left|x-x^{2}-\frac{1}{4}\right|}=1
$$

we can not find the constant $k \in[0,1)$ satisfying the inequality (1.1). Therefore Theorem 1.1 can not be applied to this example.

Example 2.4. Let $X=C[0,1]$ with the supremum norm. Define $T: X \rightarrow X$ by

$$
T f(t)=\int_{0}^{t}(t-s) f(s) d s
$$

and consider the w-distance in X as $w(f, g)=\|f\|_{\infty}+\|g\|_{\infty}$. Then we have

$$
\begin{aligned}
|T f(t)| & =\left|\int_{0}^{t}(t-s) f(s) d s\right| \\
& \leq\|f\|_{\infty} \int_{0}^{t}(t-s) d s \\
& =\frac{t^{2}}{2}\|f\|_{\infty}
\end{aligned}
$$

and so

$$
\|T f\|_{\infty} \leq \frac{1}{2}\|f\|_{\infty}
$$

for all $f \in X$. Therefore we get

$$
\begin{aligned}
w(T f, T g) & =\|T f\|_{\infty}+\|T g\|_{\infty} \leq \frac{1}{2}\|f\|_{\infty}+\frac{1}{2}\|g\|_{\infty} \\
& =\frac{1}{2} w(f, g) \leq \frac{1}{2}[w(f, g)+|w(f, T f)-w(g, T g)|]
\end{aligned}
$$

for all $f, g \in X$, that is, T is P_{w}-contraction. Other conditions of Theorem 2.3 are clearly hold, and therefore T has a unique fixed point.
Example 2.5. Let $X=\left\{\frac{1}{2^{n}}: n \in \mathbb{N}\right\} \cup\{0\}$ with the usual metric. Define $T: X \rightarrow X$ by

$$
T \frac{1}{2^{n}}=\frac{1}{2^{n+1}} \text { for } n \in \mathbb{N} \text { and } T 0=0
$$

and consider the w-distance in X as $w(x, y)=y$. Then we have (except for the obvious case)

$$
\begin{aligned}
w\left(T \frac{1}{2^{n}}, T \frac{1}{2^{m}}\right) & =\frac{1}{2^{m+1}} \\
& =\frac{1}{2} w\left(\frac{1}{2^{n}}, \frac{1}{2^{m}}\right) \\
& \leq \frac{1}{2}\left[w\left(\frac{1}{2^{n}}, \frac{1}{2^{m}}\right)+\left|w\left(\frac{1}{2^{n}}, T \frac{1}{2^{n}}\right)-w\left(\frac{1}{2^{m}}, T \frac{1}{2^{m}}\right)\right|\right]
\end{aligned}
$$

for all $m, n \in \mathbb{N}$, that is, T is P_{w}-contraction. Other conditions of Theorem 2.3 are clearly hold, and therefore T has a unique fixed point.

We need some notations to use in our theorem about multivalued mappings. Let (X, d) be a metric space, $P(X)$ be the family of all nonempty subsets of $X, P_{C}(X)$ be the family of all nonempty and closed subsets of X and w be a w-distance in X. Let $T: X \rightarrow P(X)$ be a multivalued mapping and $b \in(0,1)$. For $x \in X$, define the set $J_{b}^{x} \subseteq X$ as

$$
J_{b}^{x}=\{y \in T x: b w(x, y) \leq w(x, T x)\}
$$

Remark 2.1. 1. Let $T: X \rightarrow P(X)$ and $x \in X$ with $w(x, T x)>0$. Then J_{b}^{x} is nonempty for every $b \in(0,1)$. Indeed, if we choose $\varepsilon_{b}=\left(\frac{1}{b}-1\right) w(x, T x)>0$, then by the definition of infimum, there exists $y_{\varepsilon_{b}} \in T x$ such that

$$
w\left(x, y_{\varepsilon_{b}}\right) \leq w(x, T x)+\varepsilon_{b} .
$$

Hence we have

$$
b w\left(x, y_{\varepsilon_{b}}\right) \leq w(x, T x)
$$

and so $y_{\varepsilon_{b}} \in J_{b}^{x}$.
2. Let $w(x, T x)=0$ for $x \in X$. Then J_{b}^{x} may be empty even if $T x \in P_{C}(X)$. For example, let $X=(0,1]$ with the usual metric, $T x=(0, x] \in P_{C}(X)$ for every $x \in X$ and $w(x, y)=y$. Then we have $w(x, T x)=0$ for every $x \in X$ and so we can not find $y \in T x$ satisfying the inequality $b w(x, y) \leq w(x, T x)$. Hence J_{b}^{x} is empty for every $b \in(0,1)$.
3. Let (X, d) be complete and $T x \in P_{C}(X)$. Then J_{b}^{x} is nonempty for every $b \in(0,1)$. The situation $w(x, T x)>0$ was examined in Case 1. Now let $w(x, T x)=0$. Then there exists a sequence $\left\{y_{n}\right\}$ in $T x$ such that $\lim _{n \rightarrow \infty} w\left(x, y_{n}\right)=0$. Hence by Lemma 1.1 (d), $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Since X is complete there exists $y \in X$ such that $y_{n} \rightarrow y$ with respect to d. By the closedness of $T x$, we get $y \in T x$. On the other hand, since w is lower semicontinuous in the second variable we have

$$
w(x, y) \leq \lim \inf _{n \rightarrow \infty} w\left(x, y_{n}\right)=0
$$

This shows that there exists $y \in T x$ such that

$$
b w(x, y)=0=w(x, T x)
$$

for every $b \in(0,1)$. Hence we have J_{b}^{x} is nonempty.
Now, taking into account both Popescu's and Feng-Liu's ideas we will present a fixed point theorem for multivalued mappings on metric space via w-distance.
Definition 2.3. Let (X, d) be a metric space, w be a w-distance on $X, T: X \rightarrow P(X)$ be a multivalued mapping and $b \in(0,1)$. If for all $x \in X$, there exists $y \in J_{b}^{x}$ satisfying

$$
w(y, T y) \leq c[w(x, y)+|w(x, T x)-w(y, T y)|]
$$

where c is a nonnegative real number c satisfying $\frac{2 c}{b(1+c)}<1$. Then T is said to be multivalued P_{w}-contraction.
Theorem 2.4. Let (X, d) be a complete metric space, w be a w-distance on X and $T: X \rightarrow$ $P_{C}(X)$ be a multivalued P_{w}-contraction. Assume that $f(x)=w(x, T x)$ is lower semicontinuous. Then there exists $z \in X$ such that $f(z)=0$. Further, if $w(z, z)=0$ then z is a fixed point of T.

Proof. First note that by Remark 2.1, J_{b}^{x} is nonempty for any $x \in X$. By the assumption, for arbitrary point $x_{0} \in X$, there exists $x_{1} \in J_{b}^{x_{0}}$ such that

$$
w\left(x_{1}, T x_{1}\right) \leq c\left[w\left(x_{0}, x_{1}\right)+\left|w\left(x_{0}, T x_{0}\right)-w\left(x_{1}, T x_{1}\right)\right|\right],
$$

and, for $x_{1} \in X$, there exists $x_{2} \in J_{b}^{x_{1}}$ such that

$$
w\left(x_{2}, T x_{2}\right) \leq c\left[w\left(x_{1}, x_{2}\right)+\left|w\left(x_{1}, T x_{1}\right)-w\left(x_{2}, T x_{2}\right)\right|\right] .
$$

Continuing this process, we can construct an iterative sequence $\left\{x_{n}\right\}$ such that $x_{n+1} \in J_{b}^{x_{n}}$ and

$$
\begin{equation*}
w\left(x_{n+1}, T x_{n+1}\right) \leq c\left[w\left(x_{n}, x_{n+1}\right)+\left|w\left(x_{n}, T x_{n}\right)-w\left(x_{n+1}, T x_{n+1}\right)\right|\right] \tag{2.7}
\end{equation*}
$$

for $n=0,1,2, \cdots$. If there exists $n_{0} \in \mathbb{N}$ such that $w\left(x_{n_{0}}, T x_{n_{0}}\right)=0$, then we have $f\left(x_{n_{0}}\right)=0$. Let assume $w\left(x_{n}, T x_{n}\right)>0$ for all $n \in \mathbb{N}$. Now, if there exists $m \in \mathbb{N}$ such that

$$
w\left(x_{m+1}, T x_{m+1}\right) \geq w\left(x_{m}, T x_{m}\right)
$$

then from (2.7) we have (note that, $b w\left(x_{m}, x_{m+1}\right) \leq w\left(x_{m}, T x_{m}\right)$ since $\left.x_{m+1} \in J_{b}^{x_{m}}\right)$

$$
\begin{aligned}
w\left(x_{m+1}, T x_{m+1}\right) & \leq c\left[w\left(x_{m}, x_{m+1}\right)+\left|w\left(x_{m}, T x_{m}\right)-w\left(x_{m+1}, T x_{m+1}\right)\right|\right] \\
& =c\left[w\left(x_{m}, x_{m+1}\right)+w\left(x_{m+1}, T x_{m+1}\right)-w\left(x_{m}, T x_{m}\right)\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
w\left(x_{m+1}, T x_{m+1}\right) & \leq \frac{c}{1-c} w\left(x_{m}, x_{m+1}\right)-\frac{c}{1-c} w\left(x_{m}, T x_{m}\right) \\
& =\frac{c}{1-c}\left[w\left(x_{m}, x_{m+1}\right)-w\left(x_{m}, T x_{m}\right)\right] \\
& \leq \frac{c}{1-c}\left[\frac{1}{b} w\left(x_{m}, T x_{m}\right)-w\left(x_{m}, T x_{m}\right)\right] \\
& \leq\left(\frac{c}{1-c}\right)\left(\frac{1-b}{b}\right) w\left(x_{m}, T x_{m}\right) \\
& <w\left(x_{m}, T x_{m}\right) \\
& \leq w\left(x_{m+1}, T x_{m+1}\right),
\end{aligned}
$$

which is a contradiction. Therefore $w\left(x_{n+1}, T x_{n+1}\right)<w\left(x_{n}, T x_{n}\right)$ for all $n \in \mathbb{N}$. Thus, we have from (2.7)

$$
w\left(x_{n+1}, T x_{n+1}\right) \leq c\left[w\left(x_{n}, x_{n+1}\right)+w\left(x_{n}, T x_{n}\right)-w\left(x_{n+1}, T x_{n+1}\right)\right]
$$

and so

$$
\begin{aligned}
w\left(x_{n+1}, T x_{n+1}\right) & \leq \frac{c}{1+c}\left[w\left(x_{n}, x_{n+1}\right)+w\left(x_{n}, T x_{n}\right)\right] \\
& \leq \frac{2 c}{1+c} w\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

Now since $x_{n+2} \in J_{b}^{x_{n+1}}$ we have

$$
\begin{aligned}
b w\left(x_{n+1}, x_{n+2}\right) & \leq w\left(x_{n+1}, T x_{n+1}\right) \\
& \leq \frac{2 c}{1+c} w\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

and so

$$
w\left(x_{n+1}, x_{n+2}\right) \leq \frac{2 c}{b(1+c)} w\left(x_{n}, x_{n+1}\right)
$$

for all $n \in \mathbb{N}$. Therefore, we obtain

$$
w\left(x_{n}, x_{n+1}\right) \leq \lambda^{n} w\left(x_{0}, x_{1}\right)
$$

for all $n \in \mathbb{N}$, where $\lambda=\frac{2 c}{b(1+c)}<1$. Hence we have

$$
\lim _{n \rightarrow \infty} w\left(x_{n}, x_{n+1}\right)=0
$$

and also, for $m, n \in \mathbb{N}$ with $m>n$,

$$
\begin{aligned}
w\left(x_{n}, x_{m}\right) & \leq w\left(x_{n}, x_{n+1}\right)+w\left(x_{n+1}, x_{n+2}\right)+\cdots+w\left(x_{m-1}, x_{m}\right) \\
& \leq \lambda^{n} w\left(x_{0}, x_{1}\right)+\lambda^{n+1} w\left(x_{0}, x_{1}\right)+\cdots+\lambda^{m-1} w\left(x_{0}, x_{1}\right) \\
& \leq \frac{\lambda^{n}}{1-\lambda} w\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Since $\lambda<1$, the last inequality shows that, by Lemma 1.1 (c), $\left\{x_{n}\right\}$ is a Cauchy sequence. According to the completeness of X, there exists $z \in X$ such that $\left\{x_{n}\right\}$ converges to z with
respect to d. Since f is lower semicontinuous, we get that

$$
\begin{aligned}
0 & \leq w(z, T z)=f(z) \\
& \leq \liminf f\left(x_{n}\right) \\
& =\liminf w\left(x_{n}, T x_{n}\right) \\
& \leq \liminf w\left(x_{n}, x_{n+1}\right)=0,
\end{aligned}
$$

and so $f(z)=w(z, T z)=0$. Further, if $w(z, z)=0$, it follows by Lemma 1.2, that $z \in$ $T z$.

Acknowledgement. The authors thank to the referee for his pertinent comments and suggestions which help us to improve the manuscript.

References

[1] Altun, I.; Aslantas, M.; Sahin, H. Best proximity point results for p-proximal contractions. Acta Math. Hungar. 162 (2020), no. 2, 393-402.
[2] Altun, I.; Durmaz, G.; Olgun, M. P-contractive mappings on metric spaces. J. Nonlinear Funct. Anal.. 2018 (2018), Article ID 43, pp. 1-7.
[3] Altun, I.; Hançer, H. A.; Erduran, A. Nonself P-contractions on convex metric spaces and their fixed points. The Journal of Analysis. (2022), 1-12, https:/ /doi.org/10.1007/s41478-022-00390-5.
[4] Altun, I.; Hancer, H. A.; Erduran, A. Fixed point results for single valued and set valued P-contractions and application to second order boundary value problems. Carpathian J. Math.. 36 (2020), no. 2, 205-214.
[5] Aslantas, M.; Sahin, H.; Altun, I. Best proximity point theorems for cyclic p-contractions with some consequences and applications. Nonlinear Analysis: Modelling and Control. 26 (2021), no. 1, 113-129.
[6] Feng, Y.; Liu, S. Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings. it J. Math. Anal. Appl. 317 (2006), 103-112.
[7] Fulga, A.; Proca, A. A new generalization of Wardowski fixed point theorem in complete metric spaces. Advances in the Theory of Nonlinear Analysis and its Applications. 1 (2017), no. 1, 57-63.
[8] Fulga, A.; Proca, A. Fixed points for φ_{E}-Geraghty contractions. J. Nonlinear Sci. Appl. 10 (2017), 5125-513.
[9] Hancer, H.A. On multivalued P-contractive mappings that belongs to class of weakly Picard operators. Fixed Point Theory. 22 (2021), no. 2, 663-670.
[10] Iqbal, I.; Rizwan, M. Existence of the solution to second order differential equation through fixed point results for nonlinear F-contractions involving w_{0}-distance. Filomat. 34 (2020), no. 12, 4079-4094.
[11] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japon. 44 (1996), 381-391.
[12] Karapınar, E.; Fulga, A.; Aydi, H. Study on Pata E-contractions. Advances in Difference Equations. 1 (2020), 1-15.
[13] Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 334 (2007), 132-139.
[14] Latif, A.; Abdou, A. A. N. Fixed points of generalized contractive maps. Fixed Point Theory and Applications. 2009 (2009), 1-9.
[15] Latif, A.; Albar, W. A. Fixed point results in complete metric spaces. Demonstratio Mathematica. 41 (2008), no. 1, 145-150.
[16] Lin, L. J.; Du, W. S. Some equivalent formulations of the generalized Ekeland's variational principle and their applications. Nonlinear Analysis: Theory, Methods \& Applications. 67 (2007), no. 1, 187-199.
[17] Rakočević, V. Fixed Point Results in W-Distance Spaces, Chapman and Hall/CRC, New York, 2021.

```
Department of Mathematics
Faculty of Science and Arts
Kirikkale University
71450 Yahsihan, Kirikkale, Turkey
Email address: ishakaltun@yahoo.com
Email address: haticeaslanhancer@gmail.com
Email address: um.-ran@hotmail.com
```


[^0]: Received: 26.06.2022. In revised form: 31.10.2022. Accepted: 07.11.2022
 2020 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. Fixed point, P-contraction, w-distance.
 Corresponding author: Ishak Altun; ishakaltun@yahoo.com

