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Fixed point results for P -contractions via w-distance

ISHAK ALTUN, HATICE ASLAN HANCER and ÜMRAN BAŞAR

ABSTRACT. In the present paper, we define the Pw-contraction by considering the inequality called P -
contraction in metric space together with the w-distance. We then present fixed point theorems for both single-
valued and multivalued Pw-contractions. We also support our results with suitable examples.

1. INTRODUCTION AND PRELIMINARIES

In 2017, Fulga and Proca [7, 8] presented some fixed point theorems for single-valued
mappings via new type contractive inequalities inspired by E-contraction on metric space.
Since this idea, called E-contraction, was first used by Popescu (see the references of
[7, 8]), we prefer to use it as P -contraction in our papers to cite Popescu [2, 3, 5]. Popescu’s
original definition and related fixed point theorem are as follows: Let (X, d) be a metric
space and T : X → X be a mapping. Then T is called P -contraction if there exists k ∈ [0, 1)
such that

d(Tx, Ty) ≤ k [d(x, y) + |d(x, Tx)− d(y, Ty)|] (1.1)
for all x, y ∈ X . It is easy to see that every contraction mapping on metric space is P -
contraction, but the converse is not true as shown in some examples in [2, 8]. Thus, the
following theorem addresses a more general class of mappings than the famous Banach
fixed point theorem.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be P -contraction. Then T
has a unique fixed point. Moreover, every Picard iteration converges to the fixed point.

We recommend papers such as [1, 4, 9, 12] in addition to the above for fixed point
results regarding the concept of P -contraction.

In this paper, we will present the fixed point theorems for both single-valued and mul-
tivalued mappings by considering P -contraction idea of Popescu together with the w-
distance in metric space.

First of all, let’s remember the basic definition and properties of w-distance which
was introduced by Kada et al. [11] in metric space. See [17] for more information on
w-distance.
Definition 1.1 ([11]). Let (X, d) be a metric space. A function w : X×X → [0,∞) is called
w-distance in X if it satisfies the following:

• w(x, z) ≤ w(x, y) + w(y, z) for all x, y, z ∈ X,
• the mapping wx : X → [0,∞) is lower semicontinuous for each x ∈ X , where

wx(·) = w(x, ·), that is, if {yn} is a sequence in X with yn → y ∈ X , then

wx(y) ≤ lim inf
n→∞

wx(yn)

for each x ∈ X ,
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• for any ε > 0, there exists δ > 0 such that w(x, y) ≤ δ and w(x, z) ≤ δ imply
d(y, z) ≤ ε.

Now we present some examples, which more explanations of them, can be found in
some papers in the literature such as [10, 11, 14, 16].
Example 1.1. Let (X, d) be a metric space.

(1) The metric d is a w-distance in X.
(2) Define wk(x, y) = k > 0. Then wk is a w-distance in X.
(3) Let A, which has at least two elements, be a closed and bounded subset of X , and

let c ≥ diam(A) = sup{d(a, b) : a, b ∈ A}. Define

wc(x, y) =

{
d(x, y), x, y ∈ A

c, x /∈ A or y /∈ A
.

Then wc is a w-distance in X.
(4) Let f : X → X be a continuous function. Define

wf (x, y) = max{d(fx, y), d(fx, fy)}.
Then wf is a w-distance in X.

Example 1.2. Let (X, ∥·∥) be a normed linear space. Then the functions w1(x, y) = ∥y∥
and w2(x, y) = ∥x∥+ ∥y∥ are w-distances in X .

The following lemmas about w-distance play crucial role in the proofs of our theorems

Lemma 1.1 ([11]). Let (X, d) be a metric space, w be a w-distance in X , {xn} and {yn} be two
sequence in X , and {αn} and {βn} be two sequences in [0,∞) converging to 0. Then, for all
x, y, z ∈ X, the following hold:

(a) If w(xn, y) ≤ αn and w(xn, z) ≤ βn for all n ∈ N, then y = z. In particular, if
w(x, y) = 0 and w(x, z) = 0, then y = z.

(b) If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for all n ∈ N, then yn → z as n → ∞.
(c) If w(xn, xm) ≤ αn for all n,m ∈ N with n > m, then {xn} is a Cauchy sequence in X .
(d) If w(x, xn) ≤ αn for all n ∈ N, then {xn} is a Cauchy sequence in X .

Lemma 1.2 ([16]). Let (X, d) be a metric space, K be a closed subset of X and w be a w-distance
in X . Suppose that there exists u ∈ X such that w(u, u) = 0. Then u ∈ K if and only if

w(u,K) = inf{w(u, z) : z ∈ K} = 0.

In the literature, besides the fixed point theorems for single-valued mappings obtained
with the help of the w-distance function, Latif and Albar [15] (resp. Latif and Abdou [14])
proved the following theorem for multivalued mappings inspired by Feng-Liu’s [6] paper
(resp. Klim and Wardowski’s [13] paper).

Theorem 1.2 ([15, 14]). Let (X, d) be a complete space and let T : X → PC(X) be a weakly
contractive (resp. generalized w-contractive) map. Suppose that a real-valued function f on X
defined by f(x) = w(x, Tx) is lower semicontinous. Then there exists vz ∈ X such that f(z) = 0.
Further, if w(z, z) = 0, then z ∈ Tz.

2. MAIN RESULTS

First we introduce the following definition.

Definition 2.2. Let (X, d) be a metric space, w be a w-distance on X and T : X → X be a
mapping. If there exists a nonnegative real number c < 1 satisfying satisfying

w(Tx, Ty) ≤ c[w(x, y) + |w(x, Tx)− w(y, Ty)|], (2.2)

for all x, y ∈ X , then T is said to be Pw-contraction.
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Now we present our first main result.

Theorem 2.3. Let (X, d) be a complete metric space, w be a w-distance on X and T : X → X be
a Pw-contraction. Assume that one following hold:

(i) T is continuous,
(ii) w is continuous,

(iii) for every y ∈ X with y ̸= Ty

inf {w(x, y) + w(x, Tx) : x ∈ X} > 0.

Then T has a unique fixed point z ∈ X . Moreover w(z, z) = 0.

Proof. Let x0 ∈ X be an arbitrary point. Consider the associated Picard sequence {xn}
defined by xn+1 = Txn for n ≥ 0. Now, we will consider the following two cases:

(1) Assume there exists n0 ∈ N such that w(xn0 , xn0+1) = 0. In this case we claim that
w(xn0+1, xn0+2) = 0. Indeed, by (2.2) we have

w(xn0+1, xn0+2) = w(Txn0 , Txn0+1)

≤ c [w(xn0 , xn0+1) + |w(xn0 , Txn0)− w(xn0+1, Txn0+1)|]
= c [w(xn0 , xn0+1) + |w(xn0 , xn0+1)− w(xn0+1, xn0+2)|]
= cw(xn0+1, xn0+2),

which is a contradiction unless w(xn0+1, xn0+2) = 0. Hence w(xn0+1, xn0+2) = 0 and so
from the triangular inequality we have

w(xn0
, xn0+2) ≤ w(xn0

, xn0+1) + w(xn0+1, xn0+2) = 0.

Now that we have w(xn0 , xn0+1) = 0 and w(xn0 , xn0+2) = 0, from Lemma 1.1 (a), we get
xn0+1 = xn0+2 = Txn0+1 hence xn0+1 is a fixed point of T .

(2) Now suppose w(xn, xn+1) > 0 for all n ∈ N. Then from (2.2) we have

w(xn+1, xn+2) = w(Txn, Txn+1)

≤ c [w(xn, xn+1) + |w(xn, Txn)− w(xn+1, Txn+1)|]
= c [w(xn, xn+1) + |w(xn, xn+1)− w(xn+1, xn+2)|] (2.3)

for all n ∈ N. In this case it must be w(xn+1, xn+2) < w(xn, xn+1) for all n ∈ N (otherwise
from (2.3) we get a contradiction as 0 < w(xn+1, xn+2) ≤ cw(xn+1, xn+2) for some n ∈ N)
and hence from (2.3) we have

w(xn+1, xn+2) ≤
2c

1 + c
w(xn, xn+1)

for all n ∈ N. Therefore we have

w(xn+1, xn+2) ≤ λn+1w(x0, x1),

for all n ∈ N, where λ = 2c
1+c < 1. Now for any m,n ∈ N with m > n, we have

w(xn, xm) ≤
m−1∑
i=n

w(xi, xi+1)

=

m−1∑
i=n

λiw(x0, x1)

≤ λn

1− λ
w(x0, x1) (2.4)
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and so from Lemma 1.1 (c), {xn} is a Cauchy sequence. Due to the completeness of X ,
there exists z ∈ X such that xn → z as n → ∞. Since w is lower semicontinuous in the
second variable and xm → z as m → ∞, from (2.4) we get

w(xn, z) ≤ lim inf
m→∞

w(xn, xm) ≤ λn

1− λ
w(x0, x1). (2.5)

Now, if T is continuous, then xn+1 = Txn → Tz and so by the uniqueness of the limit
we get z = Tz. Moreover, we have w(z, z) = 0. Indeed, from (2.2)

w(z, z) = w(Tz, Tz) ≤ cw(z, z), (2.6)

which is a contradiction unless w(z, z) = 0.
If w is continuous, then from (2.4) and (2.5) we have

w(z, z) = lim
n,m→∞

w(xn, xm) = 0

and
lim

n→∞
w(xn, z) = 0.

Now putting x = xn and y = z in (2.2) we have

w(xn+1, T z) ≤ c[w(xn, z) + |w(xn, xn+1)− w(z, Tz)|]

for all n ∈ N. Taking limit as n → ∞ and using the continuity of w, we have

w(z, Tz) ≤ cw(z, Tz),

which is a contradiction unless w(z, Tz) = 0. Hence we have w(z, z) = 0 = w(z, Tz) and
so from Lemma 1.1 (a) we have z = Tz.

Finally, assume (iii) holds and z ̸= Tz. Then from (2.4) and (2.5) we have

0 < inf {w(x, z) + w(x, Tx) : x ∈ X}
≤ inf {w(xn, z) + w(xn, Txn) : n ∈ N}
= inf {w(xn, z) + w(xn, xn+1) : n ∈ N} → 0

as n → ∞, which is a contradiction. Hence z = Tz and as in (2.6), we have w(z, z) = 0.
To show the uniqueness of fixed point, suppose u be also a fixed point of T . Then from

(2.2) we have w(u, u) = 0 and

w(z, u) = w(Tz, Tu) ≤ cw(z, u)

which implies w(z, u) = 0. Hence from Lemma 1.1 (a) we have u = z. □

Now we provide a few illustrative examples along with a comparative example.

Example 2.3. Let X =
[
0, 1

2

]
with the usual metric d. Define T : X → X by Tx = x2 and

consider the w-distance in X as w(x, y) = y. Then we have

w(Tx, Ty) = y2

and
w(x, y) + |w(x, Tx)− w(y, Ty)| = y +

∣∣x2 − y2
∣∣

for all x, y ∈ X . Hence we get

w(Tx, Ty) ≤ 1

2
[w(x, y) + |w(x, Tx)− w(y, Ty)|]

for all x, y ∈ X , that is, T is Pw-contraction. Other conditions of Theorem 2.3 are clearly
hold, and therefore T has a unique fixed point.
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Note that T is not P -contraction with respect to usual metric d. Indeed, since

lim
x→ 1

2
−

d(Tx, T 1
2 )

d(x, 1
2 ) +

∣∣d(x, Tx)− d( 12 , T
1
2 )
∣∣ = lim

x→ 1
2
−

1
4 − x2

1
2 − x+

∣∣x− x2 − 1
4

∣∣ = 1

we can not find the constant k ∈ [0, 1) satisfying the inequality (1.1). Therefore Theorem
1.1 can not be applied to this example.

Example 2.4. Let X = C[0, 1] with the supremum norm. Define T : X → X by

Tf(t) =

∫ t

0

(t− s)f(s)ds

and consider the w-distance in X as w(f, g) = ∥f∥∞ + ∥g∥∞. Then we have

|Tf(t)| =

∣∣∣∣∫ t

0

(t− s)f(s)ds

∣∣∣∣
≤ ∥f∥∞

∫ t

0

(t− s)ds

=
t2

2
∥f∥∞

and so
∥Tf∥∞ ≤ 1

2
∥f∥∞

for all f ∈ X . Therefore we get

w(Tf, Tg) = ∥Tf∥∞ + ∥Tg∥∞ ≤ 1

2
∥f∥∞ +

1

2
∥g∥∞

=
1

2
w(f, g) ≤ 1

2
[w(f, g) + |w(f, Tf)− w(g, Tg)|]

for all f, g ∈ X , that is, T is Pw-contraction. Other conditions of Theorem 2.3 are clearly
hold, and therefore T has a unique fixed point.

Example 2.5. Let X =
{

1
2n : n ∈ N

}
∪ {0} with the usual metric. Define T : X → X by

T
1

2n
=

1

2n+1
for n ∈ N and T0 = 0

and consider the w-distance in X as w(x, y) = y. Then we have (except for the obvious
case)

w

(
T

1

2n
, T

1

2m

)
=

1

2m+1

=
1

2
w

(
1

2n
,
1

2m

)
≤ 1

2

[
w

(
1

2n
,
1

2m

)
+

∣∣∣∣w(
1

2n
, T

1

2n

)
− w

(
1

2m
, T

1

2m

)∣∣∣∣]
for all m,n ∈ N, that is, T is Pw-contraction. Other conditions of Theorem 2.3 are clearly
hold, and therefore T has a unique fixed point.

We need some notations to use in our theorem about multivalued mappings. Let (X, d)
be a metric space, P (X) be the family of all nonempty subsets of X , PC(X) be the family
of all nonempty and closed subsets of X and w be a w-distance in X . Let T : X → P (X)
be a multivalued mapping and b ∈ (0, 1). For x ∈ X , define the set Jx

b ⊆ X as

Jx
b = {y ∈ Tx : bw(x, y) ≤ w(x, Tx)} .
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Remark 2.1. 1. Let T : X → P (X) and x ∈ X with w(x, Tx) > 0. Then Jx
b is nonempty

for every b ∈ (0, 1). Indeed, if we choose εb = ( 1b − 1)w(x, Tx) > 0, then by the definition
of infimum, there exists yεb ∈ Tx such that

w(x, yεb) ≤ w(x, Tx) + εb.

Hence we have
bw(x, yεb) ≤ w(x, Tx)

and so yεb ∈ Jx
b .

2. Let w(x, Tx) = 0 for x ∈ X . Then Jx
b may be empty even if Tx ∈ PC(X). For

example, let X = (0, 1] with the usual metric, Tx = (0, x] ∈ PC(X) for every x ∈ X and
w(x, y) = y. Then we have w(x, Tx) = 0 for every x ∈ X and so we can not find y ∈ Tx
satisfying the inequality bw(x, y) ≤ w(x, Tx). Hence Jx

b is empty for every b ∈ (0, 1).
3. Let (X, d) be complete and Tx ∈ PC(X). Then Jx

b is nonempty for every b ∈ (0, 1).
The situation w(x, Tx) > 0 was examined in Case 1. Now let w(x, Tx) = 0. Then there
exists a sequence {yn} in Tx such that limn→∞ w(x, yn) = 0. Hence by Lemma 1.1 (d),
{yn} is a Cauchy sequence in X . Since X is complete there exists y ∈ X such that yn → y
with respect to d. By the closedness of Tx, we get y ∈ Tx. On the other hand, since w is
lower semicontinuous in the second variable we have

w(x, y) ≤ lim inf
n→∞

w(x, yn) = 0.

This shows that there exists y ∈ Tx such that

bw(x, y) = 0 = w(x, Tx)

for every b ∈ (0, 1). Hence we have Jx
b is nonempty.

Now, taking into account both Popescu’s and Feng-Liu’s ideas we will present a fixed
point theorem for multivalued mappings on metric space via w-distance.

Definition 2.3. Let (X, d) be a metric space, w be a w-distance on X , T : X → P (X) be a
multivalued mapping and b ∈ (0, 1). If for all x ∈ X , there exists y ∈ Jx

b satisfying

w(y, Ty) ≤ c[w(x, y) + |w(x, Tx)− w(y, Ty)|],
where c is a nonnegative real number c satisfying 2c

b(1+c) < 1. Then T is said to be multi-
valued Pw-contraction.

Theorem 2.4. Let (X, d) be a complete metric space, w be a w-distance on X and T : X →
PC(X) be a multivalued Pw-contraction. Assume that f(x) = w(x, Tx) is lower semicontinuous.
Then there exists z ∈ X such that f(z) = 0. Further, if w(z, z) = 0 then z is a fixed point of T .

Proof. First note that by Remark 2.1, Jx
b is nonempty for any x ∈ X. By the assumption,

for arbitrary point x0 ∈ X , there exists x1 ∈ Jx0

b such that

w(x1, Tx1) ≤ c[w(x0, x1) + |w(x0, Tx0)− w(x1, Tx1)|],
and, for x1 ∈ X, there exists x2 ∈ Jx1

b such that

w(x2, Tx2) ≤ c[w(x1, x2) + |w(x1, Tx1)− w(x2, Tx2)|].
Continuing this process, we can construct an iterative sequence {xn} such that xn+1 ∈ Jxn

b

and
w(xn+1, Txn+1) ≤ c[w(xn, xn+1) + |w(xn, Txn)− w(xn+1, Txn+1)|], (2.7)

for n = 0, 1, 2, · · · . If there exists n0 ∈ N such that w(xn0 , Txn0) = 0, then we have
f(xn0) = 0. Let assume w(xn, Txn) > 0 for all n ∈ N. Now, if there exists m ∈ N such that

w(xm+1, Txm+1) ≥ w(xm, Txm),
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then from (2.7) we have (note that, bw(xm, xm+1) ≤ w(xm, Txm) since xm+1 ∈ Jxm

b )

w(xm+1, Txm+1) ≤ c[w(xm, xm+1) + |w(xm, Txm)− w(xm+1, Txm+1)|]
= c[w(xm, xm+1) + w(xm+1, Txm+1)− w(xm, Txm)],

and so

w(xm+1, Txm+1) ≤ c

1− c
w(xm, xm+1)−

c

1− c
w(xm, Txm)

=
c

1− c
[w(xm, xm+1)− w(xm, Txm)]

≤ c

1− c

[
1

b
w(xm, Txm)− w(xm, Txm)

]
≤

(
c

1− c

)(
1− b

b

)
w(xm, Txm)

< w(xm, Txm)

≤ w(xm+1, Txm+1),

which is a contradiction. Therefore w(xn+1, Txn+1) < w(xn, Txn) for all n ∈ N. Thus, we
have from (2.7)

w(xn+1, Txn+1) ≤ c[w(xn, xn+1) + w(xn, Txn)− w(xn+1, Txn+1)]

and so

w(xn+1, Txn+1) ≤ c

1 + c
[w(xn, xn+1) + w(xn, Txn)]

≤ 2c

1 + c
w(xn, xn+1).

Now since xn+2 ∈ J
xn+1

b we have

bw(xn+1, xn+2) ≤ w(xn+1, Txn+1)

≤ 2c

1 + c
w(xn, xn+1),

and so

w(xn+1, xn+2) ≤
2c

b(1 + c)
w(xn, xn+1)

for all n ∈ N. Therefore, we obtain

w(xn, xn+1) ≤ λnw(x0, x1),

for all n ∈ N, where λ = 2c
b(1+c) < 1. Hence we have

lim
n→∞

w(xn, xn+1) = 0,

and also, for m,n ∈ N with m > n,

w(xn, xm) ≤ w(xn, xn+1) + w(xn+1, xn+2) + · · ·+ w(xm−1, xm)

≤ λnw(x0, x1) + λn+1w(x0, x1) + · · ·+ λm−1w(x0, x1)

≤ λn

1− λ
w(x0, x1).

Since λ < 1, the last inequality shows that , by Lemma 1.1 (c), {xn} is a Cauchy sequence.
According to the completeness of X , there exists z ∈ X such that {xn} converges to z with
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respect to d. Since f is lower semicontinuous, we get that

0 ≤ w(z, Tz) = f(z)

≤ lim inf f(xn)

= lim inf w(xn, Txn)

≤ lim inf w(xn, xn+1) = 0,

and so f(z) = w(z, Tz) = 0. Further, if w(z, z) = 0, it follows by Lemma 1.2, that z ∈
Tz. □

Acknowledgement. The authors thank to the referee for his pertinent comments and
suggestions which help us to improve the manuscript.
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[3] Altun, I.; Hançer, H. A.; Erduran, A. Nonself P -contractions on convex metric spaces and their fixed points.
The Journal of Analysis. (2022), 1-12, https://doi.org/10.1007/s41478-022-00390-5.

[4] Altun, I.; Hancer, H. A.; Erduran, A. Fixed point results for single valued and set valued P -contractions
and application to second order boundary value problems. Carpathian J. Math.. 36 (2020), no. 2, 205–214.

[5] Aslantas, M.; Sahin, H.; Altun, I. Best proximity point theorems for cyclic p-contractions with some conse-
quences and applications. Nonlinear Analysis: Modelling and Control. 26 (2021), no. 1, 113–129.

[6] Feng, Y.; Liu, S. Fixed point theorems for multivalued contractive mappings and multivalued Caristi type
mappings. it J. Math. Anal. Appl. 317 (2006), 103-112.

[7] Fulga, A.; Proca, A. A new generalization of Wardowski fixed point theorem in complete metric spaces.
Advances in the Theory of Nonlinear Analysis and its Applications. 1 (2017), no. 1, 57-63.

[8] Fulga, A.; Proca, A. Fixed points for φE -Geraghty contractions. J. Nonlinear Sci. Appl. 10 (2017), 5125–513.
[9] Hancer, H.A. On multivalued P -contractive mappings that belongs to class of weakly Picard operators.

Fixed Point Theory. 22 (2021), no. 2, 663-670.
[10] Iqbal, I.; Rizwan, M. Existence of the solution to second order differential equation through fixed point

results for nonlinear F -contractions involving w0-distance. Filomat. 34 (2020), no. 12, 4079–4094.
[11] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in com-

plete metric spaces. Math. Japon. 44 (1996), 381–391.
[12] Karapınar, E.; Fulga, A.; Aydi, H. Study on Pata E-contractions. Advances in Difference Equations. 1 (2020),

1-15.
[13] Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J.

Math. Anal. Appl. 334 (2007), 132–139.
[14] Latif, A.; Abdou, A. A. N. Fixed points of generalized contractive maps. Fixed Point Theory and Applications.

2009 (2009), 1–9.
[15] Latif, A.; Albar, W. A. Fixed point results in complete metric spaces. Demonstratio Mathematica. 41 (2008),

no. 1, 145–150.
[16] Lin, L. J.; Du, W. S. Some equivalent formulations of the generalized Ekeland’s variational principle and

their applications. Nonlinear Analysis: Theory, Methods & Applications. 67 (2007), no. 1, 187–199.
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